
Unsupervised Selective Labeling for More
Effective Semi-Supervised Learning

Xudong Wang⋆[0000−0002−4973−780X], Long Lian⋆[0000−0001−6098−189X], and
Stella X. Yu[0000−0002−3507−5761]

UC Berkeley / ICSI

A Appendix

A.1 Relationships Between Global Loss in USL-T and the K-Means
Clustering Objective

Intuitively, the global loss in our proposed USL-T performs deep clustering.
Furthermore, a connection can be observed between minimizing global loss and
performing a generalized form of K-Means clustering, which reduces to K-Means
clustering with an additional regularization term when τ = 0 and the feature
space is fixed.

Observation 1 Assume that τ = 0 and the feature space is fixed, minimizing
Lglobal optimizes the objective of K-Means clustering with a regularization term
on the inter-cluster distance that encourages additional diversity.

Proof. Recall that we have one-hot assignment y(x) and soft assignment ŷ(x)
defined as:

yi(x) =

{
1, if i = argmink∈{1,...,C} s(f(x), ck)

0, otherwise
(1)

ŷi(x) =
es(f(x),ci)∑C
j=1 e

s(f(x),cj)
(2)

where ci ∈ Rd, k ∈ {1, ..., C} are learnable centroids with feature dimension d,
s(·, ·) is a function that quantifies the similarity between two points in a feature
space Rd and f(x) ∈ Rd is a function that maps an input x to a feature space,
which is implemented by a CNN.

Then our global loss is defined as:

Lglobal(X) =
1

|X |
∑
x∈X

DKL(y(x)||ŷ(x))F (ŷ(x)) (3)

⋆ Equal contribution

2 X. Wang et al.

When τ = 0, the filtering function F (ŷ(x)) = 1(max(ŷ(x)) ≥ τ) has no effect.
Then we can simplify our global loss and turn the loss into the following form:

Lglobal(X) =
1

|X |
∑
x∈X

DKL(y(x)||ŷ(x)) (4)

Since the feature space is fixed, i.e. does not change across the loss optimiza-
tion, f(x) remains constant, and the goal is to find the optimal centroids {c∗i }Ci=1

that minimizes the loss:

{c∗i }Ci=1 = argmin
{ci}C

i=1

Lglobal(X) (5)

We then get:

{c∗i }Ci=1 = argmin
{ci}C

i=1

Lglobal(X) (6)

= argmin
{ci}C

i=1

1

|X |
∑
x∈X

DKL(y(x)||ŷ(x)) (7)

= argmin
{ci}C

i=1

∑
x∈X

C∑
i=1

−y(x) log ŷ(x)

y(x)
(8)

Since y(x) is a one-hot vector, we can simplify equation 8 further. Define
M(x) = argmink s(f(x), ck) and s(·, ·) = −d(·, ·) for some metric d(·, ·),

{c∗i }Ci=1 = argmin
{ci}C

i=1

∑
x∈X
− log ŷ(x)M(x) (9)

= argmin
{ci}C

i=1

∑
x∈X
− log

es(f(x),cM(x))∑C
k=1 e

s(f(x),ck)
(10)

= argmin
{ci}C

i=1

∑
x∈X
− log es(f(x),cM(x)) + log

C∑
k=1

es(f(x),ck) (11)

= argmin
{ci}C

i=1

∑
x∈X
− log e−d(f(x),cM(x)) + log

C∑
k=1

e−d(f(x),ck) (12)

= argmin
{ci}C

i=1

∑
x∈X

d(f(x), cM(x)) + log

C∑
k=1

e−d(f(x),ck) (13)

If we let d(·, ·) be squared L2 distance, the expression can be decomposed
into the sum of a square L2 distance with an regularization term:

{c∗i }Ci=1 = argmin
{ci}C

i=1

(Main objective + Reg) (14)

Unsupervised Selective Labeling 3

where

Main objective =
∑
x∈X
||x− cM(x)||2 (15)

Reg = log

C∑
k=1

e−d(f(x),ck) = log

C∑
k=1

e−||f(x)−ck||2 (16)

Minimizing the regularization term is equivalent to maximizing the sample’s
distance to all clusters d(f(x), ck), ∀k ∈ {1, ..., C}. This pushes apart different
clusters and contributes to the diversity between clusters:

For k ̸= M(x), there is only force from the regularization term, which pushes
apart a sample and other clusters that it does not belong to.

For k = M(x), there are two forces: one from the main objective (equa-
tion 15) and one from the regularization term (equation 16). The regularization
term pushes the sample away from its assigned cluster, i.e. the regularization
term maximizes d(x, ck) also for k = M(x), while the main objective minimizes
d(x, cM(x)).

We can quantify the net effect for k = M(x) scenario. The gradient of the
regularization term w.r.t d(x, cM(x)) is −ŷ(x)M(x), and the gradient from the
main objective to d(x, cM(x)) is always 1. As ŷ(x) is a probability distribution,
0 ≤ ŷ(x)M(x) ≤ 1. Therefore, the net effect is still minimizing d(x, cM(x)), i.e.
attracting x to its cluster center cM(x) and cM(x) to x.

Therefore, equation 16 is a regularization term aiming for additional diversity.
Now we consider the objective without the regularization term, and we define

the centroids without the regularization term {c′i}Ci=1 as:

{c′i}Ci=1 = argmin
{ci}C

i=1

∑
x∈X
||x− cM(x)||2 (17)

Since there is no interdependence between ci and cj , where i ̸= j, we can
define

X ′
k = {x ∈ X |M(x) = k} (18)

and write equation 17 as

{c′i}Ci=1 = argmin
{ci}C

i=1

C∑
k=1

hk (19)

hk =
∑
x∈X ′

k

||x− ck||2 (20)

Then the solution to equation 19 is to minimize the individual hk,∀k ∈
{1, 2, ..., C}, i.e. the sum of squared L2 distances between a cluster and the
samples that belong to it.

Without loss of generalizability, we analyze c′1,

4 X. Wang et al.

{c′i}Ci=1 = argmin
c1

h1 (21)

= argmin
c1

∑
x∈X ′

1

||x− c1||2 (22)

The gradient of the objective in equation 22 w.r.t c1 is

∇c1h1 = −2
∑
x∈X ′

1

x− c1 (23)

since the objective is convex, equation 23 indicates the unique minimum is
reached when

∑
x∈X ′

1

x− c1 = 0 (24)

c1 =
1

|X ′
1|

∑
x∈X ′

1

x (25)

This means that c′i is the mean of all sample vectors that belong to cluster
i. This indicates that equation 17 is equivalent to the objective of K-Means
clustering, which aims to minimize the square L2 distance between a group of
samples that are assigned to a specific cluster and the mean of this group of
samples.

Therefore, Lglobal(X) has same objective with K-Means clustering with an
extra regularization term on maximizing the inter-cluster sample distances for
cluster diversity.

A.2 Non-optimality of Two Types of Collapses

Observation 2 Neither one-cluster nor even-distribution collapse is optimal to
our local constraint, i.e. P (z(x′), z̄, t) ̸= ŷ(x) for either collapse.

Proof. Let z(x) ∈ Rd be the logits of x and z̄ ∈ Rd be the moving average
of the batch mean of σ(z(x′)), with σ(·) as the softmax function and µ as the
momentum:

zk(x) = s(f(x), ck) = f(x)⊺ck (26)

z̄ ← µ(
1

n

n∑
i=1

σ(z(x′
i)))+(1−µ)z̄ at each iteration (27)

Unsupervised Selective Labeling 5

Recall that we define our anti-collapsing function P (z, z̄, t) with two compo-
nents, as:

P̂ (z, z̄) = z− αlog z̄ (28)

[P ′(ẑ, t)]i =
exp(ẑi/t)∑
j exp(ẑj/t)

(29)

P (z, z̄, t) = P ′(P̂ (z, z̄), t) (30)

(31)

where α is the adjustment factor and t is the temperature.
Then the local loss is formulated as:

llocal(xi, x
′
i) = DKL(P (z(x′

i), z̄, t)||ŷ(xi)) (32)

Llocal({xi}ni=1) =
1

n

n∑
i=1

llocal(xi, x
′
i) (33)

where x′
i is a randomly picked neighbor from the k nearest neighbors of xi.

According to Jensen’s inequality, KL divergence DKL(p||q) only achieves op-
timality, with gradient norm 0, when p = q. To prove a solution is not optimal
for llocal(x, x

′), we only need to prove P (z(x′), z̄, t) ̸= ŷ(x).
For one-cluster collapse, where the neural network assigns all samples to the

same cluster with high confidence, both ŷ(x′) and ŷ(x) are very close to a one-hot
distribution, with σ(z(x′

i)) ≈ 1
n

∑n
i=1 σ(z(x

′
i)),∀i ∈ {1, 2, ..., n}.

Assuming that we have already taken enough iterations for the moving av-
erage to catch up in this collapsing situation, that the difference between z̄ and
1
n

∑n
i=1 σ(zi) is negligible: z̄ ≈

1
n

∑n
i=1 σ(z(x

′
i)). We have:

P̂ (z, z̄) = z− αlog z̄ (34)

≈ z− αlog σ(z) (35)

= c1d (36)

where c is a constant and 1d ∈ Rd is a vector of 1 when α = 1. With α > 1,
P̂ (z, z̄) has an even stronger adjustment effect that pushes the target distribution
even farther than uniform distribution, which is found to be beneficial in our
circumstances with an optimizer that is using momentum for faster convergence.

Note that ŷ(x) is a distribution close to one-hot, as above, we have:

P (z, z̄, t) = P ′(P̂ (z, z̄), t) (37)

≈ P ′(c1d, t) (38)

=
1

C
1d (39)

̸= ŷ(x) (40)

where C is the number of clusters.

6 X. Wang et al.

Therefore, our loss will drive the distribution back to one that is less extreme,
i.e. close to uniform distribution, and thus one-cluster collapse is not an optimum
for llocal(x).

Now we consider even distribution collapse, where samples are assigned to a
distribution close to uniform distribution, with mean distribution of all samples
being uniform, i.e. the mapping function f(x) assigns similar logits and thus
similar distributions to all clusters with small variations that are drawn from
a distribution with zero-mean. Note that exact uniform distribution, where the
variation exactly equals to 0, is hardly achieved in the optimization process and
thus is not a concern for us.

Consider one such sample x with neighbors x′
i and predicted logits z from

the batch. Here we also assume that the exponential moving average catches up,
so that we have: z̄ ≈ 1

C1d. In this case, P̂ (z, z̄):

P̂ (z, z̄) = z− αlog z̄ (41)

≈ z− αlog
1

C
1d (42)

= z− αlog
1

C
(43)

Note that P ′(ẑ(x), t) is by design invariant to an additive constant on the
ẑ(x):

[P ′(ẑ(x) + c, t)]k =
exp((ẑk(x) + c)/t)∑
j exp((ẑj(x) + c)/t)

(44)

=
exp(ẑk(x)/t) exp(c/t)∑
j exp(ẑj(x)/t) exp(c/t)

(45)

=
exp(ẑk(x)/t)∑
j exp(ẑj(x)/t)

(46)

= [P ′(ẑ(x), t)]k (47)

Then we consider the net effect of P̂ and P ′:

I(z(x′), z̄, t) = P ′(P̂ (z(x′), z̄), t) (48)

≈ P ′(z(x′)− αlog
1

C
, t) (49)

= P ′(z(x′), t) (50)

̸= ŷ(x) (51)

The last step comes from the fact that z(x′) contains some variations and is
not a uniform distribution. In this case, P ′(z(x′), t) will enlarge the dimension
of z which has maximum value and make other dimension smaller in the out-
put probability, forcing the softmax distribution to be spikier during training.
Therefore, I(z(x′), z̄, t) will have a distribution that makes the variation more
significant, driving the distribution out of mean cluster collapse.

Unsupervised Selective Labeling 7

A.3 Additional Experiment Results

Varying Budgets. Table 1 and 2 indicate the accuracy with different budget
levels on SimCLRv2-CLD and FixMatch, respectively. For SimCLRv2-CLD, our
method consistently outperforms not only random selection but also stratified
selection for all the low-label settings. Our improvement is prominent especially
when the number of selected samples is low. In 40 (250) labels case, we are able to
achieve a 15.8% (2.7%) improvement. For FixMatch, we consistently outperform
random baselines and even outperform stratified sampling, which makes use of
ground truth labels of unlabeled data, in most of the settings.

Sampling Method 40 labels 100 labels 250 labels

Random 60.8 73.7 79.4

Stratified† 66.5 74.5 80.4

USL (Ours) 76.6 ↑ 15.8 79.0 ↑ 5.3 82.1 ↑ 2.7

USL-T (Ours) 76.1 ↑ 15.3 - -

Table 1: CIFAR-10 experiments with transfer-learning based SSL method
SimCLRv2-CLD [7, 25], with the mean of 5 different folds and 2 runs in each
fold. †: Even though stratified selection uses more information and is not a fair
comparison, we still outperform stratified selection.

Accuracy (%)

Sample Selection 40 labels 100 labels 250 labels

Random 82.9 88.7 93.3

Stratified†* 88.6 90.2 94.9

USL (Ours) 90.4 ↑ 7.5 93.2 ↑ 4.5 94.0 ↑ 0.7

USL-T (Ours) 93.5 ↑ 10.6 - -

Table 2: CIFAR-10 experiments with FixMatch [23]. †: Not a fair comparison
with us because it assumes balanced labeled data available and leaks information
about ground truth labels. *: results from [23].

USL-T on ImageNet. We also provide experimental results of USL-T on
ImageNet in Table 3. As for the hyperparams for USL-T, we use the same hy-
perparams as shown in the hyperparam table in the main text. For ImageNet,
to create a fair comparison, USL-T model is initialized with weights of MoCov2.

8 X. Wang et al.

ImageNet SimCLRv2

Random 33.2

Stratified† 36.4

USL-MoCo (Ours) 39.8 ↑6.6
USL-CLIP (Ours) 40.4 ↑7.2
USL-T (Ours) 41.3 ↑8.1

Table 3: Additional USL-T experiments with SimCLRv2 [7] on ImageNet. On
ImageNet, USL-T also shows promising improvements, reaching a 6.6% improve-
ment when compared to baseline. †: Although stratified selection utilizes ground
truth, we still outperform it without using labeled information.

Selection Method Accuracy

Random 77.17 ± 6.98

Stratified† 80.46 ± 7.88

USL (Ours) 88.06 ± 1.41 ↑10.89

Table 4: USL shows remarkable generalizability across domains without any pre-
training or fine-tuning on the target domain in BloodMNIST [28]. Annotated
samples are chosen by a self-supervised CLD model trained on CIFAR-10 and
never exposed to medical images. We adopt the same hyperparams as FixMatch
on CIFAR-10, except that we train only for 64 epochs. Mean and standard devi-
ation are taken over three runs. †: outperforming stratified with less information.

Cross-domain Generalizability on MedMNIST. We show USL’s impres-
sive generalizability in the main text through selective labeling with CLIP fea-
tures in the ImageNet training set. Furthermore, to analyze whether USL’s gen-
eralizability holds across domains, we use the exact same CLD model pretrained
on CIFAR-10 to select samples in the BloodMNIST dataset of the MedMNISTv2
collection [28], which is a dataset in medical imaging domain. BloodMNIST con-
tains about 18k blood cell images under microscope in 8 classes, which is dras-
tically different from CIFAR-10’s domain, but as shown in Table 4, our model
with FixMatch performs 10.89% better than random sampling and 7.60% better
than stratified sampling, further illustrating the possibility of a general sample
selection model across image domains.

Unsupervised Selective Labeling 9

A.4 CIFAR-10 Visualizations on Selected Samples

We visualize the top-40 and least-40 of our USL and USL-T selected samples
in CIFAR-10, as in Fig. 1. For clarity, we put images into buckets according to
their labels. Samples from random selection are highly imbalanced in terms of
semantic class distribution and coverage. Our top selected samples from USL
and USL-T are representative and diverse. The representativeness could be seen
from that the objects are almost always appear without any occlusion or any
truncation. In contrast, the 40 samples that we are least likely to select are
mainly outliers that could mislead the classifier.

10 X. Wang et al.

airplane automobile bird cat deer dog frog horse ship truck

(a) Random Selection: 40 Samples

airplane automobile bird cat deer dog frog horse ship truck

(b) Ours (USL): Top-40 Selection

airplane automobile bird cat deer dog frog horse ship truck

(c) Ours (USL-T): Top-40 Selection

airplane automobile bird cat deer dog frog horse ship truck

(d) Ours (USL): 40 Samples with Least Utility

Fig. 1: Visualizations of selected samples in CIFAR-10: Our selections are mostly
balanced and representative. In contrast, random selection is very imbalanced
and the samples that we are least likely to select are almost always outliers.

Unsupervised Selective Labeling 11

A.5 Pseudo-code for the Regularization Algorithm

We summarize the regularization algorithm in pseudo-code in Alg. 1. In Alg.
1, we first obtain V̂0, the selection without regularization, and set the moving
average regularizer R̂eg(Vi, 0) to 0 for every Vi ∈ V; then in each iteration, we
update R̂eg(Vi, t) with moving average from a closeness measurement to other
previously selected samples, where t is the index of current iteration. We re-
select samples according to regularized utility at the end of each iteration, with
λ being a balancing factor. In the end, the selection from the last iteration is
returned.

Algorithm 1 The iterative regularization algorithm

Require:
{U(Vi)|Vi ∈ V}: The unregularized utility for each vertex Vi

λ: weight for applying regularization
mreg: momentum in exponential moving average
l: the number of iterations

Procedure:
R̄eg(Vi, 0)← 0, ∀Vi ∈ V

V̂0 ← samples with largest U(Vi) in each cluster
for t = 1 to l do

for all Vi ∈ V do
Reg(Vi, t)←

∑
V̂ t−1
j ̸∈Si

1

∥Vi−V̂ t−1
j ∥α

R̄eg(Vi, t)← mreg · R̄eg(Vi, t− 1) + (1−mreg) · Reg(Vi, t)
U ′(Vi, t)← U(Vi)− λ · R̄eg(Vi, t)

end for
V̂t ← samples with largest U ′(Vi, t) in each cluster

end for
return V̂l

A.6 Using Euclidean Distance or Cosine Similarity?

Because the features of all instances are projected to a unit hypersphere with
L2 normalization, theoretically, maximizing the cosine similarity between two
nodes is equivalent to maximizing the inverse of Euclidean distance between two
nodes:

argmax
i,j

(∥f(xi)− f(xj)∥2)−1 = argmax
i,j

(2− 2 cos(f(xi), f(xj)))
−1 (52)

= argmax
i,j

(cos(f(xi), f(xj))) (53)

However, empirically, using maximizing the inverse of Euclidean distance
1/d(·) as the objective function performs better than maximizing the cosine
similarity cos(x). The reason is that, when two nodes are very close to each

12 X. Wang et al.

others, 1/d(·) is more sensitive to the change of its Euclidean distance, whereas
cos(·) tends to be saturated and insensitive to small changes. Therefore, the
function 1/d(·) has the desired property of non-saturating and can better focus
on the distance difference with closest neighbors.

A.7 General-domain Multi-modal Models: our method on CLIP
features

Although our method works well in both small and large scale datasets, there are
still two interesting aspects that we would like to explore. 1) In our approach,
self-supervised models need to be re-trained for each new dataset, which is time-
consuming and could potentially delay the schedule for data annotation in real-
world industry. 2) Unsupervised models do not model semantic information
explicitly, which may lead to confusion that could potentially be mitigated (e.g.
datasets with varying intra-class variance will take regions of different sizes and
may be treated differently in an unexpected way).

To address these issues, we put our focus on a large pretrained model that
encodes semantic information. Fortunately, the availability of large-scale text-
image pairs online makes it possible to train a large-scale model that encodes
images in the general domain with semantic information. In this paper, we make
use of publicly-available CLIP [21] models, a large-scale collection of models
trained on Internet-crawled data with a wide general domain and use CLIP’s
image model as feature extractor.

Using models trained on multi-modal datasets resolves the above issues. Even
though CLIP is never trained on our target dataset, nor does the categories in its
training set match the dataset we are using, using it to select does not degrade
our performance of sample selection and labeling pipeline. This indicates that
the effectiveness of our label selection does not necessarily depend on whether
the same pretrained model is used in the downstream task. In addition, we ob-
serve that such substitution even helps with a slightly larger annotation budget,
demonstrating the effectiveness of making use of semantic information. Since we
only perform inference on the CLIP model, the whole sample selection process
could complete in 0.5 hours on a commodity server using one GPU, indicating
the possibility of our methods without delaying the schedule of human annota-
tion or modifying the annotation pipeline and enables it to be used by industry
on real-world dataset collection.

Note that although CLIP supports zero-shot inference by using text input
(e.g. class names) to generate weights for its classifier, it is not always possible
to define a class with names or even know all the classes beforehand. Since we
only make use of the image part of the CLIP model, we do not make use of prior
text information (e.g. class descriptions) that are sometimes available in the real
world. We leave better integration of our methods and zero-shot multi-modal
models to future work.

Unsupervised Selective Labeling 13

0 1 2 3 4 5 6

0.72

0.73

0.74

0.75

0.76

M
ea

n
Ac

c.

(a)

0 1 2 3 4 5 6
0

20

40

60

80

%
 C

ha
ng

e
to

 w
/o

 R
eg

(b)

0 1 2 3 4 5 6
0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
M

ea
n

De
ns

ity

(c)

200 400 600 800 1000
K

0.68

0.70

0.72

0.74

0.76

M
ea

n
Ac

c.

(d)

Fig. 2: Effect of different hyperparameters, λ (Fig. a,b,c) and k (Fig. d) on
CIFAR-10 with SimCLRv2-CLD. λ balances representative and uniformity
across the feature space. Larger λ indicates stronger regularization that pushes
more selections to be different but potentially selects less individually representa-
tive samples, or vice versa. Larger k indicates that we are taking more neighbors
into account when estimating the representativeness. Thanks to our stable for-
mulation for density estimation, we found the optimal k = 400 on CIFAR-10
also work consistently well on CIFAR-100 and MedMNIST [28], indicating the
hyperparameter’s insensitivity to number of classes, number of images in each
class, and image domains.

Small-scale Dataset Large-scale Dataset

Hyperparam CIFAR-10 CIFAR-100 MedMNIST Hyperparam ImageNet-100 ImageNet

k in kNN 400 k in kNN 20

mreg 0.9 Horizon 64

α, λ 0.5, 0.5(≤ 100 samples) / α, λ 0.5, 1.5

1.0, 1.0(> 100 samples)

Iteration l 10

Table 5: A list of hyperparams used in our USL experiments. The hyperpa-
rameters are slightly different for small-scale and large-scale datasets due to the
introduction of regularization horizon in selective labeling in large-scale datasets.
Following [23], we use different sets of hyperparameters for small-scale and large-
scale datasets.

A.8 Hyperparameter Analysis

We focus on two hyperparameters in the analysis: λ, the weight for regularization,
and k, the number of neighbors we use for kNN in Fig. 2. We use CIFAR-10 with
SimCLRv2-CLD in a setting with a budget of 40 samples.

For hyperparam λ, we evaluated label selections with different λ values used
in regularization. In the experiments, we select λ, ranging from 0 to 6 in a 0.5
increment, where 0 indicates no regularization and larger λ indicates a stronger
regularization. We then evaluate the mean accuracy from 6 runs (using 2 runs
per seed and 3 seeds per setting), the percent of samples that are different when
compared to without regularization (i.e., λ = 0), and mean density normalized

14 X. Wang et al.

w.r.t. without regularization. We observe that as λ gets larger, we select more
different samples compared to without regularization, which indicates stronger
adjustment. This comes with higher accuracy as we have more uniformity. As
a trade-off, we could not sample from area which has as high density as before
because selecting samples from that area leads to selections that are close to each
other, leading to a high penalty. Here, uniformity and representativeness show a
trade-off and the optimal choice is to balance each other at λ around 0.5. When
λ is much greater than 0.5, outlier samples that are as far away as possible from
other selections are chosen without considering whether the selected samples are
representative, which leads to much lower accuracy.

For hyperparam k, we find that using a larger k contributes to a better repre-
sentation estimation by considering more neighbors. Thanks to our formulation
that considers not only the kth sample for density estimation but the distance
with all the k nearest neighbors, we found that our algorithm’s choice for k is
very generalizable: we found the optimal k for CIFAR-10 to be 400, and found
that k = 400 also performs very well on CIFAR-100 and MedMNIST without any
tuning, which indicates our hyperparam’s insensitivity in the number of classes,
number of samples per class, and the dataset domain. Similarly, for larger scale
datasets with higher image resolution and lower sample noise, we find that sim-
ply set k = 20 leads to good performances on both 100 classes ImageNet and
the full ImageNet with 1000 classes.

A.9 Additional Discussions on Related Work

Related Work About Self-supervised Learning. Self-supervised Learn-
ing learns representations transferable to downstream tasks without annota-
tions [13,26]. Contrastive learning [6, 15,25,26] learns representations that map
similar samples or different augmentations of the same instance close and dissim-
ilar instances apart. Similarity-based methods [13] learn representations without
negative pairs by predicting the embedding of a target network with an online
network. Feature learning with grouping [3, 4, 25, 27, 29, 31] respects the natural
grouping of data by exploiting clusters in the latent representation. We study
unlabeled data in a unsupervisedly learned feature space, due to its high quality
and low feature dimensions.

We make use of the high-quality representations and dimensionality-reduction
property in self-supervised learning to facilitate sample selection.

Using the representation learned with unsupervised learning as the feature
space of selecting labels has two main advantages: 1) Without leveraging any
labeled data, self-supervised learning could generate high-quality representations
for many downstream tasks. 2) It relieves us from dealing with high-dimensional
feature, due to relatively low dimension of output feature.

Related Work About Our Deep Counterpart of k-Means Clustering
in USL-T. In USL-T, we proposed a deep counterpart of k-Means clustering
method that optimizes a unified global objective, which has an effect similar to

Unsupervised Selective Labeling 15

performing k-Means clustering but trains the feature space and cluster assign-
ment jointly. We would like to offer a comparison to main related work of our
proposed method that also involves k-Means clustering variants or deep cluster-
ing designs to jointly learn features and cluster assignments.

Deep k-Means [12] proposed a differentiable metric on auto-encoder features
to perform clustering. However, [12] only scales to small datasets such as MNIST,
while our formulation scales to datasets with around a million images. In ad-
dition, while [12] requires a reconstruction term in the loss function to support
clustering throughout training, our clustering loss, i.e. global loss, requires only
one term that matches the soft and hard distribution. Note that although we
also employ a local loss to kick-start the training process due to our confidence-
based filtering function, the local loss could be turned off early in the training
process without negative impacts on the clustering quality.

DeepCluster [3] also jointly learns features and cluster assignments with k-
Means clustering. However, our work and [3] have different contributions: while
our work adapts k-Means clustering to a unified loss formulation, [3] simply uses
the traditional k-Means as a part of their algorithm to provide supervision for
feature learning. In other words, while we directly back-propagation from our
adapted k-Means algorithm as a global loss term, [3] uses traditional k-Means
that does not supply gradients and employs another branch for back-propagation
and learning purpose. In addition, [3] applies k-Means on features of all data,
which means all feature needs to be stored prior to clustering, whereas we apply
our loss formulation on the current minibatch, which adheres to popular deep
learning methods that do not require storing all features from the dataset. USL-
T, with end-to-end backprop to jointly solve for cluster assignments and model
optimization, is much more scalable and easy to implement.

Recent works [5,8] on implementing clustering in a deep-learning framework
incorporate neural networks that output a categorical distribution through a
softmax operator at the end of the network. In addition, DINO [5] also considers
the potential collapses and proposes a carefully-designed loss function as miti-
gation. However, both methods mainly intend to learn a feature space/attention
map used for downstream applications instead of acquiring a set of samples
that are representative and diverse. Since the feature/attention maps are the
goal of designing these methods, the ∼60k clusters produced by DINO are ex-
tremely sparse and highly imbalanced. For ImageNet-1K, ∼90% clusters from
a fully-trained DINO model are empty (vs ∼0 in USL-T). Therefore, the user
has little control over the number of selections in DINO. Empirically, we ob-
serve that SSL models optimized on them perform much worse. Furthermore, in
our unsupervised selective labeling setting, these methods require full retraining
when the downstream budget changes. In contrast, USL-T, which leverages self-
supervised pretraining, could complete a selection with new budget constraint
with substantially less compute.

Also recently, SCAN/NNM/RUC [10,20,24] propose image clustering meth-
ods that intend to be evaluated with hungarian matching from image clusters to
semantic classes. However, such methods are compared against semi-supervised

16 X. Wang et al.

learning methods [24] instead of being proposed to be combined with semi-
supervised learning methods. First of all, these methods make use of all labels
on validation split to perform hungarian matching, which implicitly makes use
of all the label information. In contrast, our USL/USL-T pipeline follows the
standard assumption of semi-supervised learning that no labels, except the ones
in the labeled dataset, are leveraged by the method to get the final classification.
Furthermore, these methods generally do not generalize well to large datasets
such as ImageNet [22], with [10,20] working on smaller datasets and [24] severely
underperforms on ImageNet when a very limited amount (as low as 0.2%) of data
labels are available.

A.10 Overview on Unsupervised Representation Learning

In self-supervised learning stage, we aim to learn a mapping function f such
that in the f(x) feature space, the positive instance x′

i is attracted to instance
xi, meanwhile, the negative instance xj (with j ̸= i) is repelled, and we model f
by a convolutional neural network, mapping x onto a d-dimensional hypersphere
with L2 normalization. To make a fair comparison with previous arts [2], we
use MoCo v2 [9] to learn representations on ImageNet with the instance-centric
contrastive loss:

C
(
fi, f

+
i , f−

̸=i

)
=

− log
exp(< fi, f

+
i >/T)

exp(< fi, f
+
i >/T) +

∑
j ̸=i

exp(< fi, f
−
j >/T)

(54)

where T is a regulating temperature. Minimizing it can be viewed as maximizing
the mutual information (MI) lower bound between the features of the same
instance [14,19]. For experiments on ImageNet, the MoCo model pre-trained for
800 epochs is used for initializing the SSL model, as in [2].

The feature spaces of CIFAR-10 data we work on are extracted with CLD [25].
The instance-group contrastive loss is added in symmetrical terms over views xi

and x′
i:

L(f ;TI , TG, λ)=
∑
i

(C(fI(xi), vi, v̸=i;TI)

+C(fI(x
′
i), vi, v̸=i;TI))

+λ
∑
i

(C(fG(x
′
i),MΓ (i), M̸=Γ (i);TG)

+C(fG(xi),M
′
Γ ′(i),M

′
Γ ′(i);TG))

(55)

Cross-level discrimination of Eqn. 55 (second term) can be understood as
minimizing the cross entropy between hard clustering assignment based on fG(xi)
and soft assignment predicted from fG(x

′
i) in a different view, where fG (fI) is in-

stance (group) branch, and MΓ (i) denotes the cluster centroid of instance xi with

Unsupervised Selective Labeling 17

a cluster id Γ (i) [25]. Empirically, we found that CLD has great feature quality
on CIFAR-10 and better respects the underlying semantic structure of data. To
be consistent with original FixMatch settings, our semi-supervised learner on
CIFAR-10 is trained from scratch, without using pretrained weights.

A.11 Discussions About Run Time

CLD only takes about 4 hours to train on CIFAR-10 on a single GPU and sample
selection with USL takes less than 10 minutes on CLD with one GPU. This takes
significantly less GPU-time than FixMatch (120 GPU hours with 4 GPUs), which
is, in turn, much less than the time for labelling the whole dataset of 50000
samples. On ImageNet, MoCo takes about 12 days with 8 GPUs to achieve 800
epochs [15], our algorithm takes about an hour on one GPU to select samples for
both 1% and 0.2% labels, and in the end, FixMatch takes another 20 hours on 4
GPUs to train. Although it sounds like we are using a lot of compute time just
to train a self-supervised learning model for selecting what samples to annotate,
the fact is that FixMatch requires a self-supervised pretrained checkpoint to
work well when the number of labeled samples is low, as shown in [2], even
without our selection methods. The only compute overhead introduced is the
sample selection process, which is negligible when compared to the other two
stages. In addition, shown in our experiments, CLIP, as a model trained on a
general and diverse image-text dataset, could also be used to select samples with
comparable and sometimes even better samples to label. This indicates that the
self-supervised training stage is not required in our method for sample selection
when a model that sufficiently covers the current domain is available.

A.12 Experiment Setup and Implementation Details

CIFAR-10/100. For FixMatch experiments, to maintain consistency with
the original FixMatch [23], we evaluate FixMatch trained on CIFAR-10 with 220

steps in total. To illustrate the ability of our algorithm to select informative sam-
ples, we evaluate both approaches on an extremely-low setting from 40 samples
to 250 samples in total (4 shots to 25 shots per class on average). Since the origi-
nal FixMatch is evaluated with stratified sampling on CIFAR-10, we also retrain
FixMatch with random sampling with the same number of samples in total as a
fair comparison. Unless otherwise stated, we train FixMatch with a learning rate
of 0.03, and weight decay 10−3 on 4 Nvidia RTX 2080 Ti GPUs with batch size
64 for labeled samples and with 220 steps in total. All experiments are conducted
with the same training and evaluation recipe for fair comparisons.

For SimCLRv2-CLD, we also evaluate our algorithm on two-stage SSL
method SimCLRv2-CLD based on transfer learning [7] by fine-tuning the linear
layer of a ResNet-18 pretrained with self-supervised learning algorithm CLD [25].
Specifically, we fine-tune the linear layer on a ResNet-18 trained with CLD [25].
Since it is easy for the network to overfit the few-shot labeled samples, we freeze
the backbone and fine-tune only the linear layer. We use SGD with learning rate

18 X. Wang et al.

0.01, momentum 0.9, and weight decay 10−4 for 5 epochs because longer training
time will lead to over-fitting.

ForMixMatch, we train for 1024 epochs with 1024 steps per epoch, following
the original recipe. For each of labeled and unlabeled dataset, we use a batch size
64. We use a learning rate 0.002 with Adam optimizer. The results are evaluated
with an weighted EMA module that has decay rate 0.999 and are averaged over
20 last epochs in the test set. For CoMatch, we train for 512 epochs with official
code and the default recipe.

ImageNet-100/1k. We evaluate our method on ImageNet [22] with approxi-
mately 1 million images and 1000 classes and ImageNet100 [24] with 100 classes
from ImageNet.

We use different sets of hyperparameters in large-scale datasets, as described
in Sec. A.8. For USL, we set a finite horizon in the large datasets to make
evaluation feasible. Instead of using a momentum in regularization, we run one
iteration without momentum for faster selection for both USL-MoCo and USL-
CLIP. For USL-T, we freeze the backbone due to computational limitations in
large-scale datasets. To maintain consistency with contrastive learning, we use
L2-normed linear layer as the last layer. We also initialize the last layer with
features from random samples to greatly speed up convergence. As we find that
providing only one label of the sample with top confidence in each cluster does
not effectively convey the grouping information in low-shot SSL, we instead
query the sample with top density in each cluster and annotate the 20 samples
with max density using the label of the requested sample as the pseudo-label.
We reduce the iterations in downstream for fair comparison. Similar to [3], we
re-initialize centroids of tail or empty clusters to the perturbed centroid of the
head cluster. Since this creates centroid competitions that reduces confidence
value of the head cluster, we do not make use of confidence value and calculate
global loss on all samples by default.

For SimCLRv2 experiments, we fine-tune the released SimCLRv2 check-
point on baseline selections and our selections. Due to differences in codebases,
our reproduced accuracy differs from the one reported on SimCLRv2 paper pre-
trained and fine-tuned on Cloud TPUs. Therefore, we report our reproduced
baseline which is fine-tuned on stratified selection for fair comparison on the
effectiveness on sample selection with our method with SimCLRv2. Similar to
other ImageNet experiments, we use 1% and 0.2% labeled data. The labeled
data selection is the same for SimCLRv2 as for our experiments in FixMatch.
To keep the recipe as close to the original implementation as possible, we use
ResNet-50 [16] with LARS [30] optimizer with learning rate 0.16 and use glob-
ally synced batch normalization [17]. While [7] employs a batch size of 1024, we
found that under the same number of training epochs, setting batch size to 512
leads to better optimization outcomes on ImageNet-1k in our codebase. This
is potentially due to more iterations with the same number of training epochs.
Therefore, we set batch sizes to 512 on ImageNet-1k. In addition, to reduce the
memory footprint, we use mixed precision training, which has no significant im-

Unsupervised Selective Labeling 19

pacts in training accuracy in our observation. We use 60 epochs for 1% task,
following [7]. We use 240 epochs for 0.2% task without learning rate decay for
all selection methods, since we find this gives better results.

For FixMatch experiments, we use either a MoCo-pretrained model with
Exponential Moving Average Normalization (EMAN) [2] or a CLIP ViT/16
model [11] to select samples to annotate. For ImageNet 1%, we run K-Means
clustering with 12900 clusters, which is slightly more than 12820 samples we are
selecting, because we observe that there will sometimes be empty clusters. To
maintain consistency with prior works, we use the same setting as in [2] besides
the selection of input labeled data, unless otherwise stated. Specifically we use
a learning rate of 0.03 with weight decay 10−4 and train a ResNet-50 for 50
epochs with a MoCo [15] model as pretrained model. We perform learning rate
warmup for 5 epochs and decay the learning rate by 0.1 at 30 and 40 epochs.
Note that we load MoCo model as the pretrained model for FixMatch for fair
comparison so that the only difference between MoCo and CLIP setting is the
sample selection.

A.13 Details About the Toolbox

Currently, different SSL/AL/SSAL implementations use different formats to rep-
resent what samples to label, making selective labeling methods hard to bench-
mark. Therefore, to standardize the benchmark, we intend to release a toolbox
that includes implementations of following methods:

– Our selective labeling methods: USL and USL-T
– SSL methods that we experimented on, including SimCLRv2 [7], SimCLRv2-

CLD [7, 25], FixMatch [23], CoMatch [18], MixMatch [1], that are adapted
with the unified dataset representation as illustrated below

– Several AL/SSAL methods that we use as baselines

USL, USL-T, SSL methods, and the AL/SSAL baselines in the toolbox are
implemented with unified data loaders that comes with standard and simple file
formats to indicate what samples are requested to be labeled and what samples
are unlabeled. We provide out-of-the-box data loaders that use this unified file
representation for datasets used in our experiments. In addition, the training
recipe will be provided for the methods mentioned above to facilitate future
research and fair comparisons.

20 X. Wang et al.

References

1. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel,
C.: Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249 (2019) 19

2. Cai, Z., Ravichandran, A., Maji, S., Fowlkes, C., Tu, Z., Soatto, S.: Exponential
moving average normalization for self-supervised and semi-supervised learning. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 194–203 (2021) 16, 17, 19

3. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised
learning of visual features. In: ECCV (2018) 14, 15, 18

4. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems 33 (2020) 14

5. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.:
Emerging properties in self-supervised vision transformers. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 9650–9660 (2021)
15

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International conference on machine
learning. pp. 1597–1607. PMLR (2020) 14

7. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised
models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)
7, 8, 17, 18, 19

8. Chen, W., Pu, S., Xie, D., Yang, S., Guo, Y., Lin, L.: Unsupervised image clas-
sification for deep representation learning. In: European Conference on Computer
Vision. pp. 430–446. Springer (2020) 15

9. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297 (2020) 16

10. Dang, Z., Deng, C., Yang, X., Wei, K., Huang, H.: Nearest neighbor matching for
deep clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 13693–13702 (2021) 15, 16

11. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020) 19

12. Fard, M.M., Thonet, T., Gaussier, E.: Deep k-means: Jointly clustering with k-
means and learning representations. Pattern Recognition Letters 138, 185–192
(2020) 15

13. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E.,
Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., et al.: Bootstrap your own latent:
A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)
14

14. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an in-
variant mapping. In: CVPR (2006) 16

15. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9729–9738 (2020) 14, 17, 19

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 18

Unsupervised Selective Labeling 21

17. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. PMLR (2015) 18

18. Li, J., Xiong, C., Hoi, S.C.: Comatch: Semi-supervised learning with contrastive
graph regularization. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 9475–9484 (2021) 19

19. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018) 16

20. Park, S., Han, S., Kim, S., Kim, D., Park, S., Hong, S., Cha, M.: Improving unsu-
pervised image clustering with robust learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 12278–12287 (2021)
15, 16

21. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. arXiv preprint arXiv:2103.00020 (2021) 12

22. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y 16,
18

23. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk,
E.D., Kurakin, A., Li, C.L.: Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in Neural Information Processing Systems
33 (2020) 7, 13, 17, 19

24. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool,
L.: Scan: Learning to classify images without labels. In: European Conference on
Computer Vision. pp. 268–285. Springer (2020) 15, 16, 18

25. Wang, X., Liu, Z., Yu, S.X.: Unsupervised feature learning by cross-level instance-
group discrimination. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 12586–12595 (2021) 7, 14, 16, 17, 19

26. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 3733–3742 (2018) 14

27. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: ICML (2016) 14

28. Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., Ni, B.: Medmnist v2:
A large-scale lightweight benchmark for 2d and 3d biomedical image classification.
arXiv preprint arXiv:2110.14795 (2021) 8, 13

29. Yang, Y., Xu, D., Nie, F., Yan, S., Zhuang, Y.: Image clustering using local dis-
criminant models and global integration. TIP (2010) 14

30. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888 (2017) 18

31. Zhuang, C., Zhai, A.L., Yamins, D., , et al.: Local aggregation for unsupervised
learning of visual embeddings. In: ICCV (2019) 14

https://doi.org/10.1007/s11263-015-0816-y

	Unsupervised Selective Labeling for More Effective Semi-Supervised Learning

