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Abstract. Given an unlabeled dataset and an annotation budget, we
study how to selectively label a fixed number of instances so that semi-
supervised learning (SSL) on such a partially labeled dataset is most
effective. We focus on selecting the right data to label, in addition to
usual SSL’s propagating labels from labeled data to the rest unlabeled
data. This instance selection task is challenging, as without any labeled
data we do not know what the objective of learning should be. Intu-
itively, no matter what the downstream task is, instances to be labeled
must be representative and diverse: The former would facilitate label
propagation to unlabeled data, whereas the latter would ensure cov-
erage of the entire dataset. We capture this idea by selecting cluster
prototypes, either in a pretrained feature space, or along with feature
optimization, both without labels. Our unsupervised selective labeling
consistently improves SSL methods over state-of-the-art active learning
given labeled data, by 8∼25× in label efficiency. For example, it boosts
FixMatch by 10% (14%) in accuracy on CIFAR-10 (ImageNet-1K) with
0.08% (0.2%) labeled data, demonstrating that small computation spent
on selecting what data to label brings significant gain especially under a
low annotation budget. Our work sets a new standard for practical and
efficient SSL.
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1 Introduction

Deep learning’s success on natural language understanding [21], visual object
recognition [41], and object detection [31] follow a straightforward recipe: better
model architectures, more data, and scalable computation [32, 36, 42, 73]. As
training datasets get bigger, their full task annotation becomes infeasible [4,63].

Semi-supervised learning (SSL) deals with learning from both a small amount
of labeled data and a large amount of unlabeled data: Labeled data directly su-
pervise model learning, whereas unlabeled data help learn a desirable model that
makes consistent [4,5,43,58,63,65,69,72] and unambiguous [5,33,43] predictions.

Recent SSL methods approach fully supervised learning performance with
a very small fraction of labeled data. For example, on ImageNet, SSL with 1%
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Fig. 1: Our unsupervised selective labeling is a novel aspect of semi-supervised
learning (SSL) and different from active learning (AL). a, b) Existing SSL meth-
ods focus on optimizing the model given labeled and unlabeled data. Instead of
such model-centric learning, we focus on optimizing the selection of training
instances prior to their label acquisition. c) Existing AL methods alternate be-
tween classifier learning and instance selection, leveraging a classifier trained on
initial labeled data and regularized on unlabeled data. In contrast, we select
instances from unlabeled data without knowing the classification task.

labeled data, i.e., only 13 instead of around 1300 labeled images per class, cap-
tures 95% (76.6% out of 80.5% in terms of top-1 accuracy) of supervised learning
performance with 100% fully labeled data [15].

The lower the annotation level, the more important what the labeled in-
stances are to SSL. While a typical image could represent many similar images,
an odd-ball only represents itself, and labeled instances may even cover only part
of the data variety, trapping a classifier in partial views with unstable learning
and even model collapse.

A common assumption in SSL is that labeled instances are sampled randomly
either over all the available data or over individual classes, the latter known
as stratified sampling [4, 5, 63, 69]. Each method has its own caveats: Random
sampling can fail to cover all semantic classes and lead to poor performance and
instability, whereas stratified sampling is utterly unrealistic: If we can sample
data by category, we would already have the label of every instance!

Selecting the right data to label for the sake of model optimization is not new.
In fact, it is the focus of active learning (AL): Given an initial set of labeled data,
the goal is to select an additional subset of data to label (Fig. 1) so that a model
trained over such partially labeled data approaches that over the fully labeled
data [26, 59, 75]. Unlabeled data can also be exploited for model training by
combining AL and SSL, resulting in a series of methods called semi-supervised
active learning (SSAL).

However, existing AL/SSAL methods have several shortcomings.

1. They often require randomly sampled labeled data to begin with, which is
sample-inefficient in low labeling settings that SSL methods excel at [13].

2. AL/SSAL methods are designed with human annotators in a loop, working
in multiple rounds of labeling and training. This could be cumbersome in
low-shot scenario and leads to large labeling overhead.
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Fig. 2: Our instance selection outperforms random and stratified sampling by
selecting a diverse set of representative instances. a) The classification accuracy
using SSL method FixMatch increases with our selectively labeled instances. b)
Our method covers all the semantic classes with only a few instances. c) Our
selection is far more balanced than random sampling. d) On a toy dataset of 3
classes in ImageNet, our top-ranked instances cover informative samples across
the entire space, whereas our bottom-ranked instances tend to be outliers.

3. AL’s own training pipeline with a human-in-the-loop design makes its inte-
gration into existing SSL code implementation hard [64].

4. The requested labels are tightly coupled with the model being trained so that
labels need to be collected anew every time a model is trained with AL/SSAL.
We address unsupervised selective labeling for SSL (Fig. 1), in stark contrast

with supervised data selection for AL, which is conditioned on an initial labeled
set and for the benefit of a certain task. Given only an annotation budget and
an unlabeled dataset, among many possible ways to select a fixed number of
instances for labeling, which way would lead to the best SSL model performance
when it is trained on such partially labeled data?

Our instance selection task is challenging, as without any labeled data we
do not know what the objective of learning should be. Intuitively, no matter
what the downstream task is, instances to be labeled must be representative
and diverse: The former would facilitate label propagation to unlabeled data,
whereas the latter would ensure coverage of the entire dataset. We capture this
idea by selecting cluster prototypes, either in a pretrained feature space, or along
with feature optimization, both without labels.

Our pipeline has three steps: 1) Unsupervised feature learning that maps
data into a discriminative feature space. 2) Select instances for labeling for max-
imum representativeness and diversity, without or with additional optimization.
3) Apply SSL (e.g., [15, 63]) to the labeled data and the rest unlabeled data.

Fig. 2 shows that our method has many benefits over random or stratified
sampling for labeled data selection, in terms of accuracy, coverage, balance over
classes, and representativeness. As it selects informative instances without ini-
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tial labels, it can not only integrate readily into existing SSL methods, but also
achieve higher label efficiency than SSAL methods. While most AL/SSAL meth-
ods only work on small-scale datasets such as CIFAR [40], our method scales up
easily to large-scale datasets such as ImageNet [57], taking less than an hour for
our data selection on a commodity GPU server.

Our work sets a new standard for practical SSL with these contributions.
1. We systematically analyze the impact of different selective labeling methods

on SSL under low-label settings, a previously ignored aspect of SSL.
2. We propose two unsupervised selective labeling methods that capture repre-

sentativeness and diversity without or along with feature optimization.
3. We benchmark extensively on our data selection with various SSL methods,

delivering much higher sample efficiency over sampling in SSL or AL/SSAL.
4. We release our toolbox with AL/SSL implementations and a unified data

loader, including benchmarks, selected instance indices, and pretrained mod-
els that combine selective labeling with various methods for fair comparisons.

2 Selective Labeling for Semi-supervised Learning

Suppose we are given an unlabeled dataset of n instances and an annotation
budget of m. Our task is to select m (m≪ n) instances for labeling, so that a
SSL model trained on such a partially labeled dataset, with m instances labeled
and n−m unlabeled, produces the best classification performance.

Formally, let D = {(xi, yi)}ni=1 denote n pairs of image xi and its (unknown)
class label yi. Let A denote a size-m subset of D with known class labels. Our goal
is to select A⊂D for acquiring class labels, in order to maximize the performance
of a given SSL model trained on labeled data A and unlabeled data D\A.

Our unsupervised selective labeling is challenging, as we do not have any
labels to begin with, i.e., we don’t know what would make the SSL model perform
the best. Our idea is to select m instances that are not only representative of
most instances, but also diverse enough to broadly cover the entire dataset, so
that we do not lose information prematurely before label acquisition.

Our SSL pipeline with selective labeling consists of three steps: 1) unsuper-
vised feature learning; 2) unsupervised instance selection for annotation; 3) SSL
on selected labeled data A and remaining unlabeled data D\A.

We propose two selective labeling methods in Step 2, training-free Unsuper-
vised Selective Labeling (USL) and training-based Unsupervised Selective La-
beling (USL-T), both aiming at selecting cluster prototypes in a discriminative
feature space without label supervision.

2.1 Unsupervised Representation Learning

Our first step is to obtain lower-dimensional and semantically meaningful fea-
tures with unsupervised contrastive learning [14,35,51,71], which maps xi onto
a d-dimensional hypersphere with L2 normalization, denoted as f(xi). We use
MoCov2 [17] (SimCLR [14] or CLD [68]) to learn representations on ImageNet
(CIFAR [40]). See appendix for details.
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2.2 Unsupervised Selective Labeling (USL)

We study the relationships between data instances using a weighted graph, where
nodes {Vi} denote data instances in the (normalized) feature space {f(xi)}, and
edges between nodes are attached with weights of pairwise feature similarity
[7, 19,25,61], defined as 1

Dij
, the inverse of feature distance D:

Dij = ∥f(xi)− f(xj)∥. (1)

Intuitively, the smaller the feature distance, the better the class information can
be transported from labeled nodes to unlabeled nodes. Given a labeling budget
of m instances, we aim to select m instances that are not only similar to others,
but also well dispersed to cover the entire dataset.

Representativeness: Select Density Peaks. A straightforward approach is
to select well connected nodes to spread semantic information to nearby nodes.
It corresponds to finding a density peak in the feature space. The K-nearest
neighbor density (K-NN) estimation [28,52] is formulated as:

pKNN(Vi, k) =
k

n

1

Ad ·Dd(Vi, Vk(i))
(2)

where Ad = πd/2/Γ (d2 + 1) is the volume of a unit d-dimensional ball, d the fea-
ture dimension, Γ (x) the Gamma function, k(i) instance i’s kth nearest neighbor.
pKNN is very sensitive to noise, as it only takes the kth nearest neighbor into
account. For robustness, we replace the kth neighbor distance D(Vi, Vk(i)) with
the average distance D̄(Vi, k) to all k nearest neighbors instead:

p̂KNN(Vi, k) =
k

n

1

Ad · D̄d(Vi, k)
, where D̄(Vi, k) =

1

k

k∑
j=1

D(Vi, Vj(i)). (3)

We use p̂KNN(Vi, k) to measure the representativeness of node Vi. Since only the
relative ordering matters in our selection process, the density peak corresponds
to the sample with maximum p̂KNN(Vi, k) (i.e., maximum 1/D̄(Vi, k)).

Diversity: Pick One in Each Cluster. While instances of high feature den-
sity values are individually representative, a separate criterion is necessary to
avoid repeatedly picking similar instances near the same density peaks (Fig.
3a). To select m diverse instances that cover the entire unlabeled dataset, we re-
sort to K-Means clustering that partitions n instances into m(≤n) clusters, with
each cluster represented by its centroid c [29,47] and every instance assigned to
the cluster of the nearest centroid. Formally, we seek m-way node partitioning
S = {S1, S2, ..., Sm} that minimizes the within-cluster sum of squares [39]:

min
S

m∑
i=1

∑
V ∈Si

∥V −ci∥2 = min
S

m∑
i=1

|Si|Var(Si) (4)

It is optimized iteratively with EM [48] from random initial centroids. We then
pick the most representative instance of each cluster according to Eqn. 3.

Regularization: Inter-cluster Information Exchange. So far we use K-
Means clustering to find m hard clusters, and then choose the representative of
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a) local only b) local + global c) local + global + reg.

Fig. 3: a) Points at density peaks are individually representative of their local
neighborhoods, but lack broad coverage of the entire set. b) Hard constraint by
K-Means greatly depends on clustering quality and only partially alleviates the
problem. c) Soft regularization leads to more uniform and diversified queries.

each cluster independently. This last step is sub-optimal, as instances of high
density values could be located along cluster boundaries and close to instances
in adjacent regions (Fig. 3b). We thus apply a regularizer to inform each cluster
of other clusters’ choices and iteratively diversify selected instances (Fig. 3c).

Specifically, let V̂t = {V̂ t
1 , ..., V̂

t
m} denote the set of m instances selected at

iteration t, V̂ t
i for clusters Si, where i ∈ {1, . . . ,m}. For each candidate Vi in

cluster Si, the farther it is away from those in other clusters in V̂t−1, the more
diversity it creates. We thus minimize the total inverse distance to others in a
regularization loss Reg(Vi, t), with a sensitivity hyperparameter α:

Reg(Vi, t) =
∑

V̂ t−1
j ̸∈Si

1

∥Vi − V̂ t−1
j ∥α

. (5)

This regularizer is updated with an exponential moving average:

Reg(Vi, t) = mreg · Reg(Vi, t−1)+(1−mreg) · Reg(Vi, t) (6)

wheremreg is the momentum. At iteration t, we select instance i of the maximum
regularized utility U ′(Vi, t) within each cluster:

U ′(Vi, t) = U(Vi)− λ · Reg(Vi, t) (7)

where λ is a hyperparameter that balances diversity and individual representa-
tiveness, utility U(Vi) = 1/D̄(Vi, k). In practice, calculating distances between
every candidate and every selected instance in V̂t−1 is no longer feasible for a
large dataset, so we only consider h nearest neighbors in V̂t−1. V̂t at the last
iteration is our final selection for labeling.

2.3 Training-Based Unsupervised Selective Labeling (USL-T)

Our USL is a simple yet effective training-free approach to selective labeling.
Next we introduce an end-to-end training-based Unsupervised Selective Labeling
(USL-T), an alternative that integrates instance selection into representation
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learning and often leads to more balanced (Fig. 5) and more label-efficient (Table
2) instance selection. The optimized model implicitly captures semantics and
provides a strong initialization for downstream tasks (Sec. 4.5).

Global Constraint via Learnable K-Means Clustering. Clustering in a
given feature space is not trivial (Fig. 3c). We introduce a better alternative
to K-Means clustering that jointly learns both the cluster assignment and the
feature space for unsupervised instance selection.

Suppose that there are C centroids initialized randomly. For instance x with
feature f(x), we infer one-hot cluster assignment distribution y(x) by finding
the closest learnable centroid ci, i∈{1,. . ., C} based on feature similarity s:

yi(x) =

{
1, if i = argmink∈{1,...,C} s(f(x), ck)

0, otherwise.
(8)

We predict a soft cluster assignment ŷ(x) by taking softmax over the similarity
between instance x and each learnable centroid:

ŷi(x) =
es(f(x),ci)∑C
j=1 e

s(f(x),cj)
. (9)

The hard assignment y(x) can be regarded as pseudo-labels [43,63,67]. By min-
imizing DKL(y(x)∥ŷ(x)), the KL divergence between soft and hard assignments,
we encourage not only each instance to become more similar to its centroid, but
also the learnable centroid to become a better representative of instances in the
cluster. With soft predictions, each instance has an effect on all the centroids.

Hardening soft assignments has a downside: Initial mistakes are hard to cor-
rect with later training, degrading performance. Our solution is to ignore am-
biguous instances with maximal softmax scores below threshold τ :

Lglobal({xi}ni=1) =
1

n

∑
max(ŷ(xi))≥τ

DKL(y(xi)∥ŷ(xi)) (10)

where τ is the threshold hyper-parameter. This loss leads to curriculum learning:
As instances are more confidently assigned to a cluster with more training, more
instances get involved in shaping both feature f(x) and clusters {ci}.

Our global loss can be readily related to K-Means clustering.

Observation 1 For τ = 0 and fixed feature f , optimizing Lglobal is equivalent
to optimizing K-Means clustering with a regularization term on inter-cluster
distances that encourage additional diversity. See Appendix for derivations.

Local Constraint with Neighbor Cluster Alignment. Our global con-
straint is the counterpart of K-Means clustering in USL. However, since soft
assignments usually have low confidence scores for most instances at the begin-
ning, convergence could be very slow and sometimes unattainable. We propose
an additional local smoothness constraint by assigning an instance to the same
cluster of its neighbors’ in the unsupervisedly learned feature space to prepare
confident predictions for the global constraint to take effect.
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This simple idea as is could lead to two types of collapses: Predicting one big
cluster for all the instances and predicting a soft assignment that is close to a
uniform distribution for each instance. We tackle them separately.
1) For one-cluster collapse, we adopt a trick for long-tailed recognition [49]
and adjust logits to prevent their values from concentrating on one cluster:

P̂ (z, z̄) = z − α · log z̄ (11)

z̄ = µ · σ(z) + (1−µ) · z̄ (12)

where α controls the intensity of adjustment, z̄ is an exponential moving average
of σ(z), and σ(·) is the softmax function.
2) For even-distribution collapse, we use a sharpening function [2, 4, 5] to
encourage the cluster assignment to approach a one-hot probability distribution,
where a temperature parameter t determines the spikiness.

Both anti-collapse measures can be concisely captured in a single function
P (·) that modifies and turns logits z into a reference distribution:

[P (z, z̄, t)]i =
exp(P̂ (zi, z̄i)/t)∑
j exp(P̂ (zj , z̄j/t))

(13)

We now impose our local labeling smoothness constraints with such modified
soft assignments between xi and its randomly selected neighbor x′

i:

Llocal({xi}ni=1) =
1

n

n∑
i=1

DKL(P (y(x′
i), ȳ(x

′
i), t)||ŷ(xi)). (14)

We restrict x′
i to x’s k nearest neighbors, selected according to the unsupervisedly

learned feature prior to training and fixed for simplicity and efficiency.
We show that our local constraint prevents both collapses.

Observation 2 Neither one-cluster nor even-distribution collapse is optimal to
our local constraint, i.e., P (y(x′), ȳ(x′), t) ̸= ŷ(x). See Appendix for more details.

Our final loss adds up the global and local terms with loss weight λ:

L = Lglobal + λLlocal (15)

Diverse and Representative Instance Selection in USL-T. Our USL-T
is an end-to-end unsupervised feature learning method that directly outputs m
clusters for selecting m diverse instances. For each cluster, we then select the
most representative instance, characterized by its highest confidence score, i.e.
max ŷ(x). Just as USL, USL-T improves model learning efficiency by selecting
diverse representative instances for labeling, without any label supervision.

2.4 Distinctions and Connections With SSL/AL/SSAL

Table 1 compares our USL with related SSL, AL, and SSAL settings.
1. Our USL has the advantage of AL/SSAL that seeks optimal instances to label,

yet does not require inefficient initial random samples or multiple rounds of
human interventions. USL has high label efficiency for selected instances in
low label settings and does not need to trade off annotation budget allocation
between initial random sampling and several interim annotation stages.
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Property
Semi-supervised

Learning
Active

Learning
Semi-supervised
Active Learning

Ours

Uses no initial random labels ✗ ✗ ✗ ✓

Actively queries for labels ✗ ✓ ✓ ✓

Requires annotation only once ✓ ✗ ✗ ✓

Leverages unlabeled data ✓ ✗ ✓ ✓

Allows label reuse across runs ✓ ✗ ✗ ✓

Table 1: Key properties of SSL, AL, SSAL, and our USL/USL-T pipelines.
Among them, our approach is the only one that does not use any random labels.

2. Compared to AL, our USL also leverages unlabeled data. Compared to SSAL,
USL is much easier to implement because we keep existing SSL implementa-
tion intact, while SSAL requires a human-in-the-loop pipeline. Consequently,
unlike AL/SSAL where instance selection is coupled with the model to be
trained, our selection is decoupled from the downstream SSL model. The
same selection from USL works well even across different downstream SSL
methods, enabling label reuse across different SSL experiments.

3. Most notably, our work is the first unsupervised selective labeling method on
large-scale recognition datasets that requests annotation only once.

3 Related Work

Semi-supervised Learning (SSL) integrates information from small-scale la-
beled data and large-scale unlabeled data. Consistency-based regularization [58,
65,72] applies a consistency loss by imposing invariance on unlabeled data under
augmentations. Pseudo-labeling [4,5,43,69] relies on the model’s high confidence
predictions to produce pseudo-labels of unlabeled data and trains them jointly
with labeled data. FixMatch [63] integrates strong data augmentation [22] and
pseudo-label filtering [46] and explores training on the most representative sam-
ples ranked by [10]. However, [10] is a supervised method that requires all la-
bels. Transfer learning method SimCLRv2 [15] is a two-stage SSL method that
applies contrastive learning followed by fine-tuning on labeled data. Entropy-
minimization [5, 33] assumes that classification boundaries do not pass through
the high-density area of marginal distributions and enforces confident predic-
tions on unlabeled data. Instead of competing with existing SSL methods, our
USL enables more effective SSL by choosing the right instances to label for SSL,
without any prior semantic supervision.

Active Learning (AL) aims to select a small subset of labeled data to achieve
competitive performance over supervised learning on fully labeled data [6,20,56].
Traditional AL has three major types [55, 60]: membership query synthesis [1],
stream-based selective sampling [3, 23], and pool-based active learning [37, 50,
66,70]. In Deep AL, Core-Set [59] approaches data selection as a set cover prob-
lem. [26] estimates distances from decision boundaries based on sensitivity to
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adversarial attacks. LLAL [75] predicts target loss of unlabeled data parametri-
cally and queries instances with the largest loss for labels. Semi-supervised Active
Learning (SSAL) combines AL with SSL. [64] merges uncertainty-based metrics
with MixMatch [5]. [30] merges consistency-based metrics with consistency-based
SSL. AL/SSAL often rely on initial labeled data to learn both the model and
the instance sampler, requiring multiple (e.g. 10) rounds of sequential annotation
and significant modifications of existing annotation pipelines. Recent few-label
transfer [45] leverages features from a large source dataset to select instances
in a smaller target dataset for annotation. It also requires a seed instance per
class to be pre-labeled in the target dataset, whereas we do not need supervision
anywhere for our instance selection.

Deep Clustering. DeepCluster [11] also jointly learns features and cluster as-
signments with k-Means clustering. However, USL-T, with end-to-end backprop
to jointly optimize classifiers and cluster assignments, is much more scalable and
easy to implement. UIC/DINO [12,16] incorporate neural networks with categor-
ical outputs through softmax, but both methods focus on learning feature or at-
tention maps for downstream applications instead of acquiring a set of instances
that are representative and diverse. Recently, SCAN/NNM/RUC [24, 53, 67]
produce image clusters to be evaluated against semantic classes via Hungarian
matching. However, such methods are often compared against SSL methods [67],
whereas our work is for SSL methods. See appendix for more discussions about
self-supervised learning and deep clustering methods.

4 Experiments

We evaluate our USL and USL-T by integrating them into both pseudo-label
based SSL methods (FixMatch [63], MixMatch [5], or CoMatch [44]) and transfer-
based SSL methods (SimCLRv2 and SimCLRv2-CLD [15,68]). We also compare
against various AL/SSAL methods. Lastly, we show several intriguing properties
of USL/USL-T such as generalizability.

4.1 CIFAR-10

We compare against mainstream SSL methods such as FixMatch [63] and SimCLRv2-
CLD [15, 68] on extremely low-label settings to demonstrate our superior label
efficiency. The labeling budget is 40 samples in total unless otherwise stated.
Note that the self-supervised models used for instance selection are trained on
CIFAR-10 from scratch entirely without external data. The SSL part, including
backbone and hyperparameters, is untouched. See appendix for details.

Comparison with AL and SSAL. Table 2 compares ours against various
recent AL/SSAL methods in terms of sample efficiency and accuracy. AL meth-
ods operate at a much larger labeling budget than ours (187× more), because
they rely only on labeled samples to learn both features and classification. SSAL
methods make use of unlabeled samples and have higher label efficiency. How-
ever, we achieve much higher accuracy with fewer labels requested.
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CIFAR-10 Budget Acc (%)

Active Learning (AL)
CoreSet [59]† 7500 85.4
VAAL [62]† 7500 86.8
UncertainGCN [9]† 7500 86.8
CoreGCN [9]† 7500 86.5
MCDAL [18] 7500 87.2
Semi-supervised Active Learning (SSAL)
TOD-Semi [38] 7500 87.8
CoreSetSSL [59]‡ 250 88.8
CBSSAL [30] 150 87.6
MMA [64] 500 91.7
MMA+k-means [64] 500 91.5
REVIVAL [34] 150 88.0
Selective Labeling
FixMatch + USL (Ours) 40 90.4
FixMatch + USL (Ours) 100 93.2
FixMatch + USL-T (Ours) 40 93.5

Table 2: USL and USL-T greatly out-
perform AL/SSAL methods in accuracy
and label efficiency on CIFAR-10. †, ‡:
results from [38] and [30], respectively.
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Fig. 4: Compared to SSAL, USL gets
up to 25× higher label efficiency.

To tease apart whether our performance gains come from SSL or selective
labeling, we tune recent AL/SSAL methods with their public implementations
and run experiments with the same total budget, i.e. 40 samples in a 20 random
+ 20 selected setting. We then apply AL/SSAL selections to the same SSL for
a fair comparison (Table 3).

While AL performs better than random selection in SimCLRv2-CLD, its ad-
vantage saturates on FixMatch. Since AL relies on labeled samples to learn the
right features, with 20 random samples, it is very difficult to learn meaning-
ful features for selection. Instead, AL could only learn a very coarse selection
criterion and hence limited gains.

SSAL methods have greater gains on SimCLRv2-CLD. However, since SSAL
still depends on initial random selections which seldom cover all 10 classes, these
methods do not have an accurate knowledge of the full dataset in the low-label
setting, where many rounds of queries are infeasible. That is, there is a serious
trade-off in the low-label regime: Allowing more samples (e.g., 30) in the initial
random selection for better coverage means less annotation budget for AL/SSAL
selection (e.g., 10). Such a dilemma manifests itself in the imbalanced selection
in Fig. 5 and the poor performance on FixMatch.

USL/USL-T as a Universal Method. In addition to mainstream SSL, we
also use SimCLRv2, MixMatch [5], and SOTA CoMatch [44] for a comprehensive
evaluation in Table 4. We observe significant accuracy gains on all of them.
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CIFAR-10 S.v2-CLD FixMatch

Random Selection 60.8 82.9
Stratified Selection† 66.5 88.6
UncertainGCN 63.0 77.3
CoreGCN 62.9 72.9
MMA+‡ 60.2 71.3
TOD-Semi 65.1 83.3
USL (Ours) 76.6 ↑11.5 90.4 ↑7.1
USL-T (Ours) 76.1 ↑11.0 93.5 ↑10.2

Table 3: The samples selected by USL and USL-
T greatly outperform the ones from AL/SSAL
on [15, 63, 68], with a budget of 40 labels on
CIFAR-10. ‡: MMA+ is our improved MMA
[64] based on FixMatch. †: not a fair baseline.
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Fig. 5: Comparisons on the se-
mantic class distributions of
several methods over 3 runs.
USL and USL-T get more bal-
anced distribution.

CIFAR-10 MixMatch SimCLRv2 SimCLRv2-CLD FixMatch CoMatch
Random 43.4 55.9 60.8 82.9 87.4
Stratified† 62.0 69.8 66.5 88.6 93.1
USL (Ours) 61.6 ↑18.2 69.1 ↑13.2 76.6 ↑15.8 90.4 ↑7.5 93.4 ↑6.0
USL-T (Ours) 66.0 ↑22.6 71.5 ↑15.6 76.1 ↑15.3 93.5 ↑10.6 93.0 ↑5.6

Table 4: USL/USL-T is a universal method that brings significant accuracy gains
to various SSL methods. Experiments are conducted on CIFAR-10 with 40 labels.
†: practically infeasible, as it assumes perfectly balanced labeled instances.

4.2 CIFAR-100

On CIFAR-100, we keep hyperparameters the same as the ones for CIFAR-
10, except that we change the budget level to 400 to have 4 labels per class on
average. Although we may benefit more from hyperparameter tuning, we already
show consistent gains over other selection methods (Table 5).

4.3 ImageNet-100 and ImageNet-1k

To demonstrate our effectiveness on large-scale datasets, we benchmark on 100
random classes of ImageNet [67] and the full ImageNet [57].

ImageNet-100. On SimCLRv2 with a budget of 400 labels in total, we out-
perform baselines by 6.1% in this extremely low-label setting (Table 6).

ImageNet-1k: Setup. We experiment on SimCLRv2 and FixMatch with 1%
(12, 820 labels) and 0.2% (2, 911 labels) labeled data. We also design a variant
of our method that utilizes features provided by CLIP [54]. CLIP is trained on
uncurated internet-crawled data in a wide range of domains. Following [8], we
initialize FixMatch parameters with MoCov2. See appendix for more details.

ImageNet-1k: Comparing With AL/SSAL Methods. As most AL/SSAL
methods in Table 2 do not scale to ImageNet, we compare our USL with SSAL
methods specifically designed for ImageNet-scale settings [27]. Fig. 4b shows our
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CIFAR-100 S.v2-CLD Acc FixMatch Acc

Random Selection 26.5 48.7
Stratified Selection† 30.6 51.2
USL (Ours) 33.0 ↑6.5 55.1 ↑6.4
USL-T (Ours) 36.9 ↑10.4 55.7 ↑7.0

Table 5: By selecting informative samples
to label, USL and USL-T greatly improve
performance of SSL methods on CIFAR-100
with 400 labels. †: practically infeasible, as it
assumes perfectly balanced labeled instances.

ImageNet-100 SimCLRv2 Acc

Random 62.2
Stratified† 65.1
USL (Ours) 67.5 ↑5.3
USL-T (Ours) 68.3 ↑6.1

Table 6: USL and USL-T scale
well to high dimensional im-
age inputs with many classes on
ImageNet-100 [67]. †: practically
infeasible.

SimCLRv2 FixMatch
ImageNet-1k 1% 0.20% 1% 0.20%

Random 49.7 33.2 58.8 34.3
Stratified† 52.0 36.4 60.9∗ 41.1
USL-MoCo (Ours) 51.5 ↑1.8 39.8 ↑6.6 61.6 ↑2.8 48.6 ↑14.3
USL-CLIP (Ours) 52.6 ↑2.9 40.4 ↑7.2 62.2 ↑3.4 47.5 ↑13.2

Table 7: Our proposed methods scale well on large-scale dataset ImageNet [57].
∗: reported in [8]. USL-MoCo and USL-CLIP use MoCov2 features and CLIP
features, respectively, to perform selective labeling. †: not a fair comparison.

8× improvement in terms of label efficiency. Table 7 shows that our approach
provides up to 14.3% (3.4%) gains in the 0.2% (1%) SSL setting.

ImageNet-1k: USL-CLIP. Table 7 shows samples selected according to both
MoCov2 and CLIP features boost SSL performance. USL-MoCo performs 1.1%
better than USL-CLIP in the FixMatch setting. We hypothesize that it is, in
part, due to a mismatch between parameter initialization (MoCov2) and the
feature space used for the sampling process (CLIP). However, for 1% case, USL-
CLIP performs 0.6% better than USL-MoCo, showing a slight advantage of a
model trained with sufficient general knowledge and explicit semantics.

4.4 Strong Generalizability

Cross-dataset Generalizability with CLIP. Since CLIP does not use Ima-
geNet samples in training and the downstream SSL task is not exposed to the
CLIP model either, USL-CLIP’s result shows strong cross-dataset generalizabil-
ity in Table 7. It means that: 1) When a new dataset is collected, we could use
a general multi-modal model to skip self-supervised pretraining; 2) Unlike AL
where sample selection is strictly coupled with model training, our annotated
instances work universally rather than with only the model used to select them.

Cross-domain Generalizability. Such generalizability also holds across do-
mains. We use a CLD model trained on CIFAR-10 to select 40 labeled instances
in medical imaging dataset BloodMNIST [74]. Although our model has not been
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Weights Selection Method Accuracy

SimCLR [14] Random 55.9
SimCLR [14] USL-T (Ours) 71.5
CLD [68] USL-T (Ours) 77.2
USL-T (Ours) USL-T (Ours) 85.4 ↑8.2

Table 8: The backbone weights learned
as a by-product in USL-T capture more
semantic information, thereby working
as a good initialization.

CIFAR- ImageNet-
Hyperparam 10/100 100/1k

Adjustment Factor α 5 2.5

Temperature t 0.25 0.5

Loss Term Weight λ 5 0.5

Neighborhood Size k 20
Momentum µ 0.5

Table 9: Hyperparams for USL-T. Hy-
perparams for USL are in appendix.

trained on any medical images, our model with FixMatch performs 10.9% (7.6%)
better than random (stratified) sampling. See appendix for more details.

4.5 USL-T for Representation Learning

Our USL-T updates feature backbone weights during selective labeling. The
trained weights are not used as a model initializer in the downstream SSL ex-
periments for fair comparisons. However, we discover surprising generalizability
that greatly exceeds self-supervised learning models under the SimCLRv2 set-
ting. Specifically, we compare the performance of classifiers that are initialized
with various model weights and are optimized on samples selected by different
methods. Table 8 shows that, even with these strong baselines, initializing the
model with our USL-T weights surpasses baselines by 8.2%.

4.6 Hyperparameters and Run Time

Table 9 shows that our hyperparameters generalize within small-scale and large-
scale datasets. Our computational overhead is negligible. On ImageNet, we only
introduce about 1 GPU hour for selective labeling, as opposed to 2300 GPU
hours for the subsequent FixMatch pipeline. See appendix for more analysis,
including formulations and visualizations.

5 Summary

Unlike existing SSL methods that focus on algorithms that better integrate la-
beled and unlabeled data, our selective-labeling is the first to focus on unsuper-
vised data selection for labeling and enable more effective subsequent SSL. By
choosing a diverse representative set of instances for annotation, we show signif-
icant gains in annotation efficiency and downstream accuracy, with remarkable
selection generalizability within and across domains.

Acknowledgements. The authors thank Alexei Efros and Trevor Darrell for
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