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Abstract. Weakly Supervised Semantic Segmentation (WSSS) research
has explored many directions to improve the typical pipeline CNN plus
class activation maps (CAM) plus refinements, given the image-class la-
bel as the only supervision. Though the gap with the fully supervised
methods is reduced, further abating the spread seems unlikely within this
framework. On the other hand, WSSS methods based on Vision Trans-
formers (ViT) have not yet explored valid alternatives to CAM. ViT
features have been shown to retain a scene layout, and object bound-
aries in self-supervised learning. To confirm these findings, we prove that
the advantages of transformers in self-supervised methods are further
strengthened by Global Max Pooling (GMP), which can leverage patch
features to negotiate pixel-label probability with class probability. This
work proposes a new WSSS method dubbed ViT-PCM (ViT Patch-Class
Mapping), not based on CAM. The end-to-end presented network learns
with a single optimization process, refined shape and proper localization
for segmentation masks. Our model outperforms the state-of-the-art on
baseline pseudo-masks (BPM), where we achieve 69.3% mIoU on Pas-
calVOC 2012 val set. We show that our approach has the least set of pa-
rameters, though obtaining higher accuracy than all other approaches. In
a sentence, quantitative and qualitative results of our method reveal that
ViT-PCM is an excellent alternative to CNN-CAM based architectures.

Keywords: weakly-supervised semantic segmentation, Vision Transform-
ers, Global Max Pooling, Image class-labels supervision

1 Introduction

Weakly supervised semantic segmentation (WSSS) is about segmenting object
classes with no pixel-label supervision and using the less demanding supervision
possible. The most economic supervision is via image-level class labels, out of
which a WSSS method computes pseudo-masks for each object class in an image.
To test a WSSS method accuracy, a supervised segmentation network, such as
DeepLab [7], is trained on the devised pseudo-masks, and the induced accuracy is
compared with the fully supervised methods. The segmentation task, supervised
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Fig. 1: The figure compares the basic structure of a CNN-CAM method, above in light
blue, with our proposed ViT-PCM method, below in light green. ViT-PCM learns to
estimate the BPM, shown in the last two strips, with a single optimization. Our BPM
are then refined with a CRF (see Figure 4) and, without further processing, are passed
to the verification task (DeepLab). Differently from ViT-PCM, a CAM-based method
demands a multi-stage optimization. All recent approaches require boosting the BPM,
improved by the CRF, before passing them to the verification task.

by the pseudo-mask labels, is a verification task aiming at demonstrating the
computed pseudo-mask quality. In principle, the verification task adds equal
improvement to all methods.

So far, methods based on image-level class labels generate pseudo-mask us-
ing class activation maps (CAM) [62]. CAM are obtained from a multi-label
classification network, such as a CNN.

CAM limitations in estimating both shape and localization of the classes of
interest [12,20,4,50] induce many researchers to resort to extra refinements be-
tween the baseline pseudo-masks (BPM), often called seeds, and the final pseudo-
masks production for test verification. These refinements mostly often bring into
play multi-stage architectures, as noted in PAMR [3]. Several authors resort to
saliency maps as subsidiary supervision for good localization [52,32,57,47,63].
Other authors adopt image operations such as region erasing [42,51], or region
growing to expand the seed region during training [26,23], and multi-scale map
fusion to improve background and foreground [53]. Jang et Al. [25] reviewed the
feature layers selection for CAMs using attribute propagation methods [35]. Sun
et Al. [45] estimate the similarity of the foreground features of the same class
with two co-attention networks to capture better the context and [19] look into
relations across different images.

Yet, the greatest success in refinement strategies has been earned by IRNet
[1], PSA [2], and AdvCAM [30]. Also, PAC [44] and BENet [9], have been recently
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Fig. 2: The above schema shows the end-to-end ViT-PCM, a semantic segmentation
method supervised by image-level class labels t. The plate in (a) shows the core network
f(·) implementing the linear search method, which maps the image-level class labels to
patch-labels. The plate (b) shows the two-branches architecture, including f(·) in both
branches.

used. For example, SEAM [50], Chang et Al. [6] and [41] use PSA; CONTA [14]
and ReCAM [12] use IRNet while [30] using both. AFA [39] use PAC [44].

CRF[27] are trained on PascalVOC, fully supervised, and introduced in
WSSS by [26]. CRF used as post-processing out of a training loop, improve
the BPM, on average, 3-4% mIoU, on Pascal VOC 2012. On the other hand,
multi-stage methods, refining BPM with IRNet [1], PSA [2], and AdvCAM [30]
use dense CRF in the training loop, which gives a substantial boost in accuracy.
Using dense CRF, optimized on PascalVOC, likewise using saliency (e.g. [22],
which operates dense CRF too) in the refinement loop to obtain the final pseudo-
mask, beside being resource intensive, fails to generalize a method beyond the
PascalVOC dataset. This lack of generalization power is common to any WSSS
approach using biased methods in a refinement training loop.

The challenge is to raise the bar of the baseline pseudo-mask accuracy so
that the only supervision truly sticks to the image-level label. To this end, we
introduce a new model for computing pseudo-masks, which bypasses the CAM
bottleneck. The main contribution of the paper are the followings:
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– We introduce a novel model for weakly supervised semantic segmentation
(WSSS) based on ViT [15]. The model, dubbed ViT-PCM, is represented in
Figure 2.

– We propose a new pseudo-mask computation method Explicit Search without
resorting to CAM. The method leverages the locality properties of ViT to
come close to an effective mapping between multi-label classification and
semantic segmentation. We use the Global Max Pooling (GMP) to fetch the
relevance of each patch, given the patches’ categorical distribution over the
classes of interest. This way, we project the patch features to class predictions
(PCM) using a multi-label BCE loss (MCE). We ensure equivariance to
translation and scaling transformations defining two branches, see Figure 2.

– The proposed pseudo-mask computation outperforms all state-of-the-art meth-
ods: we obtain BPM accuracy of 67.7 mIoU% on Pascal VOC 2012 train set
which improves the current best BPM ([39]) of 3.91% . On average, we im-
prove more than 5% mIoU than all the other competitors. On MS-COCO
2014 we obtain 45.03% mIoU on val set.

– For the verification task, using DeepLab as a segmentation method, we do
not need to boost our BPM to obtain masks more suitable for DeepLab, yet
we obtain comparable validation and test scores.

– We also prove the advantages of our method in terms of computational effort.
In particular, we obtain the final segmentation with 89.4 M of parameter size,
the minimal cost amid competitors.

Beyond the novelty of our contribution, which is the first proposal to compute
pseudo-mask baselines bypassing CAM, we show that both quantitative and
qualitative results prove that exploring new methods for baseline pseudo-masks
can be rewarding. We establish a new state of art on baseline pseudo-mask
computation, using image-level class labels without refinement.

2 Related Works

Current WSSS methods mostly operate with image-level class labels as the
cheapest supervision. Approaches using image-level class labels are based so far
on CAM [62] methods using a plain multi-label classification network. The class
activation maps are obtained via the global average pooling (GAP) averaging
the feature maps of the last layer, further concatenated into a weights vector.
This last is connected with the class prediction, using a BCE prediction loss.
More recently, Vision Transformers [15] are emerging as an alternative to gener-
ate CAM [58,39]. Our method is the first one using only ViT without CAM to
generate baseline pseudo-masks.

CNN plus CAM. These methods contribute to two complementary research
directions: Baseline Pseudo-Mask generation, to control and expand the activa-
tion of CAM regions, and Pseudo-Mask refinement to obtain the full mask of
objects.
Baseline Pseudo-Mask generation extends CAM by revising the loss, or by aug-
menting the dataset, or by perturbing CAM devised regions, or using pretrained



ViT-PCM for WSSS by Image-Class Labels 5

saliency maps. In ReCAM [12] the authors propose softmax cross-entropy (SCE)
as a valid solution for CAM, since it bypasses the non-exclusive class problem
of BCE. In OoD [31] the authors propose an out of distribution dataset taken
from OpenImages [28], to better capture background semantics. Other methods
to expand CAM perturb the generated regions to capture new areas [29,43,30],
by either erasing or masking. Since [52], pretrained methods for saliency detec-
tion and saliency maps have been adopted in [36,61,32,59,54,57], and in [25,24].
The latter propose an online attention accumulation (OAA) strategy based on
attribute propagation methods. Pseudo-mask generation is contaminated by self-
supervised learning in [50], via downstream tasks and transformations ensuring
CAM features equivariance, or via contrastive representation learning, as in RCA
[63], C2AM [56] and PPC [16].
Pseudo-Mask refinement. In recent works, all CAM-based approaches explore re-
finement strategies, ensuring some control on pixel-level labelling. The most com-
mon strategies are PSA [2], AdvCAM [30] and IRNet [1]. PSA refines the baseline
masks by propagating pixel semantic values to their neighbours, collecting con-
fidence for the target classes. AdvCAM [30] uses iterative adversarial climbing
performed on an image to iteratively involve its features in the classification to
increase CAM confidence in activated regions. IRNet [1] explores class equiva-
lence relations of pixels and refines pixel-labels by evaluating the displacement
w.r.t. computed centroids. Recently BENet [9] has been used for pseudo-mask
baseline refinement, too; it refines object boundaries, together with foreground
and background. We observed in the introduction that all these strategies use in
the training loop dense CRF of [27], which is trained on PascalVOC2012.

Transformers.ViT have so far gathered a significant success with self-supervised
learning [15], as witnesses Dino [5], [11,33], and recently SDMP [37]. Dino [5]
downstream task segments foreground from background for single class images,
differing from WSSS. Only recently ViT contributed to WSSS with MCTformer
[58] and AFA [39], though both resort to CAM. MCTformer exploits ViT at-
tention mechanism to obtain localization maps. To generate pseudo-masks, they
resort to PSA [2]. AFA uses ViT multi-head-self-attention (MSA) to capture
global dependencies and develop an affinity-based attention module to prop-
agate the initial pseudo-masks, namely the obtained CAM. Refinement of the
initial pseudo-mask is attained by affinity propagation with RAWK [49], in turn,
pretrained on a scribble dataset.

Differently from the above approaches, we use ViT as a backbone for building
our explicit search method. Indeed, we devise an end-to-end internal refinement
to obtain a baseline pseudo-mask (BMP) without resorting to external strategies.

3 Motivations of using ViT and bypass CAM

At the core of semantic segmentation, supervised by image-level labels, is the
mapping between multilabel image classification and pixel-level classification.
This mapping requires linking the abstract image feature space, encoding classes
into an index vector, to a completely different space in which features encode
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Fig. 3: Patch Class Mapping.

classes into a fine grid structure. How could this be possible? CNN have an in-
ductive bias on the image features local structure because of convolution kernels,
which CAM leverages. The inductive bias of CNN entitles CAM to indicate the
pixels which mainly contribute to the specific class prediction. The produced
map is appealing though misleading: it does not induce a mapping between
image features and pixels.

On the other hand, ViT [15] have much less bias because images are split
into flattened patches and encoded. Thus, the spatial relations are learned from
scratch using attention and position embedding. This learning from a tabula rasa
generates a number of basis functions for each patch, specifying their internal
structure. These basis functions account implicitly for the class a patch belongs
to. On these grounds, the mapping problem amounts to unravelling the implicit
class representation brought on by the patch principal components. Our proposed
explicit search method models this mapping.

We describe here the intuition. Let us assume that patches are pixels, the
classes (categories) are denoted by C, having cardinality K and X∈Rh×w×3 is an
image. Let also assume that the ViT inferring the image multiclass labels is the
function f(·|φ) with parameters φ, mapping an image X to a vector of values
in (0, 1) for each category in C. On the other hand, let us represent the basis
functions specifying the patches’ internal structure, implicitly accounting for the
patch classes, by a tensor Z. We shall see below how Z is computed. Z has height
and width as the image X, and it also has a third axis for the categories C. We
make Z a stochastic tensor along the categories axis: summing up along that
axis, we obtain a matrix of ones. Let f(·|θ), with parameter θ, play the role of
the segmentation model; namely, it evaluates the likelihood that a patch of the
original image belongs to some precise class in C.

We argue that Global Max Pooling (GMP) relates the two models f(·|θ) and
f(·|φ) as follows. Let Zk be the slice of Z, along the categories axis, which should
specify the patches internal structure for the category k ∈ C. GMP selects the
most relevant element of Zk, namely the element with the highest confidence to
belong to the category k, and returns a probability value yk that it belongs to
class k ∈ C. The selected element Zk

ij , at the same time, is the one in highest
consideration to tell whether or not the category k appears in the image. In this
way, GMP links image class prediction and patch class prediction.
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4 The explicit search method

This section considers the optimization method leading to estimating the map
between image classes and patch classes. The end-to-end architecture enclosing
the method is described in Figure 2, and in Section 5.

Let us indicate by f the network taking inputs from a dataset D={⟨Xin, t⟩}.
Here Xin∈Rh×w×3 indicates an input images, possibly obtained from an aug-
mented and transformed set, t∈{0, 1}K are the ground truth binary labels, and
K is the number of classes defined by the category set C={0, 1, . . .,K}. The
output of f is a tensor Ŷ ∈ Ch×w which is a baseline pseudo-mask.

ViT is part of f . We recall that ViT partitions the image X, resized image of
the original Xin, into s patches of size (d×d×3). In particular, we are interested
in the feature maps F∈Rs×e, with s=(n/d)2, with n=w=h. The feature maps
F are the encoded representations of the patches, obtained by ViT. F represent
the basis functions specifying the patches internal structure.

Explicit search by Global Max-Pooling Given F∈Rs×e, we consider also a
weight matrix W∈Re×K whose weights are taken into account in the optimiza-
tion method described below. More precisely, we estimate the baseline pseudo-
mask Ŷ , training the weights W with only image-level class labels as supervision,
minimizing the multilabel classification error.

The first objective is to minimize the multilabel classification prediction error
(MCE). Thus, given the ground truth binary labels t defined above, and recalling
that K are the number of classes, we model the multi-label classification using K
independent Bernoulli distributions and K binary cross-entropy losses (BCE):

LMCE =
1

K

∑
k∈C

BCE(tk, yk) = − 1

K

∑
k∈C

tk log(yk) + (1− tk) log(1− yk). (1)

Let us consider first how y∈RK is obtained. Let:

A = FW and Z = softmax(A), with F∈Rs×e,W∈Re×K hence Z∈Rs×K .
(2)

Z represents the semantic segmentation predictions, needing to be projected into
class predictions3. We do so using Global Max Pooling (GMP):

yk = GMP (Zk) = max(Zk) = Zk
i , for some i∈{1, . . ., s}. (3)

Here:
Zk = softmax(Ak) and Ak

j = FjW
k (4)

The feature maps F are the encoded representation of patches U , and Fj is the
feature map of patch Uj , while Ak

j is the logit of patch Uj , j = 0, . . ., s with
respect to class k ∈ {0, 1, . . .,K}.
3 Note that we are representing here Z as a matrix, which is simply a reshaping of the
tensor Z discussed in Section 3.



8 Rossetti et al.

Given the vector yk, we show how the optimization obtains the terms sep-
arating the feature space by the relative error backpropagation of LMCE , with
respect to weights W . Computing the gradient of Eq. (1) w.r.t. the weight W ,
we obtain:

∂LMCE

∂W
=

∑
k∈C

∂BCE(tk, yk)

∂W
(5)

Let us analyze the gradient of the weights W , with respect to each column h, of
size e, with h∈{0, 1, . . .K}. Applying the chain rule, w.r.t. the generic class k:

∂BCE(tk, yk)

∂Wh
=

∂BCE(tk, yk)

∂yk

∂Zk
i

∂Ah

∂Ah

∂Wh
(6)

Here we used the fact that yk=max(Zk), and max(Zk)=Zk
i from eq. (3). There-

fore, the gradient dimension is ∂BCE(tk,yk)
∂Wh ∈Re. The derivation of each term is

provided in the supplementary.
Let us select, now, the column h of the weights W , this column will be

updated by the quantity:

∂LMCE

∂Wh
=

∂BCE(th, yh)

∂Wh
+

∑
k∈C,k ̸=h

∂BCE(tk, yk)

∂Wh

= −Fih(th − yh) +
∑

k∈C,k ̸=h

FikZ
h
ik

tk − yk
1− yk

(7)

Note that here the subscripts ih, ik in F and Zh indicate, respectively, the indexes
at which Zi have maximum value, w.r.t classes h and k, where Fi is obtained by
the last two terms of equation 6, r.h.s. We are using these indexes only in the
updating rule for the weights; we are not using them in the derivation.

Eq. 7 specifies the linear-search mechanism of the proposed optimization,
iteratively selecting the most representative features Fih of each category h. At
each step, the optimization updates the full column rank matrix W∈Rs×e and
returns the minimum error norm solution, which separates the feature vector
space Re into K linear sub-spaces. Considering the optimization manifold, the
vector Wh moves in the direction of the best representative feature vector Fiu ,
with either u being of the same category of the chosen column h, or not. More
precisely, at each iteration, Wh moves in the direction of Fih according to the
error value (th − yh), and in the direction Fik according to the term Zh

ik
tk−yk

1−yk
,

for any category k, with k ̸= h.

More specifically, when the term (tk−yk)
1−yk

=1, and the category k ̸=h is con-

sidered, Wh moves in the direction opposite to the best representative feature
vector Fik . On the other hand, when tk = 0 the term considered is −(Zk

ik
yk

1−yk
)

which is added to Wh, for its updating. Note that, in this case, the update term
is increasingly small, since yk≪1−yk as yk→0. This optimization method, based
on iterative learning and stochastic gradient descent, induces a separation in the
space of patch features, according to the multilabel classification.
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5 ViT-PCM model structure

The model architecture has two branches, as shown in Figure 2. We describe its
components in the following.
Augmentation. The batch of input images is augmented as usual in the first
branch. In the second branch, images are translated, rotated and scaled. Fur-
thermore, we merge four images from the batch into a single image after scaling
them to have a different tiling of the images into patches.
ViT patch encoder. The Vision Transformer encoder takes as input the aug-
mented batch of images and returns the features Fin and the n patches described
in the explicit search method, Section 4.
HV-BiLSTM patch conditioning. Two bidirectional LSTM (BiLSTM) pro-
cess row-wise and column-wise the features Fin transformed to a tensor grid.
The two BiLSTM outputs are concatenated into a HV-BiLSTM (for Horizon-
tal and Vertical), and their feature maps F are fed to the Patch Classifier. The
HV-BiLSTM improves information amid neighbour patches by conditioning each
patch on all other ones in horizontal (H) and vertical directions (V) [48].
Patch Classifier (PC). While ViT and the two BiLSTM encode class in-
formation into the patch features, the Patch Classifier implements the BPM
generation, as described in the explicit search method, Section 4.
Two branches for Equivariant regularization. ViT are not equivariant to
translations because of the absolute positional encoding used for self-attention.
Romero et Al. [38] show that for self-attention to be equivariant to group trans-
formations, they must act directly on positional encoding. In our ViT-based
method, though GMP is independent of the positional encoding and is invariant
to transformations, the BPM generation is not. To remedy we resort to typi-
cal self-supervised learning tasks, using two branches enabling the network to
learn equivariance properties. Equivariance encourages the feature representa-
tion to change coherently to the transformation applied to the input [13]. As
discussed above, we apply affine transformations to both the network branches
in the preprocessing step. After the same processing steps of the main branch,
the sibling one applies an inverse merging of the features and upscales them to
obtain the n patches feature maps as in the main branch. Finally, inverse affine
transformations are applied to both branches.

The outcome is that these transformations cope both with positional encod-
ing and spatial transformations. The loss to be minimized is the cross entropy
loss LET , taking into account the transformations in the two branches:

LET = −1

s

s∑
i=0

∑
X∈X

νi(X) logµi(X)

with µi(X) = a−1f(a(X)) and νi(X) = c−1f(c(X))

(8)

Here, X is the images domain, a(·), b(·) are affine transformations in the first and
second branch, m(·) is the above defined merging operation, and c = m(b(·)).
Final loss We have the LMCE loss, conveying the mapping between image
classification and patch classification, and LET , which ensures equivariance and
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(a) Input Image   (b) Background   (c) Cat. One     (d) Cat. Two (e) Argmax     (f) Argmax+CRF

Fig. 4: Columns (b)-(c)-(d) show the BPM inferred by our ViT-PCM, with probabilities
highlighted by 60×60 heatmaps: values in yellow indicate the pixels’ probability of
belonging to the predicted class. Column (e) is the scaled BPM, obtained by selecting
from the distribution of each patch the category indices with maximum probability
(argmax). Column (f) displays the BPM argmax refined by CRF.

scales the images so that patches get pixel dimension. The final loss is then:

L = LMCE + LET (9)

Training the end-to-end network by minimizing this final loss obtains the baseline
pseudo-mask.

6 Experiments and results

6.1 Set-Up

Datasets. We conducted our experiments on Pascal VOC 2012 [17] (20 cate-
gories) and on MS COCO 2014[34] (80 categories), the additional background
class is inferred. The Pascal VOC 2012 Dataset [17] is usually augmented with
the SBD dataset [21]. The images in train sets of PASCAL VOC and MS COCO
are annotated with image-level labels only. We report mean Intersection-Over-
Union (mIoU) as the evaluation criteria.

Networks Configuration. For the ViT transformer backbones [15] we used
ViT-S/16 and ViT-B/16 architectures, pre-trained on ImageNet22K and fine-
tuned on ImageNet2012 [40]. We designed an MLP layer projecting the patch
features into a categorical distribution on the K classes as a baseline model for
ablation purposes. For the verification task, we used DeepLab V2[8].
Reproducibility. Images are resized to 384×384 for training and augmented by
random colour jitter, random grayscale, 90◦ rotation, and vertical and horizontal
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Table 1: Ablation on our ViT-PCM model for baseline pseudo-mask production, on
PASCAL-VOC 2012 values in mIoU%.

Backbone LMCE LET HV-BiLSTM CRF train val

ViT-S/16 ✓ 44.0 43.3
✓ ✓ 59.2 +15.2 56.4 +13.1
✓ ✓ ✓ 63.6 +4.4 61.8+5.4
✓ ✓ ✓ ✓ 67.1 +3.5 64.9+3.1

ViT-B/16 ✓ 45.6 44.1
✓ ✓ 65.1 +19.5 62.4 +18.3
✓ ✓ ✓ 67.7 +2.6 66.0+3.6
✓ ✓ ✓ ✓ 71.4 +3.7 69.3+3.3

flip. Initially, we freeze the backbone and ignore the output feature for the [cls]
token. At the same time, we preserve the 24·24 encoded patch features as input
to the BiLSTM conditioning, whose outcome features are passed to the Patch
Classifier. We initialize the MLP layer with standard Gaussian distribution and
use L2 regularization with coefficient l2=10−1. We ran our training sessions
iterating over the entire dataset, each epoch measuring the mIoU(%) progresses
on the PascalVOC 2012 and MS COCO2014 validation sets. We keep the input
resolution to 384×384 to hasten the evaluation on a 4 NVIDIA Titan V GPUs
with 12GB RAM each, a deliberately limited resources setup. We use Adam
optimization and schedule the learning rate as follows: 10−3 learning rate for the
first two epochs with a frozen backbone; then, we unfreeze the last four backbone
layers and keep training until convergence with 10−4 learning rate. At inference
time, we scale the input image to 960×960 to get pseudo-label segmentation
maps of shape 60×60. As expected, we noticed an increase in performance of
about 2−3% mIoU scores for validation in the training session, confirming that
ViTs scales very well on larger input size.

6.2 Ablation studies

In Table 1 we evaluate ViT-PCM computation both with backbone ViT-S/16 and
ViT-B/16, considering each component of the end-to-end network. We adopted
a patch size of 16 since the memory requirements grow quadratically with the
number of patches. The low scores of the (LMCE) in Table 1 are due to the
difficulty in encoding the background without equivariance. We observe that
with the equivariance, LET there is an improvement of 15.2 mIoU% on the train
set and 13.1 mIoU% on the val set for PascalVOC 2012. A further improvement
of 4.4 on the train set and 5.4 mIoU% on the val set is obtained by conditioning
the patches with HV-BiLSTM. Finally, we add the dCRF[27] as post-processing
obtaining an improvement of 3.5 mIoU% on train set.
Figure 4 shows the BPM heat-maps for each class in the second, third and
fourth columns, inferred by our end-to-end network, including the background.
The BPM heat map highlights each pixel’s likelihood of belonging to a specific
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Table 2: mIoU(%) of BPM on PascalVOC 2012 val set. w/wo CRF
Method bkg plane bike bird boat btl bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIoU(%)

pseudo-masks w/o CRF 87.2 66.4 36.9 61.0 61.1 63.0 86.8 76.0 76.9 41.1 80.7 39.0 82.3 77.4 75.7 55.9 50.6 85.0 50.9.6 78.9 54.7 66.0
pseudo-masks w/ CRF 88.8 78.2 39.1 69.2 67.2 67.2 88.0 77.7 78.5 42.5 83.9 39.2 85.2 82.8 79.8 56.2 51.0 91.3 51.0 81.9 57.0 69.3

category. Column (e) shows the pseudo-masks obtained by selecting the indices
of the classes with maximum probability. Column (f) shows the pseudo-masks
improved by CRF. We use these last masks for the verification task as input to
DeepLab [7].
In Table 2 we report the BPM mIoU% on Pascal VOC val set for each category,
w and w/o CRF.

6.3 Comparisons with state-of-the-art

Comparison on baseline pseudo-masks. We compare the mIoU(%) accuracy
of our ViT-PCM method with other methods, which compute BPM and post-
process them with CRF [27] similarly. Some methods such as CIAN [19] and
EDAM [54] also incorporate saliency.

Results are reported in Table A. Here we can observe that CRF, used as
BPM post-processing, improves the BPM, on average, by 3.97%, with a standard
deviation of 1.87. The statistics show that CRF out of a training loop behaves
similarly on all methods. Observe that we improved BPM state-of-the-art by
3.91 mIou% points and BPM+CRF by 5.4 mIoU%, both w.r.t. AFA[39], owning
so far the best accuracy on both.

Table A: mIoU(%) on PascalVOC2012 train set.
Method Backbone BPM BPM+CRF

ICD [18]CVPR’20 VGG16 57.00 62.20
SCE[6]CVPR’20 ResNet38 50.90 -

SEAM [50]CVPR’20 ResNet38 55.41 56.83
CIAN[19]AAAI’20 ResNet101 58.10 62.50
ECSNet[46]ICCV’20 ResNet38 56.60 58.60
PAMR[3]CVPR’20 ResNet38 59.7 62.7

AdvCAM[30]CVPR’21 ResNet50 55.60 62.10
CPN[60]ICCV’21 ResNet38 57.43 -
CSE[29]ICCV’21 ResNet38 56.0 62.8

EDAM[54]CVPR’21 ResNet101 52.83 58.18
MCTformer[58]CVPR’22 DeiT-S 61.70 -

PPC[16]CVPR’22 Resnet38 61.50 64.00
CLIMS[55]CVPR’22 Resnet50 56.60 -
SIPE[10]CVPR’22 Resnet50 58.60 64.70
AFA[39]CVPR’22 MiT-B1 63.80 66.00

IRN+W-OoD[31]CVPR’22 Resnet50 53.30 58.40
ViT-PCM Ours ViT-B/16 67.71 71.4
Table C: mIoU(%) on MS-COCO 2014 val set.

Method Backbone Val

MCTformer[58]CVPR’22 Resnet38 42.0
SIPE[10]CVPR’22 Resnet38 43.6

ViT-PCM Ours ViT-B/16 45.0

Table B: mIoU(%) on PascalVOC2012 val and test set.
Method Backbone Val Test

IRNet[1]CVPR’19 ResNet50 63.5 64.8
SCE[6]CVPR’20 ReseNet101 66.1 65.9

SEAM[50]CVPR’20 ResNet38 64.5 65.7
CIAN[19]AAAI’20 ResNet101 64.3 65.3
ECSNet[46]ICCV’20 ResNet38 66.6 67.6
CONTA[14]Nuerips’20 ResNet101 66.1 66.7

BES[9]ECCV’20 ResNet101 65.7 66.6
AdvCAM[30]CVPR’21 ResNet50 68.1 68.0

CPN[60]ICCV’21 ResNet38 67.8 68.5
EDAM[54]CVPR’21 ResNet101 52.83 58.18
CSE[29]ICCV’21 ResNet38 68.4 68.2

MCTformer[58]CVPR’22 Resnet38 71.9 71.6
CLIMS[55]CVPR’22 Resnet50 70.4 70.0
SIPE[10]CVPR’22 Resnet101 68.8 69.7

AdvCAM+W-OoD[31]CVPR’22 Resnet38 70.7 70.1
PAMR[3]CVPR’20 ResNet38 62.7 64.3
MCIS[45]ECCV’20 ResNet101 66.2 66.9
ICD [18]CVPR’20 Resnet101 64.1 64.3
AFA[39]CVPR’22 MiT-B1 66.0 66.3

MCTformer⋆[58]CVPR’22 Resnet38 68.2 68.4
ViT-PCM Ours ResNet 101 70.3 70.9
Table D: mIoU(%) on PascalVOC2012 val set.

Method ViT-S/8 ViT-S/16 ViT-B/16

DINO 44.7 45.9 -
ViT-PCM Ours - 74.55 77.25

Semantic Segmentation Verification Tasks The verification task of the
WSSS methods on PascalVOC 2012 tests the final pseudo-mask (FPM), and the
results are reported in Table B. We divide the methods into two: those which
are boosted (or, according to the definition in PAMR [3] are multi-stage) and
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those which are end-to-end, highlighted in grey. For the methods considered, the
boosted ones improve the mIoU% w.r.t. the BPM on average of 9.8%, while the
end-to-end methods improve on average 4.2%. Our ViT-PCM not being boosted
improves by 2.39% on the val set and decreases on the test set. Our ViT-PCM
has the best accuracy among the end-to-end methods, with 70.3% and 70.9%
on val and test sets. Our method is second to MCT-Former[58] on the test set
w.r.t. all methods (boosted and end-to-end). However, MCT-Former end-to-end
version is second to ViT-PCM, on both the val and test sets.
In Table C we also evaluate our method on MS-COCO 2014 dataset [34]. Our
ViT-PCM achieves 45.03 mIoU% on val set. We reported only the last methods
(2022) with the highest performance. Table D compares our foreground maps
with DINO [5] maps on the PascalVOC 2012 val set. Figure 5 shows the ratio

Fig. 5: Networks parameters consumed
from the BPM to the final-segmentation
in ours and other methods, against mIoU%
on PascalVoc2012 val. set.

Backbone Params (M) Localization mIoU (%) pixAcc (%)

Resnet50v2 25 CAM 27.8 72.7
PCM 25.2 76.0

Xception 23 CAM 37.8 76.5
PCM 36.5 79.5

ViT-S/16 22 CAM 29.3 55.0
PCM 43.3 80.1

Table 3: Comparison between CAM [62]
and PCM (our Patch Class Mapping) on
PascalVOC2012 val set. The Table reports
the best results obtained with Multi-Label
BCE loss and L2 regularization loss in all
experiments, for both CAM and PCM.

between the parameters consumed to obtain the BPM and the final segmentation
mask, against the mIoU% on the val set of PascalVOC2012. A ⋆ marker specifies
the BPM, and a □ marker specifies the final segmentation mask, ours in red and
the others in blue. Our ViT-PCM, with backbone ViT-S/16, is green-dashed, and
ViT-B/16 is green-continuous. We can observe that most of the shown methods
are multi-stage (see also [3,39]), and boosting the BPM asks for a significant
increase of parameters. Table 3 shows the accuracy between CAM and PCM on
different backbones and the amount of parameters required. We made this table
to understand whether it would be profitable to use CAM with ViT. As shown
in the table, we can see that the combination ViT and PCM is the best solution.
Figure 6 compares our qualitative results on Pascal VOC 2012 val set with
other approaches whose implementation we have used to generate the images;
therefore, they might be biased.

6.4 Limitations

We observed that ViT-PCM is biased on the most discriminative features. Many
approaches to WSSS highlight the improvements due to processing pixel rela-
tions, boundaries, and neighbourhoods. We have used only the conditioning from
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(a) rgb (b) GT (c) ICD (d) CIAN (e) MCIS (f) EPS (g) EDAM (h) Ours

Fig. 6: Qualitative comparison on Pascal VOC 2012 validation set.

HV-BiLSTM, which might not be the best solution. On the other hand, some re-
cent approaches have explored contrastive loss for foreground-background learn-
ing with no image-level supervision. Since the background is our Achille’s heel,
we could have explored this idea. Another bottleneck of our approach is the final
scaling to map patches to pixels, where we perform a rough scaling to keep the
resources limited.

7 Conclusions

We presented an innovative, simple and end-to-end method, ViT-PCM, based on
ViT for generating baseline pseudo-masks (BPM) with precise localization and
higher quality than those obtained from the more involved CAM CNN-based
architectures. We obtained new state-of-the-art in BPM generation with 67.7 %
mIoU on PascalVOC 2012 train set and 71.4% mIoU using CRF only in post-
processing. These results demonstrate this work’s high contribution to the field
of WSSS. Therefore, we hope that others will continue in this direction. In the
supplementary files, we report more analysis and results. The code is available at
https://github.com/deepplants/ViT-PCM.

https://github.com/deepplants/ViT-PCM
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