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A Implementation Details

Data Augmentation. We use the same data augmentation techniques as those
used in previous methods for a fair comparison.
i) Unsupervised pre-training : We use existing augmentation modules in Py-
Torch [6] and describe them using the same notations as the following. Specif-
ically, for geometric augmentation, we use RandomResizedCrop with scale in
[0.2,1.0] and RandomHorizontalFlip. For color augmentations we use ColorJitter
and RandomGrayscale with probabilities of 0.8 and 0.2, respectively. The jitter-
ing strength of brightness, contrast, saturation, and hue are 0.4, 0.4, 0.4, and 0.1
in ColorJitter, respectively. Blurring augmentation [1] is also applied using a
Gaussian kernel with std in [0.1, 2.0]. These hyper-parameters are the same as
those adopted in previous methods [1–3,5, 8].
i) Unsupervised semantic segmentation: We apply the same augmentations as
those used in PiCIE [4] in unsupervised semantic segmentation for a fair compar-
ison. The augmentations include color jittering, gray scale, blurring, cropping,
and flipping. The color jittering augmentations consists of jittering brightness,
contrast, saturation, and hue. These jittering transformations are randomly ap-
plied with probabilities of 0.8 with strength of 0.3, 0.3, 0.3, and 0.1, respectively.
The gray scale augmentation is randomly applied with a probability of 0.2. Ran-
dom crop is used with scale in [0.5,1.0]. Different from those augmentations used
in unsupervised pre-training, the augmentations are sampled first and replayed
with similar parameters in each epoch following PiCIE [4].

B Analysis

Exploitation of Correspondence. Previous methods explore different strate-
gies to build and optimize dense correspondence between two views. DenseCL [8]
compares feature similarity to build the correspondence between pixels. Pix-
Pro [10] connects pixels by the distance of their coordinates in the original
image. There are also attempts [7, 9] to use manual crops and maximize the
similarity between similar crops in different views. DenseSiam uses the location
and regions for similarity learning of different granularities.
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Table A1: Analysis: Strategies for
building visual correspondence

Strategies AP AP50 AP75

SimSiam 53.5 79.7 59.3

feature similarity [8] 36.3 63.5 36.1

pixel distance [10] 53.7 79.3 58.5

candidate regions [7, 9] 54.7 79.9 60.5

location 54.9 80.8 60.9

location + region embeddings 55.5 81.1 61.5

Table A2: Analysis: Strategies for grid
sampling
Strategies AP AP50 AP75

uniform (7×7 regular grid) 54.9 80.8 60.9

uniform (k = 1, β = 0.0) 54.7 80.7 60.3

midly biased (k = 3, β = 0.75) 55.0 80.7 60.8

heavily biased (k = 10, β = 1.0) 54.3 80.3 60.0

Fig.A1: Visualization of pseudo categories of pixels produced by PixSim in unsu-
pervised representation learning.

For a fair comparison, we study these strategies under the same architec-
ture of PixSim with a switch between strategies. Specifically, we keep the same
architecture and symmetrized loss of PixSim and implement these strategies
strictly following their official code releases. To study feature similarity used in
DenseCL [8], we calculate feature similarities between pixels and link the most
similar pixels between views. To study pixel distance used in PixPro [10], we
calculate the coordinate distances of pixels and link the pixels having the close
locations. To study candidate regions used in ReSim [9], we use anchors in the
intersected regions generated by sliding windows.

The results in Table A1 show that using feature similarity [8] significantly
decreases the performance. This is because PixSim does not use negative pixel
pairs, a prerequisite for the strategy to work. Using pixel coordinates only brings
marginal improvements. Using location correspondence in PixSim is much sim-
pler and more effective than candidate regions. DenseSiam yields the best results
by exploiting the correspondence built with both location and region embed-
dings.

Grid Sampling Strategies.We tried a hard example mining strategy proposed
in PointRend. Specifically, it first over-generates candidate points by randomly
sampling kN points (k > 1) from a uniform distribution. Then it estimates the
similarities by Eq.3 between the embeddings of these points from both views. Fi-
nally, it selects the most dissimilar βN(β ∈ [0, 1]) points from the kN candidates
and sample the remaining (1− β)N points from a uniform distribution.

The results in Table A2 shows that the strategy marginally improves the
performance and only training on hard examples degrades the results. More
strategies can be explored in future research.
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Visualization of masks. When using cross-entropy similarity, softmax(z′1)
can be treated as a segmentation map, in which the pseudo categories of each
pixel can be obtained by argmax over the channel dimension [3]. We visualize the
pixels’ pseudo categories by different colors in the figures below. The results show
that the pixels are grouped into different pseudo categories without supervision,
and the features gathered by these masks thus contain region-level information,
which are then forced to have consistency across views in RegionSim.
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