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A Proof of Theorem 1

In this section, we consider the case where p1 ≥ 1
2 for the proof of Theorem 1.

Proof. Rewriting Eq. (15), we obtain

n∑
i=1

pi log pi ≥
n∑

i=1

pi log pi. (22)

Denoting p1 = 1−pn

n−1 , . . . , pn = 1−p1

n−1 , we have

1

n− 1
≥ p1 ≥ · · · ≥ pn. (23)

Let a = (p1, . . . , pn−1, pn) and b = ( 1
n−1 , . . . ,

1
n−1 , 0), by Eq. (23) and

∑n
i=1 pi =∑n−1

i=1
1

n−1 = 1, we notice a is majorized by b (a ≺ b) [8,1]. Since the function

g(x) =
∑d

i=1 xi log(xi) is Schur-convex [10,11], we have g(a) ≤ g(b) [10,11], i.e.,

n∑
i=1

pi log pi ≤ (n− 1)
1

n− 1
log

1

n− 1
= − log(n− 1). (24)

Next, rewriting the left term in Eq. (22), we have

n∑
i=1

pi log pi = p1 log p1 +

n∑
i=2

pi log pi. (25)

Since p2 + · · ·+ pn = 1− p1 and g(x) = x log x is a convex function, by Jensen’s
Inequality, we obtain the minimum of

∑n
i=2 pi log pi when p2 = · · · = pn = 1−p1

n−1 .
Then, by Eq. (25), we have

n∑
i=1

pi log pi ≥ p1 log p1 + (
1− p1
n− 1

log
1− p1
n− 1

)(n− 1)

= p1 log p1 + (1− p1) log(1− p1)− (1− p1) log(n− 1)

≥ −1− 1

2
log(n− 1).

(using p1 log p1 + (1− p1) log(1− p1) ≥ − log 2 and 1− p1 ≤ 1
2 )



2 Y. Duan et al.

Notice that by Eq. (24) we have
∑n

i=1 pi log pi ≤ − log(n− 1). Solving inequality

−1− 1

2
log(n− 1) ≥ − log(n− 1), (26)

we obtain n ≥ 5. Theorem 1 now follows simply by combining proofs for the cases
where p1 < 1

2 and p1 ≥ 1
2 . To sum up, for multi-classification tasks, we prove

that when n ≥ 5, H(p) ≥ H(p) holds, i.e., Reverse Operation could maximize the
entropy of p. The proof for complementary label version can be simply obtained
by replacing p and p in the above formulas with q and q, respectively.

B Algorithm

Pseudo-code of RDA is shown in Algorithm 1.

Algorithm 1: RDA: Reciprocal Distribution Alignment

Input: batch of labeled data X = {(xb, yb)}Bb=1, batch of unlabeled data
U = {ub}µBb=1, Default Classifier D, Auxiliary Classifier A, maximum
number of iterations M , augmentation α

1 for iteration t = 1 to M do
2 // Select complementary label from Y randomly

3 yb = randselect(Y \ {yb}), b ∈ (1, . . . , B)
4 // Compute default supervised loss

5 Lsd = 1
B

∑B
n=1 H(yn, PD(yc|xw,n))

6 // Compute auxiliary supervised loss

7 Lsa = 1
B

∑B
n=1 H(yn, PA(yc|xw,n))

8 for iteration b = 1 to µB do
9 uw,b = αweak(ub) // Apply weak augmentation to ub

10 us,b = αstrong(ub) // Apply strong augmentation to ub

11 pb = PD(yc|uw,b) // Compute predictions of D for uw,b

12 ps,b = PD(yc|us,b) // Compute predictions of D for us,b

13 qb = PA(yc|uw,b) // Compute predictions of A for uw,b

14 qs,b = PA(yc|us,b) // Compute predictions of A for us,b

15 pb = Norm(1− pb)
16 qb = Norm(1− qb)
17 // Apply distribution alignment reciprocally

18 p̃b = Norm(pb × Ψ(q)
Ψ(p)

)

19 q̃b = Norm(qb × Ψ(p)
Ψ(q)

) // Soft complementary labels for uw,b

20 ˆ̃pb = argmax(p̃b) // Hard pseudo-labels for uw,b

21 end

22 Lcd = 1
µB

∑µB
n=1 H(ˆ̃pn, ps,n) // Compute default consistency loss

23 Lca = 1
µB

∑µB
n=1 H(q̃n, qs,n) // Compute auxiliary consistency loss

24 return L = Lsd + λaLsa + λcdLcd + λcaLca // Optimize total loss L
25 end
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Table 7. More baseline results in accuracy (%) under DARP’s protocol. Results of
baseline methods are copied from DAPR [4].

Method
CIFAR-10 (γl =100) STL-10 (γl ̸= γu)

γu = 1 γu = 50 γu = 150 γu = 100 (reversed) γl = 10 γl = 20

MixMatch 41.50±0.76 64.10±0.58 65.50±0.64 47.90±0.09 56.30±0.46 45.20±0.19
M w. DARP 86.70±0.80 68.30±0.47 66.70±0.25 72.90±0.24 67.90±0.24 58.30±0.73
ReMixMatch 48.30±0.14 75.10±0.43 72.50±0.10 49.00±0.55 67.80±0.45 60.10±1.18
R w. DARP 89.70±0.15 77.40±0.22 73.20±0.11 80.10±0.11 79.40±0.07 70.90±0.44

RDA 93.35±0.24 79.77±0.06 74.48±0.24 79.25±0.52 87.21±0.44 83.21±0.52

C Datasets with Mismatched distributions

C.1 Protocol of DARP

DARP [4] introduces this protocol to build a class-imbalanced dataset. DARP
introduces two parameters namely imbalanced ratio γl and γu to control the
class-imbalance of dataset. For the labeled data, the data number of each class Ni

is scaled by: Ni = N1×γ
− i−1

n−1

l , where i ∈ (1, . . . , n) and n is the number of classes.
Likewise, for the unlabeled data, the data number of each class Mi is scaled by:

Mi = M1 × γ
− i−1

n−1
u . Specially, “reversed” in Tab. 5 indicates that the unlabeled

data with reversely ordered class distribution is used, i.e., Mi = M1 × γ
− n−i

n−1
u .

N1 = 1500 and M1 = 3000 are applied into CIFAR-10 under DARP’s protocol.
DARP constructs STL-10 with N1 = 450 and fully use the given unlabeled data
in this dataset (i.e.,

∑n
i=1 Mi = 100, 000). γu is not set for STL-10 due to the

unknown ground-truth of the unlabeled data. DARP claims the labeled and
unlabeled data in STL-10 have different distributions, i.e., γl ̸= γu.

Additionally, we show the results of more baseline methods under DARP’s
protocol [4] in Tab. 7 for comparison with our method.

C.2 Imbalanced Cx

We now show the details on how to construct dataset with imbalanced labeled
data (i.e., Cx is imbalanced) while keeping the number of labeled data unchanged.
Following CIFAR-LT [2], we mimic the imbalanced Cx by an exponential function:

Ni = N0 × γ
− i−1

n−1
x , i ∈ (1, . . . n) to generate the number of labeled data for class

with index i, where n is the number of classes. We use different N0 to investigate
different scale of imbalance. With N0 we set, γx is calculated by the constraint∑n

i=1 Ni = Dx, where Dx is the number of labels we set. We search for a γx
from small to large in natural numbers, so that the progress of search can be
summarized as the following optimization:

γ̂x = argmin
γx

Dx −
n∑

i=1

Ni

s.t. Dx −
∑n

i=1 Ni > 0

(27)
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With obtained γx, we add missing labels for classes other than the first class
(i.e., keep the N0 unchanged) in turn until the condition

∑n
i=1 Ni = Dx is met.

Here we found that the labels that need to be added are less than n, which means
we can complete this progress by adding at most one round in turn.

D Additional Experiments with Mismatched Distributions

D.1 Mismatched Distributions with Non-overlapping Classes in the
Unlabeled Data

In addition to the mismatched distributions discussed in Sec. 3.1, SSL with
non-overlapping classes in the unlabeled data is a more generalized mismatched
scenario. As mentioned, this distribution mismatch is known as SSL using out-
of-distribution (OOD) samples in the unlabeled data [9] (also known as open-set
SSL). To explore the robustness of RDA, we experiment under the same setting
as Sec. 4.4 in [9] and observe slight accuracy drops of RDA, except for at 100%
class mismatch extent (sometimes more than 10% drop). This is understandable
because SSL with OOD samples is very different from our task addressing the
mismatched distributions with the same classes and we learn total unlabeled data
without OOD sample filters. Considering the fine-grained datasets Semi-Aves [14]
and Semi-Fungi [13] are also used to mimic the OOD setting [13], we evaluate
our RDA on them. As shown in Tab. 8, when suffers from both mismatched
distributions (in our paper) and OOD samples, RDA can still outperform our
main baseline FixMatch by improving the pseudo-labels with in-distribution
classes, although some aligned pseudo-labels may be assigned to OOD samples.
In the future, we will extend RDA to handle open-set SSL, e.g., detecting OOD
samples from the perspective of distribution. Furthermore, we provide discussions
on the mismatched distributions with completely disjoint classes in Cx and Cu.
This scenario is an extreme case to SSL with OOD samples and few-label transfer
proposed in [7] is closely related to it. Differently, our paper argues that even in
the normal SSL setting where Cx and Cu share the same classes, the mismatched
distributions could cause significant degradation of many popular SSL methods.
Considering RDA is originally designed to strategically align distributions of
overlapping classes, it could not work with completely disjoint Cx and Cu.

D.2 Learning with Symmetric Noisy Labels

This is a novel setting different from the previous mismatched setting. We
note that there are some subtle connections between dataset with noise and
mismatched distributions dataset. We treat the total data in the dataset with
noise as labeled data and also treat them as unlabeled data, i.e., this scenario
can be seen as a process of SSL. Asymmetric noise is designed by mapping
ground-truth labels to similar classes. e.g., in CIFAR-10, we generate noisy labels
by deer→ horse, dog↔ cat, etc. Thus, we can regard CIFAR-10 with asymmetric
noise as a mismatched dataset, i.e., the existence of asymmetric noise increases
the ratio of some classes and decreases the ratio of some classes accordingly.
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Table 8. Accuracy (%) in open-set SSL. Both Semi-Aves and Sem-Fungi have not only
OOD unlabeled data but also in-distribution unlabeled data within class distribution
that mismatches with the labeled data [13]. Unlike native RDA, we revert to the
confidence-based thresholding in FixMatch [12] as a simple filter for OOD samples.
While this goes against our original intention of using only distribution alignment to
improve pseudo-labeling, it is a compromise for this open-set scenario. We follow the
backbone and hyper-parameters for FixMatch in [13] and train models from scratch.

Method
Semi-Aves Semi-Fungi

Top-1 / Top-5 Top-1 / Top-5

FixMatch 19.2 / 42.6 25.2 / 50.2
RDA 21.9 / 43.7 28.7 / 51.2

Table 9. Results of accuracy (%) on CIFAR-10 using full labels with 40% asymmetric
noise. Results of baseline noisy label learning methods are reported in DivideMix [5].

Method
CIFAR-10

40% asym noise

P-correction [16] 88.5
Joint-Optim [15] 88.9
Meta-Learning [6] 89.2
DivideMix [5] 93.4

RDA 90.5

We evaluate RDA on CIFAR-10 with 40% asymmetric noise. Following Di-
videMix [5], the backbone used in experiments is 18-layer PreAct ResNet [3] and
we train the models with the same setting in Sec. 4.4. Although we do not make
a special design for noisy label, RDA still achieves quite competitive performance
compared with the noisy label learning methods shown in Tab. 9.
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