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Abstract. Understanding blur from a single defocused image contains
two tasks of defocus detection and deblurring. This paper makes the ear-
liest effort to jointly learn both defocus detection and deblurring without
using pixel-level defocus detection annotation and paired defocus deblur-
ring ground truth. We build on the observation that these two tasks are
supplementary to each other: Defocus detection can segment the focused
area from the defocused image to guide the defocus deblurring; Converse-
ly, to achieve better defocus deblurring, an accurate defocus detection as
the guide is essential. Therefore, we implement an adversarial promoting
learning framework to jointly handle defocus detection and defocus de-
blurring. Specifically, a defocus detection generator G, s is implemented
to represent the defocused image as a layered composition of two ele-
ments: defocused image Iqr and a focused image Iy. Then, Iq and Iy
are fed into a self-referenced defocus deblurring generator G, to gen-
erate a deblurred image. Two generators of G,s and G, are optimized
alternately in an adversarial manner against a discriminator D with un-
paired realistic fully-clear images. Thus, G, will produce a deblurred
image to fool D, and G is forced to generate an accurate defocus de-
tection map to effectively guide Gs,. Comprehensive experiments on two
defocus detection datasets and one defocus deblurring dataset demon-
strate the effectiveness of our framework. Code and model are available
at: https://github.com/wdzhao123/APL.

Keywords: Defocus blur detection; Defocus deblurring; Adversarial pro-
moting learning

1 Introduction

Defocus blur is common in an image that is captured under optical imaging
systems. Detecting defocus blur can provide important clues for various scene
understanding, such as salient region detection [9] and depth estimation [8] [21].
Sequentially, defocus deblurring is of great interest for the downstream computer
vision tasks, such as object segmentation [17] [16] and tracking [7] [0], etc. Thus,
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(a) Detection map (b) Focus area (c) Defocus region (d) Deblur result

Fig. 1. Correlation illustration of defocus detection and deblurring. First row: An accu-
rate focus detection can effectively segment the focus area and defocus region, thereby
generating a natural deblurred image with consistent clarity. Second row: Excessive
focus detection makes deblurred image still contain blurred area. Third row: Deficient
focus detection makes deblurred image be not consistent in clarity, e.g., over-sharpened
focus area.

developing an efficient method for simultaneous defocus detection and deblurring
is desirable. However, existing researches handle these two tasks separately.

Previous defocus detection methods can be mainly divided into two cate-
gories. One is prior knowledge-based methods [18] [22] [26] [31] [37], e.g., gradi-
ent [31] [2] [10] and contrast [26] [18] [27]. Since the priors may dissatisfy some
complicated scenes, the performance of defocus detection cannot be guaranteed.
The other one is deep learning-based methods [44] [43] [30] [L1] [32] [47] [49].
Their effectiveness usually relies on fully-supervised training with pixel-level an-
notation whose acquisition is time-consuming and expensive.

Existing defocus deblurring researches commonly compute a defocus map to
guide the deblurring [11,23], where the defocus map is estimated through syn-
thetic defocus image [13] or utilizing some prior knowledge, e.g., edge [10] [19].
However, synthetic data results in a domain gap and prior knowledge has the
scene dependency, which will hinder the performance of defocus deblurring. Re-
cently, methods [1,14,25] propose end-to-end deep learning frameworks for de-
focus deblurring. Unfortunately, they are limited by the requirement of paired
pixel-level ground truth.

Essentially, defocus detection and deblurring are supplementary to each oth-
er, as shown in Figure 1. Blur detection can guide deblur generator to achieve
defocusing. Sequentially, deblur generator can build the bridge between blur
detection generator and discriminator to finetune defocus detection in an ad-
versarial manner. Therefore, we explore the joint learning of defocus detection
and defocus deblurring, and propose an adversarial promoting learning frame-
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a) Defocused image (b) Native GAN  (c) Self-reference GAN

Fig. 2. Qualitative comparison of different defocus deblurring solutions. Native GAN
produces hallucination (e.g., blur and color distortion). We address this through using
focused area to provide a clarity reference that guides the defocused area to deblur
from the defocused image itself.

work (MPLF) to tackle the problems of training defocus detection model with
pixel-level annotation and learning defocus deblurring with paired ground truth.
Specifically, MPLF includes three models: a defocus detection generator G, a
self-referenced defocus deblurring generator G, and a discriminator D. G, is
implemented to generate a defocus detection map, and then the focused area and
unfocused region are segmented from the defocused image to feed into G,-. Two
generators of G,,s and Gy, are optimized alternately in an adversarial manner
against a discriminator D with unpaired realistic fully-clear images. Through
this adversarial process, G, will produce a deblurred image to fool D to believe
that the deblurred image is a natural fully-clear image, and G, is forced to
produce an accurate defocus detection map without pixel-level supervision.

In particular, a potential solution is to implement generative adversarial net-
works (GAN) [12] [3] to overcome the dependency on paired data in defocus
deblurring. However, purely feeding an unpaired full-focused image to the dis-
criminator often cannot optimize the generator well in the adversarial process,
which easily degrades the deblurring image, e.g., blur and color distortion (see
Figure 2(b)). Therefore, we design a self-referenced GAN that utilizes the focused
area in the defocused image to guide the defocus region to deblur. Specifical-
ly, the defocused image is firstly represented as a layered composition of two
elements: a defocused image I4 and a focused image I;. Then, we build the
self-referenced generator G, to deblur I4 with the reference of I;. However,
directly combining the defocused region with focused area as inputs, or concate-
nating focused area features with intermediate deep features can hardly make an
efficient utilization of the focused area information. To address this problem, we
propose an unpaired feature affine transformation model (UFAT) to recursively
insert into G4,.. In UFAT, the focused area contents are referenced by influenc-
ing the feature affine transformation of the defocused region in the process of
deblurring, thereby achieving better deblurring performance (see Figure 2(c)).

In short, our contributions are as follows. 1) We make the earliest effort to
explore the joint learning of defocus detection and defocus deblurring, fully utiliz-
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ing their mutual promotion to obtain superior performances on these two tasks.
2) We propose an adversarial promoting learning framework to produce defocus
detection in a weakly-supervised fashion, while generating a defocus deblurred
image without using paired ground truth. 3) We validate the effectiveness of the
proposed method on two defocus detection datasets and one defocus deblurring
dataset.

2 Related Work

Fully-supervised defocus detection. Benefitting from defocus detection dataset-
s [22] [48] [47] with pixel-level annotation, deep convolutional neural networks-
based methods [29,28,32,30,11,40,15] have been proposed to boost the perfor-
mance of defocus detection. Among these methods, a main research route is
multi-level feature integration. For example, Kim et al. [11] adopt long skip con-
nections between encoder features and decoder features to combine multi-level
contextual features. Tang et al. [32] implement a cross-layer feature fusion strate-
gy to improve performance. Zhao et al. [13] design an image-scale-symmetric co-
operative network to fuse multi-scale and multi-level features. In addition, some
other mechanisms are effectively applied to defocus detection, such as ensemble

network [44,49], cut-and-paste strategy [39] and depth distillation [5]. Howev-
er, these methods are trained with abundant pixel-level ground truth whose
acquisition is expensive and time-consuming. Thus, Zhao et al. [15] propose a

weakly-supervised recurrent constraint network for focus region detection, where
bounding box annotations are used.

Unsupervised defocus detection. Unsupervised defocus detection meth-
ods are usually concentrated on designing hand-crafted features [42,18,31]. For
instance, Shi et al. [22] study a few blur feature representations, such as gradi-
ent, Fourier domain, and data-driven local filters. Golestanch et al. [2] explore
sorted transform coefficients of gradient magnitudes and multiscale fusion s-
trategy. Yi et al. [37] adopt local binary patterns (LBP) to measure defocus
blur. Hand-crafted features-based methods provide some efficient priors of un-
derstanding defocus blur, which may help us further design unsupervised or
weakly-supervised deep defocus detection models.

Defocus deblurring. On one hand, defocus deblurring methods [41,10] are
concerned on estimating a defocus detection map, and then utilize a non-blind
deconvolution technology to achieve deblurring. Shi et al. [23] establish the cor-
respondence between sparse edge representation and blur strength to obtain de-
focus detection map. Park et al. [19] combine multi-scale deep and hand-crafted
features for defocus estimation. Lee et al. [13] build synthetically blurred images
with paired ground truth and implement domain adaptation to generate defocus
blur maps of real defocused images. On the other hand, works [1,14,25] propose
end-to-end defocus deblurring network which are trained with paired pixel-level
ground truth.

In contrast, we focus on designing a weakly-supervised defocus deblurring
framework without using paired pixel-level ground truth. Particularly, we adopt
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the focused area directly segmented from the defocused image itself as a reference
to guide the defocus to deblur.

GAN-based deblurring. GAN has achieved impressive results in various
vision tasks, such as image inpainting [36], shadow removal [34], image denois-
ing [4] and image super-resolution [3]. The main idea is using an adversarial loss
with a targeted image that forces the generated image to be high-quality. This
provides a potential solution that implements GAN to overcome the dependency
on paired data in defocus deblurring. However, purely adopting an unpaired full-
focused image as the target in the adversarial process will produce hallucination
(see Figure 2(b)).

Different from existing GAN-based low-level image processing methods, we
design a self-referenced GAN that utilizes the focused area segmented by de-
focus detection as a guide to optimize the defocus deblurring generator better,
as shown in Figure 2(c). Interestingly, this builds a bridge between defocus de-
tection and defocus deblurring, allowing us to alternately optimize them in an
adversarial manner, thereby producing an accurate defocus detection map with-
out using pixel-level annotation.

3 Adversarial Promoting Learning

3.1 Motivation and Framework

Existing defocus detection and deblurring methods [18,33] usually train deep
networks by recursive strategy in a fully-supervised manner. Let’s denote the
space of defocused images by X, the space of defocus detection by ), and the
space of deblurring images by Z. Given an input defocused image x € X, defocus
detection or deblurring aims to generate its corresponding detection map y €
Y or deblurring image z € Z. Most of the recursive strategy based methods
iteratively optimize defocus detection mapping function ¢ or deblurring mapping
function ¥, i.e.,

P(z,y; 1) = P(2,y1,y; 02) = P(@,y2, ¥ ¢3) - -, (1)
W(xwz;wl) — W(m»zl,zﬂﬁz) - Lp(vaQvZ;q/in) B (2)
where {y1,y2,- - -} and {z1, 22, - -} are the subspaces of detection maps and

deblurring images, and {¢1, ¢2,- - -} and {11, 19, - -} are the parameters of dif-
ferent optimization times of @ and ¥, respectively. As illustrated in Figure 3(a)-
(b), defocus detection and deblurring optimize their mapping functions in their
own space, lacking communication with each other. Moreover, they train deep
networks in a fully-supervised manner with pixel-level detection annotation or
paired deblurring ground truth. The GAN methods [12,3,46] can partially dilute
this issue through adversarial training with unpaired data. However, when the
scene is complex, GAN methods can hardly produce clear deblurring images with
realistic details (Figure 2(b)). Therefore, [16] adds an adversarial discriminator
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Fig. 3. Illustrations of our motivation and framework. Existing defocus detection and
deblurring methods [48,33] recursively optimize results (e.g., O1, O2 and O3) in their
own space via a fully-supervised fashion (see (a) and (b)). In contrast, we utilize their
mutual benefits to propose an adversarial promoting learning framework in a weakly-
supervised manner without using pixel-level detection annotation and paired deblurring
label (see (c)).

and a classifier to assist in network optimization. But the parameter search space
becomes large and the training is difficult to converge.

Different from previous methods [48,16,33,1,14,25], we design an adversarial
promoting learning framework to handle defocus detection and deblurring tasks
jointly. As is presented in Figure 3(c), a defocus detection generator G is
implemented to generate defocus detection maps and a self-referenced deblurring
generator G, is built to produce deblurring images. G5 and G, are optimized
alternately in an adversarial manner against a discriminator D with unpaired
realistic fully-clear images, i.e.,

Gws(xwzlv Z/;gqlps) — Gsr('rayla Z/ngr) —
Gws(x7227z/;g'12us) — GST(x’y27Z/;g§T) — (3)

Gws(xa 2372/;93;3) Y

where {gL, 925,955, - -} and {gi,., 92, g2., - -} are the parameters of differen-
t optimization times of G,,s and Gg,, respectively. z’ is the unpaired realistic
fully-clear image. Therefore, G4, gradually produces a deblurred image with
the guidance of defocus detection map of G, in the adversarial process with
unpaired fully-clear image, and G5 is forced to find the accurate defocus detec-
tion map to effectively guide Gg,, where pixel-level detection annotation is not
used. The network architecture of our model is shown in Figure 4, which will be
explained in detail as follows.

3.2 Architecture

Our MPLF is built on the successful applications of GAN, which contains three
network models: a defocus detection generator G5, a self-referenced defocus
deblurring generator G, and a discriminator D.

Self-referenced deblurring generator Gg,.. Unpaired GANs are easy to
produce hallucination (see Figure 2(b)). One underlying reason is that the gen-
erator is under-constrained. In practice, we observe that the focused area in a
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Fig. 4. Architecture of the proposed adversarial promoting learning. Defocus detection
generator GG,,s is encouraged to produce an accurate defocus detection map M that
guides G, to generate better defocus deblurred image. Sequentially, self-referenced
generative model G, is built to utilize the focused area segmented by M from the
input image itself for defocus deblurring. Generators G,s and G, are alternately
optimized in an adversarial manner against the discriminator D, where only unpaired
realistic fully-clear images are used. Especially, unpaired feature affine transformation
model (UFAT) is recursively inserted to Gs,, addressing the issue that unpaired GANs
produce hallucination.

defocused image contains important information (e.g., clarity degree), which can
be adopted to assist defocus deblurring. Therefore, we design a self-referenced
generative model G, to dilute this issue. Consider a defocused image I with
size h X w X ¢, where h and w are the height and width, and ¢ denotes the
number of channels. We define the representation of I as a layered composition
of two elements: a defocused image I4r and a focused image If. Iqr and Iy are
defined through a defocus detection map M with each element belonging to [0,1]
as follows

Iy=1-M)®I,I;=M®I, (4)

where ® expresses a pixel-wise multiplication operation.

Here, we focus on exploiting Iy to guide the defocus deblurring of I4. How-
ever, directly combining Iy and I4, or concatenating intermediate deep features
of Iy and I4 can hardly obtain good performance (objective analysis is provided
in Section 4.2). The potential cause is that their spatial contents are not aligned.
Inspired by spatial feature transform [35], we introduce an unpaired feature affine
transformation model (UFAT), where we extract feature affine transformation
vectors 7 and B by consulting I to influence feature reconstruction of I4 in the
defocus deblurring process.

UFAT(F,I;,I) =n® F W, ()

where F represents a deep feature, ©® and W stand for the channel-wise multipli-
cation and addition operation, respectively.
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(a) Defocused image  (b) Trivial solution (c) Optimized solution

Fig. 5. Qualitative comparison of different optimization solutions for defocus detection.

Figure 4 illustrates the network architecture of UFAT. In particular, UFAT
firstly obtains the concatenated features of Iy and I, and then generates feature
affine transformation vectors 7 and . Sequentially, 7 and 3 are used to help F’
restructure the feature F’. Further, we utilize UFAT to build our self-referenced
generative model Gg,.. Specifically, G, is structured with two residual convo-
lution blocks, and UFAT is recursively inserted to help feature reconstruction
of Igr in the defocus deblurring process. In addition, a global skip connection
is implemented to ease the training of the deep network. Notice that the spa-
tial contents of Iy and Iq are unaligned, thus UFAT does not generate spatial
feature transform. This is different from [35] where spatial-wise transformation
is implemented. Our self-referenced generative model achieves better deblurring
performance compared with native GAN-based method (see Figure 2(c)). Ob-
jective analysis is provided in Section 4.2.

Defocus detection generator G, and discriminator D. G, is built
to produce a defocus detection map M, which is used to calculate Iy and Ig
to feed into Gg,. Inspired by the U-Net architecture [20], G5 is designed by
an encoder-decoder framework with skip connections. The encoder is built with
the first four convolution blocks of VGG16 [24] to extract multi-level features.
Then, a decoder including four corresponding deconvolution blocks to produce
a defocus detection map.

Discriminator D is implemented to distinguish whether the defocus deblur-
ring image is fully-clear, where the first three convolution blocks of VGG16 are
used to extract high-level features. Then, three full connection layers are added
to output a one-element vector.

3.3 Optimization

Generators G,,s and G, are optimized alternately in an adversarial manner
against the discriminator D with unpaired realistic fully-clear images. The op-
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timization loss of G, can be expressed as

Lsp = min mngIfCNPfclogD(Ifc;d)—i—
GwsyGsr

Ernpylog(l — D(Ger(Gus(I) @ I, (6)
(1 - GUJS(I)) ® I);gwsagsr)))a

where d is weight parameter of D. Py, and Py illustrate empirical distributions
of fully-clear images and defocused images, respectively. Iy, stands for a fully-
clear image.

Optimization starts with Gg,. which is pretrained using a set of simulated
defocus pairs (synthesis strategy is given in Section 4.1). Then, G, is optimized
to produce an accurate defocus detection map to help G, achieve better defocus
deblurring performance. However, only using adversarial supervision to train
G s is extremely under-constrained, and G, easily produces a trivial solution
(see Figure 5(b)). Thus, we utilize blur priors to provide an auxiliary supervision
for training G, as

Lws = Lsg+ ||Guws(I) — B)||1, (7)

where B(I) is a blur prior model for the input image I. Here, we adopt local
contrast knowledge (refer to [37] for details). Using this loss, G5 can generate
more accurate defocus detection maps, as shown in Figure 5(c).

3.4 Training Details

Our framework is implemented using Pytorch library on a NVIDIA RTX 2080Ti
GPU. Adam with momentum 0.9 is adopted as the optimizer. The mini-batch
size is taken to 1, and the learning rate is set to 0.0002. G, D1 and D are
initialized with random values. We firstly optimize G, with simulated defocus
pairs for 100 epochs. Then, we alternately optimize G,,s and Gs,, and each al-
ternation is trained in an adversarial manner with D for 100 epochs. Considering
memory capacity, we resize the image to 160 x 160 to verify the effectiveness of
the proposed method.

4 Experiments

4.1 Configuration

Datasets. Two widely-used defocus detection datasets of CUHK [22] and DUT |
are adopted to train and test our framework. The same strategy with [48] is im-
plemented that training images and testing images are divided into 604 and 100
in CUHK, and 600 and 500 in DUT, respectively. It is worth noting that we
train our framework without pixel-level defocus detection annotation. Besides,
we utilize DP dataset [1] including 76 testing defocus images to evaluate the
performance of defocus deblurring.
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Table 1. Effect study of defocus detection in the mutual promotion process using
Finae and M AFE scores on both CUHK and DUT datasets. G,s-On stands for the nth
optimization of Gs.

Setting CUHK DUT
Frox MAE Frox MAFE
Single G 0.785 0.173 0.679 0.232
Guws-0O1 0.790 0.155 0.696 0.213
Guws-02 0.801 0.133 0.682 0.212
Guws-03 0.831 0.125 0.722 0.196

Table 2. Effect study of defocus deblurring in the mutual promotion process using
PSNR, SSIM and M AF scores on DP dataset. Gs._On stands for the nth optimiza-
tion of Gg,.

Setting PSNR SSIM MAE
Single G 22.02 0.782 0.063
Gsr0O1 24.05 0.785 0.050
Gsr-02 24.99 0.821 0.044
Gsr-03 25.71 0.842 0.041

In addition, to initialize the self-referenced generative defocus deblurring
model, we construct a simulated defocus dataset. Specifically, we firstly collect
500 full-focused images with manifold scenes. Then, inspired by [38], we adopt a
Gaussian filter with a standard deviation randomly sampled from 0.1 to 10 and
window size 15 x 15 to blur a part (60%-70%) of each full-focused image. This
process is repeated five times to produce 2500 defocused images.

Evaluations. We utilize two metrics of mean absolute error (MAE) and
F-measure score (Finaz) [48,32,49], to evaluate the performance of defocus de-
tection. A smaller M AE demonstrates a more accurate result. A larger Fi,q.
indicates a better performance. Besides, peak signal to noise ratio (PSNR),
structural similarity (SSIM) and M AE are adopted to measure defocus de-
blurring’s performance [1]. A larger PSNR or SSIM stands for a better defocus
deblurring.

4.2 Ablation Study

Adversarial promotion between defocus detection and deblurring. Our
adversarial promoting learning handles defocus detection G, and deblurring
G, jointly. Defocus detection and deblurring are optimized alternately. Specif-
ically, defocus detection maps of G5 guide G, to generate deblurred images.
Conversely, to effectively guide G, G5 is forced to produce accurate defocus
detection maps. We implement the following settings to demonstrate the validity
of the mutual promotion learning.

Firstly, we study the effects of single detection and single deblurring, i.e., the
one task’s performance if the other task fails. Single G,,5: Training G, with the
supervision of the local contrast prior model [37]. Single Gg,: Training G, in
a adversarial manner with D using unpaired full-focused images. Secondly, we
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Fig. 6. Visual results of defocus detection produced by different methods. (a)-(i) are
source, SVD [26], HIFST [2], KSFV [18], SS [31], DBDF [22], SGNet [46], Ours, and
ground truth, respectively.

(a) (b) (©) (d)

Fig. 7. Comparison of PR curves and F-measure curves of different methods on both
CUHK and DUT datasets. (a)-(d) are PR curve on CUHK, F-measure curve on CUHK,
PR curve on DUT and F-measure curve on DUT.

implement their adversarial promoting optimization, denoted as G,;-On and
Gs On (n=1,2,3).

Table 1 and Table 2 present objective results. Compared with single detec-
tion and single deblurring, our mutual promotion learning improves their per-
formances on all measure scores. With the optimization number increases, the
performances of G, and G, are promoted. Especially, G,,s-O3 and G,_O3 ob-
tain the best measure scores respectively, improving F,q. /M AE by 5.9%/27.7%
and 6.3%/15.5% than single detection on CUHK and DUT datasets, and rais-
ing PSNR/SSIM /MAE by 16.8%/7.7%/34.9% than single deblurring on DP
dataset.

Self-referenced deblurring generator. In Section 3.2, we propose a self-
referenced deblurring generator to relieve the problem that unpaired GANs are
easy to produce hallucination. The core idea is to utilize the focused area Iy in the
defocused image itself to guide the defocused region I4 to deblur. Structurally,
we design UFATSs to recursively insert into G, making an efficient information
utilization of the focused area, named as UFAT-GAN. Here, two aspects are
studied to illustrate the effectiveness of the self-referenced deblurring generator.
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Fig. 8. Illustrations of DC-based and CDF-based self-referenced generative defocus
deblurring models. C'B stands for a convolution block with three convolution layers.

Table 3. Importance study of self-referenced deblurring generator using PSN R, SSIM
and M AFE scores on DP dataset.

Metric | U-GAN DC-GAN CDF-GAN UFAT-GAN

PSNR 22.02 24.16 24.80 25.71
SSIM 0.782 0.808 0.838 0.842
MAE 0.063 0.045 0.043 0.041

On one hand, unpaired GAN is implemented for comparing where deblurring
generator does not contain UFAT, denoted as U-GAN. On the other hand, U-
FAT’s two variants are compared: directly making a combination of Iy and Iy,
and concatenating intermediate deep features of Iy and I4r, named as DC-GAN
and CDF-GAN. Detailed network structures of DC-GAN and CDF-GAN are
shown in Figure 8.

As can be seen in Table 3, implementing our self-referenced mechanism can
improve performance, and DC-GAN outperforms U-GAN by 9.7%, 3.3% and
28.6% on PSNR, SSIM and M AFE, respectively. UFAT-GAN achieves the best
performance, especially outperforming DC-GAN and CDF-GAN by 6.4% and
3.7% on PSNR. The underlying reason is that UFAT relieves the problem of
unpaired spatial contents between Iy and I through two channel-wise attention
vetors 1 and f.

4.3 Comparison with State-of-the-art Methods

Defocus detection. Our weakly-supervised defocus detection (Ours) is com-
pared with the following five unsupervised state-of-the-art methods: singular val-
ue decomposition (SVD) [26], high-frequency multi-scale fusion and sort transfor-
m of gradient magnitudes (HiFST) [2], classifying discriminative features (KS-
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Fig.9. Qualitative defocus deblurring results. (a) and (b) are visual comparison of
different methods on DP and visual results of our method on CUHK and DUT. Our
method achieves a uniform clarity in deblurred images.

DPDNet

Table 4. Defocus detection comparison with the state-of-the-art approaches using
Frar and M AFE scores on CUHK and DUT datasets. Average time is calculated on a
workstation with a RTX 2080Ti GPU.

Metric SVD [26] HIFST [2] KSFV [18] SS [31] DBDF [22] SGNet [16] Ours

CUHK Frax 0.764 0.583 0.420 0.759 0.626 0.732 0.831
MAE 0.267 0.429 0.492 0.316 0.422 0.199 0.125
DUT Fraz 0.712 0.617 0.489 0.733 0.592 0.731 0.722
MAE 0.288 0.399 0.404 0.320 0.454 0.204 0.196
Time Second 2.153 17.93 4.937 0.336 31.55 0.007  0.003

FV) [18], spectral and spatial approach (SS) [31] and discriminative blur de-
tection features (DBDF) [22]. Moreover, one weakly-supervised deep learning
method of SGNet [46] is compared. To compare fairly, we utilize the available
codes and recommended parameter settings released by authors.

Table 4 shows the quantitative defocus detection results. Ours outperforms
the previous state-of-the-art results in general. Especially, ours achieves better
performance of M AE by 37.2% and 3.9% than the second-best SGNet on CUHK
and DUT, respectively. Besides, ours is highly efficient, which achieves the av-
erage testing time of 0.003s. Figure 7 shows their PR curves and F-measure
curves, comprehensively verifying the better performance of our method. Qual-
itative comparison is shown in Figure 6, including of various scenes, such as
complex background, unfocused foreground. Our method consistently generates
defocus detection results closest to the ground truth.

Defocus deblurring. Our weakly-supervised self-referenced defocus deblur-
ring model is compared with five state-of-the-art methods, including two defocus
maps based methods of EBDB [10] and DMENet [13], and three fully-supervised
methods DPDNet [1], IFANet [14] and KPAC [25]. For a fair comparison, we
implement the networks with their released codes to produce results. Notably,
DPDNet is implemented with center view images since its corresponding param-
eters are not released. The images with resolution of 160 x 160 are used based
on the memory capacity.
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Table 5. Quantitative comparison of different defocus deblurring methods using
PSNR, SSIM and M AFE scores on DP dataset.

Metric | EBDB  DMENet Ours || DPDNet IFANet KPAC

PSNR | 23.89 24.99 25.71 24.01 24.20 26.51
SSIM | 0.813 0.767 0.842 0.734 0.797 0.861
MAFE 0.050 0.044 0.041 0.047 0.045 0.038

As shown in Table 5, our model achieves the best performance compared
with weakly-supervised EBDB and DMENet. Moreover, our method obtains
competitive performance compared with the fully-supervised methods, achiev-
ing the gaps of 0.8, 0.019 and 0.003 than the best PSNR, SSIM and MAEFE,
respectively. Figure 9 presents qualitative results of different defocus deblurring
methods. Our method shows a more uniform clarity in any areas of a deblurred
image.

4.4 Limitation

Our framework is implemented in weakly-supervised manner, and can achieve
better performances on both defocus detection and deblurring of various defocus
blurs. However, it may have limitations in addressing ambiguous boundaries (see
the second row in Figure 6) and large blurs (see yellow dashed boxes in Figure 9).
Maybe physics-based blur prior can relieve this issue, and we will study it.

5 Conclusion

We present an efficient joint learning framework for defocus detection and de-
blurring without using pixel-level defocus detection annotation and paired de-
focus deblurring ground truth. The core idea is utilizing their correlations to
build an adversarial promoting learning framework in an adversarial manner.
A self-referenced defocus deblurring generator G, is firstly proposed to obtain
the ability of defocus deblurring. In particular, UFAT is designed to recursive-
ly insert into Gy, relieving the unpaired spatial contents between the focused
area and defocused region through influencing the feature affine transformation
of the defocused region. Then, a defocus detection generator G is introduced
and combines with Gy, to jointly learn in an adversarial manner against a dis-
criminator. Thus, G, is encouraged to produce an accurate defocus detection
without pixel-level annotation. Extensive qualitative and quantitative experi-
ment results on three datasets verify the effectiveness of our method.
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