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Abstract. With the success of self-supervised learning (SSL), it has
become a mainstream paradigm to fine-tune from self-supervised pre-
trained models to boost the performance on downstream tasks. However,
we find that current SSL models suffer severe accuracy drops when per-
forming low-bit quantization, prohibiting their deployment in resource-
constrained applications. In this paper, we propose a method called
synergistic self-supervised and quantization learning (SSQL) to pretrain
quantization-friendly self-supervised models facilitating downstream de-
ployment. SSQL contrasts the features of the quantized and full precision
models in a self-supervised fashion, where the bit-width for the quantized
model is randomly selected in each step. SSQL not only significantly im-
proves the accuracy when quantized to lower bit-widths, but also boosts
the accuracy of full precision models in most cases. By only training once,
SSQL can then benefit various downstream tasks at different bit-widths
simultaneously. Moreover, the bit-width flexibility is achieved without
additional storage overhead, requiring only one copy of weights during
training and inference. We theoretically analyze the optimization process
of SSQL, and conduct exhaustive experiments on various benchmarks to
further demonstrate the effectiveness of our method.

Keywords: Quantization, self-supervised learning, transfer learning

1 Introduction

Deep supervised learning has achieved great success in the last decade. How-
ever, traditional supervised learning approaches rely heavily on a large set of
annotated training data. Self-supervised learning (SSL) has gained popularity
because of its ability to avoid the cost of annotating large-scale datasets as well
as the ability to obtain task-agnostic representations [26]. After the emergence of
the contrastive learning (CL) paradigm [4,16], SSL has clearly gained momentum
and several recent works [5,13,6] have achieved comparable or even better accu-
racy than the supervised pretraining when transferring to downstream tasks. A
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Fig. 1: ImageNet linear evaluation and transfer results using ImageNet pretrained
models. Directly applying current self-supervised contrastive methods does not
work well for low-bit quantization when transferring, while our method (SSQL)
leads to a dramatic performance boost. See Section 4.3 for details. ‘2w4a’ means
the weights are quantized to 2 bits and activations to 4 bits, etc.

standard pipeline for SSL is to learn representations (i.e., pretrained backbone
networks) on unlabeled datasets and then transfer to various downstream tasks
(e.g., image classification [18] and object detection [17]) by fine-tuning.

With the fast development of self-supervised learning, an increasing pro-
portion of the models that need to be deployed in downstream tasks are fine-
tuned from SSL pretrained models. When we want to deploy them on some
resource-constrained devices, it is essential to reduce the memory consumption
and latency of the neural network. To facilitate deployment, several model com-
pression techniques have been proposed, including lightweight architecture de-
sign [35,42], knowledge distillation [19], network pruning [14,27], and quantiza-
tion [43,9]. Among them, quantization is one of the most effective methods and is
directly supported by most current hardware. But severe accuracy degradation is
often encountered during quantization, especially in the case of low bit-widths.
As shown in Fig. 1, although current state-of-the-art self-supervised learning
methods achieve impressive performance with full precision (FP) models, they
all incur severe drop in accuracy when bit-width goes below 5. Inspired by SSL
that can learn a good representation shared by various downstream tasks, we
are thus motivated to ask a question: “Can we learn a quantization-friendly
representation such that the pretrained model can be quantized more easily to
facilitate deployment when transferring to different downstream tasks?”.

We propose Synergistic Self-supervised and Quantization Learning (SSQL)
by contrasting features of the quantized and full precision models as our solution:
SSL and quantization become synergistic—they help each other. On one hand,
the contrastive loss encourages similarity of the quantized and FP models. On
the other hand, quantization improves SSL by encouraging feature consistency
under differently augmented weights/activations. Our contributions are:

• To the best of our knowledge, we are the first to propose quantization-friendly
training for SSL. We design an effective method called SSQL, which not only
greatly improves the performance when quantized to low bit-widths, but also
boosts the performance of full precision models in most cases.
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• With SSQL, models only need to be trained once and can then be customized
for a variety of downstream tasks at different bit-widths, allowing flexible
speed-accuracy trade-off for real-world deployment. The bit-width flexibility
is achieved without additional storage overhead, as only one copy of weights
needs to be kept, both in the training and inference stage.

• SSQL is versatile. First, it can be combined with existing negative-based/free
CL methods. Second, the pretrained models of SSQL are compatible with ex-
isting quantization methods to further boost the performance when quantizing.

• We provide theoretical analysis about the synergy between SSL and quanti-
zation in SSQL. Exhaustive experimental results further show that our SSQL
achieves better performance on various benchmarks at all bit-widths.

2 Related Works

Network Quantization. Quantization is a method that converts the weights
and activations in networks from full precision (i.e., 32-bit floating-point) to
fixed-point integers. According to whether or not quantization is introduced
into the training process, network quantization can be divided into two cat-
egories: Quantization-Aware Training (QAT) and Post-Training Quantization
(PTQ). QAT methods [43,7,9] introduce a simulated quantization operation in
the training stage. While it generally closes the gap to full precision accuracy
compared to PTQ for low-bit quantization, it requires more effort in training and
potentially hyperparameter tuning. In contrast, PTQ methods [20,29,23] take a
trained full precision network and quantize it with little or no data [30], which re-
quires minimal hyperparameter tuning and no end-to-end training. In this work,
we introduce quantization into self-supervised learning to get a quantization-
friendly pretrained model. Our pretrained model is compatible with existing
QAT and PTQ methods when transferred to downstream tasks and hence can
be combined to further improve performance.

AdaBits [21] enables adaptive bit-widths of weights and activations, but is
a supervised learning method. Our pretrained model can adapt to different bit-
widths, thus our work is also a method that only trains once for all bits, but
in an unsupervised manner. More importantly, AdaBits focuses on the current
task while we investigate the transfer ability of our models and also evaluate
the quantization property on downstream tasks. OQAT [36] explores extremely
low-bit architecture search by combining network architecture search methods
with quantization. There are also works that study quantization-friendly proper-
ties. GDRQ [40] reshapes weights or activations into a uniform-like distribution
dynamically. [15] proposes a bin regularization algorithm to improve low-bit net-
work quantization. [38] proposes a quantization-friendly separable convolution
for MobileNets. In contrast, we consider quantization-friendly properties from
the perspective of pretraining under the self-supervised paradigm.
Self-supervised Learning. To avoid time-consuming and expensive data an-
notations and to explore better representations, many self-supervised methods
were proposed to learn visual representations from large-scale unlabeled images
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Fig. 2: Illustration of our method. Left: SimSiam [6]. Right: The proposed method
SSQL. ‘PSQ’ denotes post step quantization, see Sec. 3.2 for details.

or videos [41,31,8,2,12]. As the driving force of state-of-the-art SSL methods,
contrastive learning methods greatly improve the performance of representation
learning in recent years [32,16,4,13,3,6]. Contrastive learning is a discriminative
approach that aims at pulling similar samples closer and pushing diverse sam-
ples far from each other. SimCLR [4] and MoCo [16] both employ a contrastive
loss function InfoNCE [32], which requires negative samples. A more radical
step is made by BYOL [13], which discards negative sampling in contrastive
learning but achieves even better results in case a momentum encoder is used.
[6] proposes a follow-up work SimSiam and demonstrates that simple siamese
networks can learn meaningful representations even without the momentum en-
coder. However, previous works did not consider whether the pretrained model
is quantization-friendly when transferring to downstream tasks.

SEED [11] uses self-supervised knowledge distillation for SSL with small
models. S2-BNN [37] investigates training self-supervised binary neural networks
(BNN) by distilling knowledge from real networks. However, they all require a
pretrained model as the teacher for distillation while ours does not. Moreover,
[37] is tailored for BNN while our method is adaptive to different bit-widths.
More importantly, our method can improve the performance of the full precision
(FP) model over the baseline counterpart by encouraging feature consistency
under differently augmented weights/activations via quantization.

3 Method

In this section, we introduce our approach, which we called synergistic self-
supervised quantization learning (SSQL). We begin with the basic notation and
a brief review of previous works, followed by our algorithm and analysis.

3.1 Background and notation

Let x1 and x2 denote two randomly augmented views from an input image x.
Let f denote an encoder network consisting of a backbone (e.g., ResNet [18])
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and a projection MLP head [4]. By default we use SimSiam [6] as the baseline
counterpart to develop our algorithm, as shown in Fig. 2.

SimSiam maximizes the similarity between two augmentations of one image.
A prediction MLP head [13], denoted as h, transforms the output of one view and
matches it to the other view. The output vectors for x1 is denoted as z1 ≜ f(x1)
and p1 ≜ h(f(x1)), and z2 and p2 are defined similarly.

The negative cosine similarity is defined as D(p, z) ≜ − p
∥p∥2

· z
∥z∥2

and we

assume both z and p have been l2-normalized for simplicity in the following. Let
SG(·) denote the stop-gradient operation. Then, the objective to be minimized
in SimSiam is then:

LSimSiam = D(p1, SG(z2)) +D(p2, SG(z1)) . (1)

3.2 Our method

Our motivation is to train a quantization-friendly pretrained model, hence we
proposed to introduce quantization into contrastive learning. We denote fq as
the quantized version of f , where q is the assigned quantization bit-width. Cor-
respondingly, the resulting outputs become zq and pq. We simply adopt the
commonly used uniform quantizer for both weights and activations:

Xint = clip

(
⌊X
S

+ Z⌉, 0, 2q − 1

)
, (2)

Xq = (Xint − Z)S , (3)

where S (scale) and Z (zero-point) are quantization parameters determined by
the lower bound l and the upper bound u of X, while X can be either the model
weights or activations. We use minimum and maximum values for l and u:

l = min(X), u = max(X) , (4)

S =
u− l

2q − 1
. (5)

Our solution SSQL is to let the quantized encoder fq predict the output of
the full precision (FP) encoder f (i.e., use FP outputs as the target):

LSSQL = D(pq
1, SG(z2)) +D(pq

2, SG(z1)) . (6)

It is worth noting that we need only one copy of the model weights, which
is f . fq can be obtained directly from f using (2) and (3). Further, we can add
the auxiliary SimSiam loss to improve performance by combining (1) and (6):

LSSQL-aux = LSimSiam + LSSQL . (7)

In order to make the model quantization-friendly to different bit-widths, we
randomly select values from a set of candidate bit-widths in each step for the
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assignment of q. In addition, we also find that this random selection operation, as
a kind of augmentation, brings a performance boost. We use 2 ∼ 8 and 4 ∼ 8 bits
for weight and activation, respectively, in all our experiments. Also, we quantize
f to get fq after each step to ensure consistency, which we name as post step
quantization (PSQ). Notice that we calculate S and Z during the forward pass
of f and hence PSQ brings negligible overhead. During the backward pass, we
adopt the straight-through estimator (STE) [1] for the quantization step. Notice
that the quantized network and the full precision network share weights, hence
when we backprop on the quantized network fq using STE, the gradients will
directly operate on the full precision network f . We will discuss the impact of
the choice of loss functions and the candidate bit-widths set in Sec. 4.4.

3.3 The synergy between SSL and quantization

Following the notations and analyses in [6], the optimization process can be
viewed as an implementation of an Expectation-Maximization (EM) like algo-
rithm. The loss function of SSQL can be organized in the following form:

L(θ, η) = Ex,T ,q[∥Fq
θ (T (x))− ηx∥22] , (8)

where Fθ is a network parameterized by θ, Fq
θ is obtained by quantizing Fθ, T is

the augmentation and x is an image. The expectation E[·] is over the distribution
of images, augmentations and bit-widths. ηx is the representation of image x.

With the formulation of Eq. (8), we consider solving

min
θ,η
L(θ, η) . (9)

The problem in (9) can be solved by alternating between two subproblems:

θt ← argmin
θ
L(θ, ηt−1) ; ηt ← argmin

η
L(θt, η) . (10)

Here t is the index of alternation and “←” means assigning. The optimization
step for ηt is the same as [6] and we analyze the optimization step for θt:

θt+1 ← argmin
θ

Ex,T ,q

[
∥Fq

θ (T (x))−Fθt(T ′(x))∥22
]
. (11)

Here T ′ implies another view and detailed derivation of (11) is included in the
appendix. Moreover, we have

Ex,T ,q

[
∥Fq

θ (T (x))−Fθt(T ′(x))∥22
]

(12)

=Ex,T ,q

[
∥Fq

θ (T (x))−Fθ(T (x)) + Fθ(T (x))−Fθt(T ′(x))∥22
]

(13)

=Ex,T ,q

[
∥Fq

θ (T (x))−Fθ(T (x))∥22
]

︸ ︷︷ ︸
Q term (quantization term)

+Ex,T ,q

[
∥Fθ(T (x))−Fθt(T ′(x))∥22

]
︸ ︷︷ ︸

CL term (contrastive learning term)

(14)

+ 2Ex,T ,q

[(
Fq

θ (T (x))−Fθ(T (x))
)T (Fθ(T (x))−Fθt(T ′(x))

)]
︸ ︷︷ ︸

cross term

. (15)
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It is reasonable to assume that the quantization error and the contrastive
learning error are at most weakly correlated (see appendix for empirical verifi-
cation), hence we can remove the cross term and are left with two objectives
in the optimization step for θ. The Q term minimizes the distance between the
quantized network Fq

θ and the FP network Fθ, which naturally leads to the
desired quantization-friendly property. The CL term is the original optimiza-
tion term in SimSiam to learn image representations. Also notice that we take
expectations over 3 terms, where the extra q term can be seen as one kind of
augmentation on weights/activations. It is well-known that strong image aug-
mentations are essential in SSL [4]. Hence, the quantization can potentially assist
the learning of SSL, by encouraging feature consistency under differently aug-
mented weights/activations via quantization. In conclusion, the design of our
loss function makes quantization and SSL work in a synergistic fashion.

4 Experiments

We introduce the implementation details in Sec. 4.1. We experiment on CIFAR-
10 and CIFAR-100 [22] in Sec. 4.2 and ImageNet [34] (IN) in Sec. 4.3. Then, we
evaluate the transfer performance of ImageNet pretrained models on downstream
classification and object detection benchmarks in Sec. 4.3. Finally, we study the
effects of different components and hyper-parameters in our algorithm in Sec. 4.4.

4.1 Implementation details

Datasets. The main experiments are conducted on three benchmark datasets,
i.e., CIFAR-10, CIFAR-100 [22] and ImageNet [34]. We also conduct transfer
experiments on 7 recognition benchmarks (see appendix for details) as well as 2
detection benchmarks Pascal VOC 07&12 [10] and COCO2017 [25].
Backbones. Apart from the commonly used ResNet-50 [18] in recent SSL pa-
pers, we also adopt 2 smaller networks, i.e., ResNet-18 [18] and ResNet-34 [18]
for our experiments. We use the same settings as [6] for prediction and projection
MLP. Sometimes we abbreviate ResNet-18/50 to R-18/50.
Training details. We follow the training setup in SimSiam [6] for our method.
More specifically, we use SGD for pretraining, with batch size of 256 and a base
lr=0.05. The learning rate has a cosine decay schedule. The weight decay is
0.0001 and the SGD momentum is 0.9. We pretrain for 400 epochs on CIFAR-10
and CIFAR-100 and 100 epochs on ImageNet unless otherwise specified. Please
see appendix for more training details for linear evaluation and fine-tuning.
Evaluation protocols. Following previous works [16], we adopt linear eval-
uation and fine-tuning to evaluate the pretrained representations. Moreover,
we want to evaluate the performance of the representations after quantization.
Hence, we make corresponding adjustments and propose a new evaluation proto-
col when combining quantization and SSL, as shown in Fig. 3. More specifically,
we freeze and quantize the backbone and only update the classification head for
linear evaluation (i.e., backbone weights frozen). For fine-tuning, we first train
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Fig. 3: Illustration of the evaluation protocols adopted in our paper.

Table 1: Linear evaluation results on CIFAR-10. All pretrained for 400 epochs.
SimSiam-PACT trains 7 models separately and we color it grey.

Backbone Method
Linear evaluation accuracy (%)

FP 8w8a 6w6a 5w5a 4w4a 3w3a 2w8a 2w4a

ResNet-18

SimSiam [6] 90.7 90.7 90.6 90.3 88.9 66.0 70.1 63.8
BYOL [13] 89.3 89.3 89.4 89.3 88.0 75.1 71.9 63.3

SimSiam-PACT [7] - 89.2 89.2 89.3 89.2 88.2 89.3 88.3
SSQL (ours) 90.7 90.8 90.6 90.6 90.1 85.6 88.0 86.5
SimCLR [4] 89.4 89.3 89.2 88.8 87.1 73.9 65.6 55.6
MoCov2 [5] 88.9 88.8 88.4 88.2 86.8 72.2 66.4 50.7

SSQL-NCE (ours) 89.0 89.0 89.0 88.8 87.9 82.9 87.1 84.9

ResNet-50

SimSiam [6] 90.9 90.9 91.0 90.6 89.5 74.1 55.1 57.1
BYOL [13] 90.3 90.3 90.0 89.7 87.5 58.5 82.4 67.8
SSQL (ours) 91.1 91.1 91.1 91.1 90.0 77.4 89.5 87.2
SimCLR [4] 91.5 91.4 91.3 90.5 88.1 59.6 63.5 42.4
MoCov2 [5] 90.2 90.2 90.2 89.4 87.9 72.1 68.8 49.5

SSQL-NCE (ours) 92.1 92.1 92.0 91.9 89.8 74.0 88.6 84.9

the backbone as well as the classification head as normal (i.e., backbone weights
updated). Then, based on the fine-tuned FP model, we conduct either PTQ or
QAT to evaluate the performance after quantization. We adopt PTQ after fine-
tuning in our experiments by default. We use ‘nwma’ to denote that we quantize
weight to n-bit and quantize activation to m-bit in this paper (e.g., 4w4a).

4.2 CIFAR results

We compare our method with popular SSL methods BYOL [13], SimSiam [6],
SimCLR [4] and MoCov2 [5]. We evaluate the linear evaluation accuracy under
different bit-widths after quantization, as mentioned in Sec 4.1. Notice that we
only pretrain one full precision (FP) model and then use it for evaluation on
different bit-widths. To better illustrate the effectiveness of our method, we also
create one strong baseline SimSiam-PACT, by combining PACT [7] and SimSiam
during pretraining. Notice that it is not a fair comparison with other methods
because it needs to pretrain different models for different bit-widths (i.e., need
7 pretrained models for 7 bit-widths). In other words, it is not flexible and the
training overhead is unbearable for large data volumes. Experimental results on
CIFAR-10 and CIFAR-100 are shown in Table 1 and Table 2, respectively.
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Table 2: Linear evaluation results on CIFAR-100. All pretrained for 400 epochs.

Backbone Method
Linear evaluation accuracy (%)

FP 8w8a 6w6a 5w5a 4w4a 3w3a 2w8a 2w4a

ResNet-18

SimSiam [6] 65.5 65.5 65.4 64.6 62.6 41.6 40.1 36.9
BYOL [13] 62.6 62.6 62.5 62.0 60.6 47.9 44.1 38.8
SimCLR [4] 59.2 59.2 59.0 57.9 54.4 34.1 38.4 28.8
MoCov2 [5] 62.5 62.5 62.1 61.5 59.5 43.5 40.1 30.8
SSQL (ours) 66.9 66.8 66.9 65.8 65.0 57.4 53.9 50.6

ResNet-50

SimSiam [6] 64.3 64.2 64.1 62.9 61.3 44.9 32.9 32.6
BYOL [13] 66.7 66.5 65.0 59.6 47.2 14.5 55.3 27.2
SimCLR [4] 66.2 66.1 65.9 64.8 60.1 40.2 43.8 24.7
MoCov2 [5] 66.5 66.5 66.3 65.4 61.9 44.2 41.1 28.5
SSQL (ours) 68.0 67.9 67.8 67.8 67.8 59.9 62.9 61.5

As shown in Table 1, take ResNet-18 as an example, our SSQL achieves
comparable performance with the baseline counterpart SimSiam under linear
evaluation in full precision on CIFAR-10. However, when we lower the bit-width
(from 8w8a to 2w4a), our advantages over the baseline SimSiam will become
more and more obvious. For instance, our SSQL achieves 19.6% and 22.7%
higher accuracy than SimSiam at 3w3a and 2w4a, respectively. When compar-
ing with SimSima-PACT, we can find that our SSQL achieves higher accuracy
at 4w4a and above. However, SimSiam-PACT achieves slightly higher accuracy
than our method at 3w3a and below but the gap is within 3%. Moreover, we
achieve higher accuracy than SimSiam under ResNet-50 at FP, and the ad-
vantages when reducing bit-widths are consistent. Finally, our SSQL can also
be combined with InfoNCE [32] based methods, e.g., SimCLR and we name it
SSQL-NCE. We can observe similar trends as above and it demonstrates that
our SSQL is compatible with both negative-based and negative-free CL methods.

As shown in Table 2, our SSQL achieves the highest accuracy on CIFAR-
100 in all cases. For instance, when comparing the first column (FP), our SSQL
is significantly better than baseline counterpart SimSiam: up to +1.4% and
+3.7% accuracy for ResNet-18 and ResNet-50, respectively. Our advantages
become bigger when we further lower the bit-widths: up to +6.5%, +15% and
+28.9% accuracy at 4w4a, 3w3a and 2w4a, respectively, for ResNet-50.

To demonstrate the effectiveness of the proposed method in a more intuitive
way, we visualize the feature spaces learned by different methods in Fig. 4. First,
three models are trained on the CIFAR-10 dataset by using SimCLR, SimSiam
and SSQL, respectively. After that, 5,000 samples in CIFAR-10 are represented
accordingly and then are reduced to a two-dimensional space by t-SNE [28]. As
seen, the samples are more separable in the feature space learned by SSQL than
both SimCLR and SimSiam (especially at 2w8a and 2w4a), showing that SSQL
can learn better feature representations after quantization.

4.3 ImageNet and transfer learning results

In this section, we do unsupervised pretraining on the large-scale ImageNet train-
ing set [34] without using labels. The linear evaluation results on ImageNet are
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Table 3: Linear evaluation results on ImageNet. All pretrained for 100 epochs,
except for MoCov2. † denotes that we use the official MoCov2 200ep checkpoint.
SimSiam-PACT trains 5 models separately and we color it grey.

Backbone Method
Linear evaluation accuracy (%)
FP 8w8a 5w5a 4w4a 3w3a 2w4a

ResNet-18

SimSiam [6] 55.0 54.7 53.9 36.7 6.3 1.5
BYOL [13] 54.1 54.0 51.9 42.4 13.6 3.6

SimSiam-PACT [7] - 52.8 52.8 52.3 51.0 51.6
SSQL (ours) 57.6 57.6 56.7 52.8 41.0 43.1

ResNet-50

SimSiam [6] 68.1 67.9 65.0 52.4 15.0 3.1
BYOL [13] 64.6 64.4 61.7 53.6 16.8 6.4
MoCov2† [5] 67.7 67.0 60.3 26.3 2.3 0.1
SSQL (ours) 67.9 67.9 66.1 63.0 40.8 37.4

shown in Table 3. Also, we evaluate the transfer ability of the learned represen-
tations on ImageNet later. We train SSQL, SimSiam and BYOL for 100 epochs
on ImageNet and directly use the official checkpoint for MoCov2.

As shown in Table 3, when comparing the first column (FP), our SSQL
achieves higher accuracy than the baseline counterpart SimSiam (57.6 v.s. 55.0)
under ResNet-18. When comparing the fourth column (4w4a), our SSQL achieves
16.1% and 10.6% gains for ResNet-18 and ResNet-50, respectively. In short,
our SSQL achieves comparable or better accuracy at full precision and is more
quantization-friendly at lower bit-widths. When compared with SimSiam-PACT,
our SSQL achieves better results at 4 bits or higher, with only one copy of weights.
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Table 4: Fine-tuning+PTQ results on ImageNet subsets. Here we adopt the
fine-tuning settings on 1%/10% labeled data and report Top-5 accuracy (%).

Backbone Method
1% labels 10% labels

FP 6w6a 5w5a 4w4a FP 6w6a 5w5a 4w4a

ResNet-18
SimSiam [6] 43.7 43.4 42.4 37.5 76.1 75.8 74.3 64.5
BYOL [13] 36.7 36.5 35.5 31.2 75.5 75.1 73.9 65.2
SSQL (ours) 47.7 47.6 47.1 45.0 76.1 75.9 75.0 70.7

ResNet-50
SimSiam [6] 53.2 52.8 51.5 36.4 82.5 81.7 79.0 67.9
BYOL [13] 47.3 47.2 46.4 40.4 81.1 80.7 79.6 69.9
SSQL (ours) 55.2 55.0 54.4 51.8 83.0 82.7 81.0 76.7

As shown in Fig. 1, the ImageNet linear evaluation performance can somehow
indicate the performance at downstream tasks at different bit-widths (i.e., the
trend is consistent). We plot the weight distribution of different pretrained mod-
els in Fig. 5. As seen, the weights of our model (third row) are more quantization-
friendly when compared with the two baseline counterparts in terms of 3 aspects:
more uniform distribution, smaller ranges, and much fewer outliers. (There is a
similar phenomenon after fine-tuning on downstream tasks, too, see appendix).
Fine-tuning with partial labels. Following common practices, we also fine-
tune the pretrained models on ImageNet with 1% and 10% labeled data in Tab. 4.
As seen, SSQL achieves the best performance in all cases. We also report the
PTQ performance and our advantages become greater as the bit-width decreases.
For instance, when fine-tuned using 10% labels under R-50, SSQL achieves 0.5%
and 8.8% higher accuracy than SimSiam at FP and 4w4a, respectively.
Combining with QAT method. To further illustrate the effectiveness of
SSQL, we combine different pretrained models with the state-of-the-art QAT
method LSQ [9]. We initialize LSQ with ImageNet linear evaluated FP models
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Fig. 6: ImageNet results using LSQ [9]. See appendix for training details of LSQ.

Table 5: ImageNet transfer results on recognition benchmarks under R-50.

Datasets Method
Linear evaluation Fine-tuning

FP 8w8a 5w5a 4w4a 3w3a FP 8w8a 5w5a 4w4a 3w3a

CIFAR-10
SimSiam 86.3 86.2 84.4 70.7 48.0 95.9 95.9 92.0 51.7 14.6

SSQL (ours) 89.3 89.2 89.1 87.1 71.9 96.3 96.3 95.1 89.2 69.3

CIFAR-100
SimSiam 58.9 58.7 52.5 39.0 20.2 82.9 82.5 76.7 66.0 5.3

SSQL (ours) 68.7 68.6 68.8 66.4 49.7 83.3 83.3 82.0 74.7 39.3

Flowers
SimSiam 78.7 82.5 81.9 66.6 49.3 94.0 93.8 83.8 57.8 16.2

SSQL (ours) 90.7 90.7 91.3 90.9 84.0 95.3 95.3 94.6 90.3 70.6

Food-101
SimSiam 67.1 67.1 64.7 56.0 27.7 86.2 86.2 80.4 54.4 2.2

SSQL (ours) 72.6 72.5 71.5 68.4 51.6 85.5 85.5 84.5 70.4 11.2

Pets
SimSiam 79.7 79.6 74.3 70.9 32.2 87.5 87.4 81.3 59.3 10.9

SSQL (ours) 83.6 83.9 83.3 82.3 73.8 86.9 86.8 85.9 84.6 73.6

Dtd
SimSiam 69.9 69.7 69.1 63.4 46.6 73.4 73.6 70.5 60.4 8.8

SSQL (ours) 74.4 74.3 74.3 73.4 64.4 73.7 73.7 71.9 70.1 56.6

Caltech-101
SimSiam 80.2 80.4 78.6 66.7 31.4 86.9 86.6 85.0 76.8 7.9

SSQL (ours) 86.9 87.2 85.2 83.8 65.9 86.4 86.3 85.5 82.9 59.7

(i.e., FP column in Table 3). As seen from the learning curves in Fig. 6, our
SSQL provides a better starting point. Take R-50 4w4a as an example, SSQL
achieves 7% higher accuracy than SimSiam after the first epoch, while the initial
accuracy of the FP model is about the same. Consequently, our SSQL achieves
higher final accuracy and it shows that our pretrained model can serve as a
better initialization when combined with QAT methods to boost performance.

Transferring to recognition benchmarks.We transfer the ImageNet learned
representations of R-50 to downstream recognition tasks in Table 5. The results
of R-18 and more training details are included in the appendix. As shown in
Table 5, our method improves a lot on all recognition benchmarks, especially
under linear evaluation. When comparing the fine-tuning results at FP, we can
see that our SSQL achieves comparable results with SimSiam. When we further
conduct PTQ, we can observe larger improvements as the bit-width decreases,
which is consistent with the properties observed in upstream pretraining. Take R-
50 on CIFAR-10 as an example, SSQL is slightly better than SimSiam at FP but
the improvement expands to 37.5% at 4w4a and 54.7% at 3w3a. In conclusion,
the quantization-friendly properties are also well-preserved by SSQL when we
fine-tune the weights during transferring. This again confirms our motivation
that quantization-friendly pretraining is both important and feasible.
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Table 6: Object detection results on VOC2007 under R18-C4. The best results
are in boldface and the second best results are underlined.

Method
FP 8w8a 6w6a 5w5a 4w4a

AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 AP50 AP AP75

random init. 58.9 32.1 30.5 58.7 31.9 30.2 58.4 31.6 30.2 57.0 30.4 28.9 42.4 20.8 17.0
IN supervised 73.9 44.6 46.5 74.1 44.2 46.2 73.0 43.4 44.5 68.9 39.4 39.3 33.1 16.7 14.0

BYOL 72.8 44.7 46.3 72.4 44.4 46.0 72.2 44.2 45.6 62.7 38.0 39.4 52.7 28.9 27.8
SimSiam 72.8 44.4 46.6 72.9 44.4 46.3 72.4 44.0 46.0 69.7 42.0 43.1 50.4 26.4 23.8

SimSiam-200ep 72.5 44.3 46.5 72.5 44.3 46.5 72.0 43.9 46.3 69.2 41.4 42.7 53.7 29.8 29.0
SSQL (ours) 73.4 44.7 46.8 73.5 45.0 46.8 73.1 44.5 46.4 71.6 42.8 44.4 61.2 34.1 33.4

SSQL-200ep (ours) 73.2 45.0 47.3 73.2 45.0 47.0 72.9 44.8 46.8 71.3 43.3 45.0 61.2 35.1 35.0

Table 7: Object detection/segmentation results on COCO2017 under R50-FPN.

Method
FP 6w6a

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

IN supervised 38.2 56.0 42.0 34.8 56.0 37.2 37.6 58.3 41.4 34.3 55.2 36.8
SimSiam 38.9 59.8 42.3 35.2 56.7 37.7 38.1 58.7 41.5 34.5 55.7 36.8
BYOL 37.4 57.9 40.6 34.1 54.9 36.4 37.0 57.4 40.2 33.7 54.3 36.0

SSQL (ours) 38.7 59.2 42.3 35.2 56.2 37.7 38.3 58.8 41.7 34.8 55.8 37.3
5w5a 4w4a

IN supervised 35.2 55.5 38.4 31.9 52.3 34.0 23.4 38.6 24.6 21.4 36.3 22.1
SimSiam 34.3 54.0 36.7 30.9 50.6 32.6 19.9 33.6 20.6 18.1 31.3 18.3
BYOL 34.9 54.4 37.7 31.8 51.4 33.8 22.7 37.4 24.0 20.9 35.2 21.7

SSQL (ours) 36.5 56.9 39.4 33.3 53.6 35.5 28.2 43.1 27.5 26.0 43.1 27.5

Transferring to object detection. We investigate the downstream object de-
tection performance on Pascal VOC07&12 [10] in Table 6 and COCO2017 [25]
in Table 7. The detector is Faster R-CNN [33] with a backbone of R18-C4 [17]
for VOC and Mask R-CNN [17] with R50-FPN [24] backbone for COCO, imple-
mented in [39]. We follow the same settings in [5] and we evaluate the perfor-
mance of post-training quantization models (i.e., the fine-tuning+PTQ pipeline).

As shown in Table 6, our SSQL performs better than SimSiam and BYOL
on Pascal VOC at FP. Also, as we lower the bit-width, our SSQL is more signif-
icantly better than baseline counterparts: up to +1.9 and +7.5 AP50 over the
best results among other methods at 5w5a and 4w4a, respectively. We can reach
similar conclusions on COCO2017 from Table 7. Although our SSQL achieves
slightly lower accuracy than SimSiam at FP on COCO, we achieve +2.2 and
+8.3 APbb points higher at 5w5a and 4w4a, respectively. In conclusion, the re-
sults show that the quantization-friendly property of our pretrained model can
be well-preserved even after fine-tuning on downstream detection tasks.

4.4 Ablation studies

We conduct ablation studies on CIFAR-10 in Table 8 and we keep the training
settings the same as in Sec. 4.2. ‘Q Pred’ denotes whether to quantize the pre-
diction branch and the same for ‘Q Target’. ‘Aux’ denotes whether to add the
auxiliary SimSiam loss. ‘W/A Bit’ represents the candidate bit-widths set for
weight/activation. We can have the following conclusions from Table 8:
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Table 8: Ablation studies on CIFAR-10 using ResNet-34.

ID Q Pred Q Target Aux W Bit A Bit
Linear evaluation accuracy (%)
FP 6w6a 4w4a 3w3a 2w4a Avg.

(a) × × × - - 89.0 89.0 87.2 75.6 55.3 79.2
(b) × ✓ × 4∼16 4∼16 87.6 87.5 85.8 70.4 58.5 78.0
(c) ✓ ✓ × 4∼16 4∼16 90.5 90.4 88.9 79.2 73.7 84.5
(d) ✓ × × 4∼16 4∼16 91.0 91.0 89.5 83.0 65.2 83.9
(e) ✓ × × 6 6 90.0 89.9 87.9 69.1 62.1 79.8
(f) ✓ × × 4 4 36.0 35.9 36.4 29.2 29.7 33.4
(g) ✓ ✓ × 2∼8 4∼8 88.3 88.2 86.9 80.3 85.4 85.8
(h) ✓ × × 2∼8 4∼8 89.6 89.5 88.2 82.9 81.5 86.3
(i) ✓ × ✓ 2∼8 4∼8 90.9 90.8 89.6 83.2 86.8 88.3

• Quantizing the target branch only degenerates the performance. The row (b)
is the worst among the first four rows, which indicates that only using the
quantized output as the target makes training more difficult (learning noisy
targets). In other words, it is essential to update the quantized branch with
the gradients (both row (c) and (d) perform better than the baseline row (a)).

• Random selection of bit-widths for training is better than training with a single
bit-width. We can observe that the row (d) surpasses the row (e) and (f) at all
bit-widths, where the latter two are trained using a single bit-width. It shows
that the random selection operation in our method is beneficial to improve
performance, by providing stronger randomness and augmentations.

• Using a reasonable bit perturbation range further improves the performance at
lower bit-widths. When comparing the row (d) and (h), we can observe a big
boost at 2w4a (81.5 v.s. 65.2) at the expense of FP accuracy. When comparing
the row (c) and (g), we can find that quantizing both branches at the same
time results in a larger drop in FP accuracy.

• The row (i) achieves the best trade-off among all settings, which is also the
default setting for all our experiments. When comparing the row (i) and (h),
we can see that the addition of the auxiliary loss makes the full precision model
produce better targets, thus improving the accuracies at all bit-widths.

5 Conclusion

In this paper, we proposed a method called SSQL for pretraining quantization-
friendly models to facility flexible deployment in resource constrained applica-
tions. We provide theoretical analysis for the proposed approach, and experi-
mental results on various benchmarks show that our method not only greatly
improves the performance when quantized to lower bits, but also boosts the
performance of full precision models. It has also been verified that our method
is compatible with PTQ or QAT methods, and the quantization-friendly prop-
erty can be well-preserved when transferring to downstream tasks. In the fu-
ture, we will explore applications of SSQL to other architectures, notably Trans-
formers. Also, we will explore fine-tuning methods that can better preserve the
quantization-friendly property of our models.
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