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Abstract. We study the training of Vision Transformers for semi-
supervised image classification. Transformers have recently demonstrated
impressive performance on a multitude of supervised learning tasks. Sur-
prisingly, we show Vision Transformers perform significantly worse than
Convolutional Neural Networks when only a small set of labeled data
is available. Inspired by this observation, we introduce a joint semi-
supervised learning framework, Semiformer, which contains a trans-
former stream, a convolutional stream and a carefully designed fusion
module for knowledge sharing between these streams. The convolutional
stream is trained on limited labeled data and further used to generate
pseudo labels to supervise the training of the transformer stream on
unlabeled data. Extensive experiments on ImageNet demonstrate that
Semiformer achieves 75.5% top-1 accuracy, outperforming the state-of-
the-art by a clear margin. In addition, we show, among other things,
Semiformer is a general framework that is compatible with most mod-
ern transformer and convolutional neural architectures. Code is available
at https://github.com/wengzejia1/Semiformer.
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1 Introduction

Vision transformers (ViT) have achieved remarkable performance recently on
a variety of supervised computer vision tasks [8, 15, 18]. Their success is largely
fueled by high capacity models with self-attention layers trained on massive data.
However, it is not always feasible to collect sufficient annotated data in many real
world applications. When only a small number of labeled samples are provided,
semi-supervised learning (SSL) [4, 41] is a powerful paradigm to achieve better
performance by leveraging a huge amount of unlabeled data. Despite the success
of Vision Transformers in fully supervised scenarios, the understanding of its
effectiveness in SSL is still an empty space.

We perform a series of studies with Vision Transformers (ViT) [8] in the semi-
supervised learning (SSL) setting on ImageNet. Surprisingly, the results show
that simply training a ViT using a popular SSL approach, FixMatch [23], still
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Fig. 1. Three semi-supervised vision transformers using 10% labeled and 90% unla-
beled data (colored in green) vs. fully supervised vision transformers (colored in blue)
using 10% and 100% labeled data. Our approach Semiformer achieves competitive per-
formance, 75.5% top-1 accuracy.

leads to much worse performance than a CNN trained even without FixMatch.
We believe this results from the fact that pseudo labels from CNNs are more
accurate, possibly due to their encoded inductive bias.

To validate our hypothesis, we use CNNs to produce pseudo labels for
the joint semi-supervised training of CNNs and transformers. By doing so, we
are able to significantly improve the top-1 accuracy of the ViT by 8+% (c.f.
Conv-labeled and Vanilla in Fig. 1). This highlights that labels derived from
CNNs are also helpful for training transformers under the SSL setting. While
pseudo labels from CNNs are effective, the final ViT is still slightly weaker than
the “teacher” CNN. We posit that simply performing pseudo labeling (PL) with
CNNs to derive supervisory signals for transformers is not sufficient. Instead, we
hypothesize that a joint knowledge sharing mechanism at the architecture level
is required to fully explore knowledge in CNNs.

In light of these, we introduce a novel semi-supervised learning framework for
Vision Transformers, which we term as Semiformer. In particular, Semiformer
composes of a convolutional stream and a transformer stream. It leverages labels
produced by CNNs as supervisory signals to train the CNN and the transform-
ers jointly using a popular SSL strategy. The two streams are further connected
with a cross-stream feature interaction module, enabling streams to comple-
ment each other. Benefited from more accurate labels and the interaction design,
Semiformer can be readily used for SSL.

We conduct extensive experiments to evaluate Semiformer. In particular,
Semiformer achieves 75.5% top-1 accuracy on ImageNet and outperforms the
state-of-the-art using 10% of labeled samples. We also show Semiformer out-
performs alternative methods by clear margins under different labeling ratios.
In addition, we empirically demonstrate Semiformer is a generic framework
compatible with modern CNN and transformer architectures. We also pro-
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vide qualitative evidence that Semiformer is better than ViTs in the SSL setting.

Contributions. Our contributions are three-folded:

1. We are the first to investigate the application of Vision Transformers for
semi-supervised learning. We reveal that Vision Transformers perform poorly
when labeled samples are limited, yet they can be improved by utilizing
unlabeled data together with the help from Convolutional neural networks.

2. We propose a generic framework Semiformer for the semi-supervised learn-
ing of Vision Transformers, which not only explores predictions as supervi-
sory signals but also feature-level clues from CNNs to improve the ViTs in
the low-data learning regime.

3. We perform extensive experiments and studies to evaluate Semiformer.
Semiformer achieves 75.5% top-1 accuracy on ImageNet and outperforms
state-of-the-art methods in semi-supervised learning. Additional ablation
studies are further conducted to understand its effectiveness.

2 Related work

Vision Transformers. A variety of Vision Transformers [8,15,17,25,28–30,37]
have refreshed the state-of-the-art performance on ImageNet, demonstrating
their powerful representation capability in solving vision tasks. Among them,
the Vision Transformer (ViT) [8] is the first to prove that purely using the
transformer structure can perform well on image classification tasks. It divides
each image into a sequence of patches and then applies multiple transformer
layers [27] to model their global relations. T2T-ViT [37] recursively aggregates
neighboring tokens into one token for better modeling of local structures such
as edges and lines among neighboring pixels, which outperforms ResNets [13]
and also achieves comparable performance to light CNNs by directly training
on ImageNet. Swin Transformer [18] creates a shifted windowing scheme coop-
erated with stacked local transformers for better information interaction among
patches. With the continuous improvements of Vision Transformers, transformer
based networks have achieved higher accuracy on medium-scale and large-scale
datasets. Although transformers have been proven effective at solving visual
tasks, it is known inferior to some CNNs when training from scratch on small-
sized datasets mainly because ViTs lack image-specific inductive bias [8].

Touvron et al . [25] distill the knowledge of CNNs to ViTs, easing the training
process of transformers to be more data efficient. The hard distillation idea is
similar to the pseudo label approach in SSL. However, it differs from our work in
that the teacher model in distillation is pre-trained in a fully supervised setting
and frozen while we also use the pseudo labels to continuously updating the
convolutional stream in our framework.

Semi-supervised learning. Effective supervised learning using deep neu-
ral networks usually requires annotating a large amount of data. However, cre-
ating such large datasets is costly and labor-intensive. A promising solution is
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SSL, which leverages unlabeled data to improve model performance. Existing
SSL methods are designed from the aspects of pseudo labeling where model
predictions are converted to hard labels (e.g ., [16, 22, 36]), and consistency reg-
ularization where the model is constrained to have consistent outputs under
different perturbations [1,2,21,24,34]. FixMatch [23] combines these two classic
semi-supervised learning strategies. It predicts hard pseudo labels under weak
perturbations and guides the model to learn on unlabeled data with strong
perturbations. Our work is built upon FixMatch to explore the potential of
semi-supervised Vision Transformers. The noisy student [35] extends the idea
of self-training and distillation with larger student models and add noise to
the student. [39] applies transformers to automated speech recognition using
semi-supervised learning. Their superior performance is obtained by large scale
pre-training and iterative self-training using the noisy student training approach.

As the advances of self-supervised learning approaches [3,5], a new trend for
semi-supervised learning becomes first utilizing the large scale unlabeled data
for self-supervised pre-training and then use the labeled data for fine-tuning.
Chen et al . [6] show that a big ResNet pre-trained using SimCLRv2 can achieve
competitive semi-supervised performance after fine-tuning.

Joint modeling of CNNs and Transformers. CNNs and Transform-
ers use two different ways to enforce geometric structure priors. A convolution
operator is applied on patches of an image, which naturally results in a local ge-
ometric inductive bias. However, a Vision Transformer model utilizes the global
self-attention to learn the relationships between global image elements [8]. From
a complementary point of view, combining the advantages of CNNs in process-
ing local visual structures and the advantages of transformer in processing global
relationships is potentially a better approach for image modeling.

One research direction is to imitate the CNN operations into a Vision Trans-
former or vice versa [15, 30, 33, 37]. For example, Pooling-based Vision Trans-
former (PiT) [15] applies pooling operations to shrink the feature maps and
gradually increases the channel dimension at the same time, similar to the prac-
tice of CNN. PyramidViT [30] and CvT [32] also adopt a similar hierarchical
design. T2T-ViT [37] designs a progressive tokenization module to aggregate
neighboring tokens. [33] replaces the ViT stem by a small number of stacked
convolutions and observes it improves the stability of model training. They also
keep the network deep and narrow, inspired by CNNs.

Probably the most relevant approaches are [9, 12, 19, 31] that aim to find
ways to combine convolution and transformer into a single model. For example,
the non-local network [31] adds self-attention layers to CNN backbones. Speech-
Conformer [12] attempts to use convolution to enhance the capabilities of the
transformer, while ConVit [9] introduces gated positional self-attention (GPSA)
module which becomes equipped with a “soft” convolutional inductive bias. Vi-
sualConformer [19] decouples CNN and Vision Transformer streams and design a
module for feature communication across streams. However, these studies are all
focused on supervised learning while we propose a generic framework for training
semi-supervised vision transformers. Another major difference lies in that, even
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Fig. 2. We explore a variety of ways to apply vision transformer into semi-supervised
learning task. Dotted line refers to weights sharing. u refers to the input image, g
and g+ refer to weak and strong data augmentation. ŷT and ŷC refer to pseudo labels
produced by transformer and convolutional streams. fT (·) and fC(·) represent model
predictions of transformer and convolutional streams respectively.

though we follow the same direction of fusing convolutions and transformers,
our approach does not treat the combined architecture as an entirety, e.g ., the
pseudo labels have to be generated by the convolutional stream only.

3 A Study with Vision Transformers for SSL

We start by presenting two frameworks that use pseudo labels for SSL. Although
the two attempts are surprisingly unsatisfactory, their results reveal two impor-
tant lessons which eventually inspire us to develop our framework. Below we
provide the details of the two studies and our learned lessons.

Unlabeled data improves Vision Transformers. A natural approach to
leverage unlabeled data is to do pseudo labeling through Vision Transformers.
Our first hypothesis is that a Vision Transformer can be improved when the
total number of input-output training pairs increases (though many of them are
pseudo labels). We verify this with a Vanilla framework, which uses the same
architecture (e.g ., CNN or Transformer) and builds upon FixMatch [23] for SSL.
In particular, FixMatch uses two types of augmentations, a strong one and a
weak one. The pseudo label of the unlabeled data is obtained by applying the
model on weakly augmented images. And the model is trained using the strongly
augmented inputs with the pseudo labels.

Results in Tab. 1 show that after adding the other 90% images from the
ImageNet as unlabeled training data, the transformer-based model can have an
accuracy improvement by 10.4%, which is greater than the accuracy improve-
ment of CNN’s 8.3%. This validates our hypothesis, i.e., large-scale data helps
the Vision Transformer to learn better even when many of them are pseudo
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Table 1. Results and comparisons with two different SSL frameworks, and comparisons
with the supervised baselines.

Architecture Method Top-1 Acc (%)

CNN
Sup. only (10%) 60.2

Vanilla 68.5

Transformer

Sup. only (10%) 48.6

Vanilla 59.0

Conv-labeled 67.2

labeled. However, despite the score increases, the performance of Vision Trans-
formers in semi-supervised learning is still unsatisfactory, even inferior to the
accuracy of fully supervised CNN training on only 10% of the labeled data.

Pseudo labels from CNNs are more accurate. We suspect that the
weak performance of Vanilla is due to the inaccurate pseudo labels generated
by the transformer. Vision Transformer contains less image-specific inductive
bias, leading to poor performance on small-scale data and thus requires more
data for representation learning. In contrast, CNNs are shown to possess strong
image-specific inductive bias due to its convolution and pooling design. A nat-
ural question is: what if we use a CNN to generate pseudo labels for Vision
Transformer?

We introduce a new SSL framework, Conv-labeled, which uses labels from
CNNs for the SSL of CNN and transformers jointly, as illustrated in Fig. 2(b).
As is seen in Tab. 1, the Conv-labeled approach results in 67.2% top-1 accu-
racy using the predictions from the ViT on ImageNet, improving the Vanilla

approach by 8.2%, which suggests that CNNs provide better pseudo labels.
Conv-based pseudo labeling is not enough. Although the ViT’s per-

formance is boosted by a CNN pseudo-label generator, the final performance of
the ViT (67.2%) is still worse than the CNN (68.5%), observed from Tab. 1.
This suggests that the knowledge from the CNN is not yet fully utilized through
the simple pseudo labeling approach. One major problem here is that the two
models are mostly decoupled except for the unilateral supervision given by the
CNN. On the one hand, knowledge from the CNN is not directly injected into the
transformer model. On the other hand, the CNN does not gain any information
from the ViT. This motivates us to consider jointly modeling both a convolution
network and a transformer, which becomes the proposed Semiformer framework.

4 Our Approach: Semiformer

We introduce Semiformer (illustrated in Fig. 2(c) and Fig. 3), which jointly
fuses a CNN architecture and a Transformer for semi-supervised learning.

Notation. We use f(x; θ) to represent the mapping function of our
Semiformer, given the input x and the model parameter θ. fT (x) and fC(x)
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Fig. 3. Diagram of the Semiformer framework. For an unlabeled image, its weakly-
augmented version (top) is fed into the model. The prediction of CNN is used for
generating pseudo labels with a confidence threshold (dotted line). Then we compute
the model’s prediction for the strong augmented version of the same image (bottom).
We expect both transformer and convolutional streams to match the pseudo label via
cross-entropy losses. Streams complement each other with the feature-level modules.

are the vectorized output probability for each label from the transformer stream
and the convolutional stream, respectively, and θ is omitted for simplicity. Addi-
tionally, a weak data augmentation function g(·) and a strong data augmentation
function g+(·) are used in our approach. We assume the semi-supervised dataset
contains Nl labeled examples and Nu unlabeled examples. We use index i for
labeled data, index j for unlabeled and index k for the label space.

Loss for labeled data. Formally, the total loss for labeled data is

Ll =

Nl∑
i=1

Lxent(yi, fT (g+(xi))) + Lxent(yi, fC(g+(xi))) (1)

where xi is the i-th labeled example and yi is its corresponding one-hot label
vector. Lxent is the cross-entropy loss function, i.e., Lxent(p, q) =

∑
k pk log qk.

Loss for unlabeled data. Given an unlabeled image uj , we first perform
strong data augmentation g+(·) and weak data augmentation g(·), according to
FixMatch [23], to obtain the two views of the same input image. However, only
the prediction output of the convolutional stream fC(g(uj)) is used to generate
the pseudo label. The probability pj of an unlabeled input uj becomes

pj = fC(g(uj)) . (2)

We define the pseudo labels as the class with maximum probability, i.e., p̂j =
argmaxk pjk. We use ŷj to represent the one-hot vector corresponding to pseudo
label p̂j . These pseudo labels will in turn be used to calculate the cross entropy
loss to back-propagate both the convolutional and the transformer streams with
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the strongly augmented inputs g+(uj). A filtering by threshold maxk pjk ≥ τ ,
equivalent to ⟨ŷj , pj⟩ ≥ τ , is applied to remove pseudo labels without sufficient
certainty. The remaining pseudo labels are used to guide the semi-supervised
learning. The total loss for unlabeled data becomes

Lu =

Nu∑
j=1

(Lxent(ŷj , fT (g+(uj))) + Lxent(ŷj , fC(g+(uj)))) δ[⟨ŷj , pj⟩ ≥ τ ] , (3)

where δ[·] is the delta function whose value is 1 when the condition is met and
0 otherwise.

Total loss. The total training loss is the sum of both labeled and unlabeled
losses such that

L = Ll + λLu , (4)

where λ is a trade-off. A more detailed study of λ can be found in Sec. 5.4.

Stream fusion. Let MT be the Vision Transformer feature map in a cer-
tain layer with the shape (dT , hT , wT ) representing depth, height and width,
respectively. Let MT,i be the i-th patch feature according to MT with the shape
(dT , 1, 1). So, MT,i corresponds to a specific area of the original image and we de-
note the CNN sub-feature map who also corresponds to the same area as MC,i

with the shape (dC , hC , wC). Motivated by [19], we exchange information be-
tween patch features and its related CNN sub-feature map, described as Eq. (5)
and Eq. (6):

MT,i += layernorm(pooling(align(MC,i))), (5)

MC,i += batchnorm(upsample(align(MT,i))), (6)

where the align operator refers to mapping features to the same dimen-
sional space, pooling refers to downsampling, upsample refers to upsampling,
layernorm refers to layer normalization and BN refers to batch normalization.
Specifically, a Conv1x1 layer is used for embedding dimension alignment (the
align operator). The average pooling and spatial interpolation methods are used
for spatial dimension alignment, i.e., the pooling operator and the upsample

operator, respectively.

To summarize, our framework consists of two parts, including carrying out
a hard-way distillation manner by a convolutional stream to guide the trans-
former’s learning from unlabeled data, and carrying out feature-level informa-
tion interaction between the two streams so that the CNN’s knowledge can be
injected into the transformer and the convolutional stream can also be enhanced
with a better global spatial information organization capability.

Inference. During training, we use the pseudo labels derived by the convo-
lutional stream to train both the CNN and the Vision Transformer in a semi-
supervised setting. For inference, we simply average combine predictions from
the both streams as final scores, which is slightly better than using the trans-
former stream alone, as will be shown empirically.
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5 Experiments

5.1 Experimental setup

Datasets and evaluation metrics. To evaluate the effectiveness of
Semiformer, we mainly conduct experiments on ImageNet [7], which con-
tains 1,000 classes and 1.3M images. In addition, we provide experimental re-
sults on Places205 [40]. Unlike ImageNet that contains generic categories,
Places205 is a place-focused dataset, which contains 2.5M images annotated
into 205 classes. We use top-1 accuracy as our evaluation metric. Through all
experiments, following [23], we mainly select 10% labeled samples and leave the
other 90% samples as unlabeled data, unless specified otherwise.

Models. The Semiformer framework emphasizes how to complement the
characteristics of the CNN and the ViT to achieve improved results. For the
convolutional stream, we use a ResNet-like model and a personalized Con-
vMixer [26], while within transformer stream, we experiment with both a slightly
modified ViT-S [25] and the PiT-S [15] as backbone networks.

Implementation details. The initial learning rate is set to 10−3 and is
decayed towards 10−5 following the cosine decay scheduler. We use 5 epochs
to warm-up our models and another 25 epochs to train models on the labeled
data before starting the semi-supervised learning process. In the training of
ViT-ConvMixer model, the batch size of each GPU is 84, while in the training
of ViT-Conv and PiT-Conv model, the batch size is 108 per GPU. We train
models with 600 epochs using 32 NVIDIA V100 GPUs to produce our best
top-1 accuracy by setting the number ratio of labeled and unlabeled images in
each batch as 1:7. In order to avoid gains brought by data augmentation, we
do not apply mixup, cutmix and repeat augmentation in our SSL process. We
choose random augmentation, random erasing and color jitter as the strong data
augmentation, and use random flipping and random cropping as the weak data
augmentation. The value of λ which is the balance factor between loss terms is
set as 4.0. In the semi-supervised learning with 5% ImageNet labeled samples,
we reduce the number ratio of labeled and unlabeled images per batch to 1:9.
All the experiments share the same G.T. data split.

For ablation studies and discussion, we train 300 epochs to speed up the
experiments and we set the number ratio of labeled and unlabeled images in
each batch as 1:5 and use the label smoothing trick on ground-truth labels.

5.2 Main Results

Comparisons with state-of-the-art. We first compare with state-of-the-art
semi-supervised methods, such as UDA [34], FixMatch [23], S4L [38], MPL [20]
and CowMix [10], as well as recent self-supevised methods. Experimental re-
sults in Tab. 2 show that our approach achieves better results by clear margins
compared with alternative methods. For example, Semiformer is better than
S4L [38] and CowMix [10] by 2.3% and 1.6% with only 11% and 67% of param-
eters of their models, respectively. In addition, while we follow the design the
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Table 2. The results of Semiformer and comparisons with state-of-the-art methods.
Semiformer achieves 75.5% top-1 accuracy and outperforms all Convolutional neural
network based methods, while still keeping a reasonable parameter size. Here, the
params does not include the final classifier.

Method Architecture Params Top-1 Acc(%)

Sup. (10%)
ViT-S 23M 48.6
Conv 13M 60.2

Self-supervised pretraining
CPC [14] ResNet-161 305M 71.5
SimCLR [5,6] ResNet-50 24M 65.6
SimCLR [5,6] ResNet-50 (2×) 94M 71.7
BYOL [11] ResNet-50 24M 68.8
BYOL [11] ResNet-50 (2×) 94M 73.5
DINO [3] ViT-S 21M 72.2

Semi-supervised methods
UDA [34] ResNet-50 24M 68.8
FixMatch [23] ResNet-50 24M 71.5
S4L [38] ResNet-50 (4×) 375M 73.2
MPL [20] ResNet-50 24M 73.9
CowMix [10] ResNet-152 60M 73.9

Semiformer ViT-S + Conv 40M 75.5

principle of FixMatch to generate pseudo labels, the knowledge sharing mecha-
nism in Semiformer brings about 4% performance gain compared to FixMatch.
Although MPL has a smaller model size, training MPL is computationally ex-
pensive as it requires meta updates. In addition, MPL uses complicated data
augmentations, i.e., AutoAugment, while we only use basic augmentations. Sim-
ilarly, CowMix [10] introduces a new data augmentation strategy for SSL. We
would like to point that Semiformer is a generic SSL framework that explores
pseudo labels and knowledge in CNNs to promote the results of transformers.
We believe it is in tandem with more advanced pseudo label generation strategies
like MPL [20] and more complex augmentation methods [10]. In addition to SSL
methods, we also compare with self-supervised learning results such as [6,11,14],
which firstly learn representations with self-supervised methods and then per-
form finetuning on limited data. We see that Semiformer also performs favorably
compared to this line of methods.

Effectiveness of Semiformer with different backbones. We evaluate the
performance of Semiformer instantiated with different CNN and transformer
backbones using 10% of labeled samples. We compare with the supervised train-
ing baseline (Sup.), the Vanilla method where the pseudo label generator share
the same backbone used for SSL, and Conv-labeled that trains transformers
with labels produced by CNNs. The results are summarized in Tab. 3. As the
Vanilla results shown in the second block of Tab. 3, CNNs obviously achieve
higher image classification accuracy than Vision Transformers under the SSL
setting, verifying that labels from CNNs are more accurate. ConvMixer [26]
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Table 3. Ablation Study: The effectiveness of Semiformer with various backbones and
comparisons with alternative methods (i.e., vanilla and conv-labeled). All models are
trained with 300 epochs and without pseudo label smoothing. For Conv-labeled and
Semiformer, A/B in the last column: A indicates scores from the transformer stream
only and B indicates averaged predictions from CNNs and transformers.

Method Backbone Pseudo labels Top-1 Acc(%)

Sup. (10%)
ViT-S - 48.6

PiT-S - 50.0

Vanilla

Conv Conv 68.5

ConvMixer ConvMixer 69.3

ViT-S ViT-S 59.0

PiT-S PiT-S 63.0

Conv-labeled

ViT-S + Conv Conv 67.2 / 70.2

PiT-S + Conv Conv 67.8 / 70.5

ViT-S + ConvMixer ConvMixer 66.7 / 70.2

Semiformer

ViT-S + Conv Conv 72.4 / 73.5

PiT-S + Conv Conv 70.8 / 71.6

ViT-S + ConvMixer ConvMixer 72.9 / 73.8

achieves the best results among all Vanilla models, offering a top-1 accuracy
of 69.3%. This possibly results from the fact ConvMixer integrates the archi-
tectural advantages of both transformers and CNNs. Results in the third block
of Tab. 3 show that using CNNs instead of Vision Transformers to generate
pseudo labels significantly improves the performance of the Vision Transformer,
allowing PiT-S and ViT-S to reach an accuracy of 67.2% and 67.8% respectively,
with the same CNN architecture. The improved accuracy is close to that of the
Vanilla semi-supervised CNN, suggesting the quality of the pseudo labels makes
a difference to the semi-supervised learning process of Vision Transformers.

Results in the last block of Tab. 3 show that Semiformer significantly im-
proves the performance of Vision Transformers. This highlights the effectiveness
of Semiformer in exploring the interactions of CNNs and transformers. Taking
the combination of ViT-S and Conv as an example, after applying the feature-
level interaction to accomplish the dual information exchange, the accuracy of
ViT-S is improved by 5.2% from 67.2% to 72.4%, revealing the efficacy of our
Semiformer framework. We also observe that Semiformer is a versatile frame-
work compatible with modern CNN and transformer architectures. In addition,
by further combining the predictions from both the convolutional and trans-
former streams, we observe consistent performance gains under all settings for
Conv-labeled and Semiformer.

The ratio of labeled samples. we further experiment with 5% and 20%
of labeled samples for SSL and compare with alternative methods. Except that
we decrease the number of labeled and unlabeled images in each batch from
1:5 to 1:9 for 5% labeled samples, all the experimental settings are kept the



12 Zejia Weng et al.

Table 4. SSL with different ratios of labeled samples on ImageNet.

Dataset Ratio
ViT-S Conv ViT-S + Conv

Sup. Vanilla Sup. Vanilla Conv-labeled Semiformer

ImageNet

5 % 28.6 45.7 (↑17.1) 44.2 61.3 (↑17.1) 62.0 66.3 (↑4.3)

10 % 48.6 59.0 (↑10.4) 60.2 68.5 (↑ 8.3) 70.2 73.5 (↑3.3)

20 % 52.9 69.8 (↑16.9) 63.5 73.6 (↑10.1) 74.8 78.1 (↑3.3)

Table 5. Top-1 Accuracy of Semiformer on 5% labeled subset of Places205.

Dataset Ratio
ViT-S Conv ViT-S + Conv

Sup. Vanilla Sup. Vanilla Conv-labeled Semiformer

Places205 5 % 36.0 46.9 (↑3.9) 44.3 51.6 (↑7.3) 52.5 53.8 (↑1.3)

same as those of using 10% labeled samples. Tab. 4 presents the results. Vision
transformer performs poorly when only 5% labels are available, with an accuracy
of only 28.6%, which is 15.6% lower than the Conv accuracy of 44.2%. With the
increase of the number of labeled samples, the performance gain of ViTs is more
significant than that of CNNs. For example, with ViTs, the accuracy increases
by 20% and 14.3% respectively, when the number labeled samples grows from
5% to 10% and from 10% to 20%, respectively, suggesting that the training of
Vision Transformers is more sensitive to the number of labels. In addition, we
see that pseudo labels from CNNs are more accurate and help ViT learn better.

Extension to Places205. We also conduct experiments on Places205
to further evaluate the effectiveness of Semiformer. As Places205 is roughly
2 times larger than ImageNet, we use 5% of labeled samples to assure the
semi-supervised experiments on 5% Places205 and 10% ImageNet have ap-
proximately the same number of labeled samples. We see from Tab. 5 that
Semiformer consistently produces the best results. For example, Semiformer
is 1.3% and 6.9% better than Conv-labeled and Vanilla-ViT-S, respectively.
Similar trends can be observed by comparing across Tab. 4 and Tab. 5, which
further confirms the efficacy of Semiformer.

5.3 Qualitative Results

We visualize in Fig. 4 the attention maps of ViT and Semiformer. Thanks to
the guidance of pseudo label generator CNN and its supplementary help of in-
jecting the local information extraction ability, Semiformer can retain more
local information of images and can correctly focus on the key local positions
of the images. For example, when analyzing the Fig. 4(a) which corresponds to
the class of bow, Semiformer is particularly more focused on the man’s hand
holding the bow, the man’s head and the quiver carried by the person, and
those attended areas are critical for identifying the bow category. In addition,
Semiformer covers essential objects precisely. In Fig. 4(f), we can see the atten-
tion map of Semiformer not only covers the animal completely, but also covers
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Fig. 4. Attention map of ViTs and Semiformer using samples from ImageNet. Com-
pared to ViTs where the attention scores are scattered, Semiformer focuses more on
critical objects.

the contours more tightly. And for images with many small objects, for instance,
Fig. 4(e), Semiformer shows stronger ability to concentrate on key local areas
and coverage the essential areas.

5.4 Discussion

What model should be used to produce pseudo labels? Although models
in our Semiformer framework interact with each other, the CNN model still
outperforms the vision transformer especially in the early training stage, making
it important to retain the CNN hard-way distillation mode. To verify this, we
replace the teacher stream which is responsible for generating pseudo labels.
We use the following three strategies to produce pseudo labels: CNNs only,
transformers only, and averaged predictions from CNNs and transformers. As
shown in Tab. 6, using the CNNs as the teacher network brings the highest
accuracy, i.e. 73.5%, while using the transformer stream to generate pseudo
labels performs worst (i.e., 67.4%) . As the quality of pseudo labels generated by
vision transformers are limited, we do not get better results by simply averaging
CNN and Vision Transformer outputs as pseudo labels under the same setting.
This further confirms the effectiveness of our pseudo labeling strategy.

Does Semiformer performs well because of larger models? To clear
up the confusion on the relationship between the number of parameters and ac-
curacy, we ablate on the model architecture of Semiformer using different back-
bones. We experiment with different versions of ResNet [13] including ResNet-50
(R50), ResNet-101 (R101), ResNet-152 (R152). Results are presented in Tab. 7.
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Table 6. Results by
different pseudo labels.

PL Type Acc@1(%)

CNN 73.5
Trans 67.4
Fusion 71.1

Table 7. Model size analysis. V and C refer to ViT-S
and CNN, respectively. R represnets ResNet.

Architecture R50 R101 R152 C V C+C V+V V+C

Params 24M 43M 58M 13M 23M 35M 47M 40M

Top-1 Acc(%) 68.3 70.8 71.8 68.5 59.0 66.9 59.6 73.5

We observe that by adding more layers to ResNet, the top-1 accuracy of semi-
supervised learning does gradually increase. However, it is still lower than that
of Semiformer. Even though the ResNet152 model contains 18M more parame-
ters than Semiformer, its accuracy is still 1.7% worse than that of Semiformer,
which proves the performance gain of Semiformer does not come from model
sizes. We further instantiate the two streams of Semiformer with the same
backbone, i.e. C+C and V+V respectively, and modify the stream connection
correspondingly. Note that this is different from Vanilla as the two streams
exchange information. Tab. 7 reveals that these combinations are significantly
worse than Semiformer. For example, Semiformer outperforms V+V by 13.9%
with 7M fewer parameters, which again shows the effectiveness of Semiformer
is not due to extra parameters.

The impact of hyper-parameters. The default set of hyperparameters
are: label and unlabeled data ratio is 1:5, confidence threshold is 0.7 and λ is
set as 4. Based on the default setting, we control other variables unchanged and
observe how the accuracy rate changes after independently changing the follow-
ing three factors: different confidence threshold (0.65, 0.7, 0.75, 0.8); different
λ value (1, 2, 3, 4); different proportion of the number of labeled and unla-
beled data (1:3, 1:5, 1:7). Semiformer offers the best results with 0.7 confidence
threshold, 1:7 labeled-unlabeled ratio, and λ = 4.

6 Conclusion

We presented Semiformer, the first framework to train Vision Transformers
for semi-supervised learning. We found directly training a Vanilla transformer
on semi-supervised data is ineffective. The proposed framework combines a
CNN and a Vision Transformer using a cross fusion approach. The optimal
semi-supervised learning performance is achieved by using only the convolu-
tional stream to generate the pseudo labels. The final fused framework achieves
75.5% top-1 accuracy on ImageNet and outperforms the state-of-the-art in semi-
supervised image classification.
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11. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Do-
ersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your
own latent-a new approach to self-supervised learning. In: NeurIPS (2020) 10

12. Gulati, A., Qin, J., Chiu, C.C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang,
S., Zhang, Z., Wu, Y., et al.: Conformer: Convolution-augmented transformer for
speech recognition. arXiv preprint arXiv:2005.08100 (2020) 4

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 3, 13

14. Henaff, O.: Data-efficient image recognition with contrastive predictive coding. In:
ICML (2020) 10

15. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial dimen-
sions of vision transformers. In: ICCV (2021) 1, 3, 4, 9

16. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In: ICMLW (2013) 4

17. Li, Y., Yao, T., Pan, Y., Mei, T.: Contextual transformer networks for visual
recognition. IEEE TPAMI (2022) 3

18. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021) 1,
3

19. Peng, Z., Huang, W., Gu, S., Xie, L., Wang, Y., Jiao, J., Ye, Q.: Conformer: Local
features coupling global representations for visual recognition. In: ICCV (2021) 4,
8

20. Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: CVPR (2021) 9, 10



16 Zejia Weng et al.

21. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised
learning with ladder networks. In: NeurIPS (2015) 4

22. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of ob-
ject detection models (2005) 4

23. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk,
E.D., Kurakin, A., Li, C.L.: Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In: NeurIPS (2020) 1, 4, 5, 7, 9, 10

24. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In: NeurIPS
(2017) 4

25. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: ICML (2021)
3, 9

26. Trockman, A., Kolter, J.Z.: Patches are all you need? arXiv preprint
arXiv:2201.09792 (2022) 9, 10

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017) 3

28. Wang, J., Yang, X., Li, H., Wu, Z., Jiang, Y.G.: Efficient video transformers with
spatial-temporal token selection. In: ECCV (2022) 3

29. Wang, R., Chen, D., Wu, Z., Chen, Y., Dai, X., Liu, M., Jiang, Y.G., Zhou, L.,
Yuan, L.: Bevt: Bert pretraining of video transformers. In: CVPR (2022) 3

30. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In: ICCV (2021) 3, 4

31. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR
(2018) 4

32. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: Intro-
ducing convolutions to vision transformers. In: ICCV (2021) 4

33. Xiao, T., Dollar, P., Singh, M., Mintun, E., Darrell, T., Girshick, R.: Early convolu-
tions help transformers see better. In: Advances in Neural Information Processing
Systems (2021) 4

34. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for
consistency training. In: NeurIPS (2020) 4, 9, 10

35. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves
imagenet classification. In: CVPR (2020) 4

36. Yang, L., Wang, Y., Gao, M., Shrivastava, A., Weinberger, K.Q., Chao, W.L.,
Lim, S.N.: Deep co-training with task decomposition for semi-supervised domain
adaptation. In: ICCV (2021) 4

37. Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.H., Tay, F.E., Feng, J., Yan,
S.: Tokens-to-token vit: Training vision transformers from scratch on imagenet. In:
ICCV (2021) 3, 4

38. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: Self-supervised semi-supervised
learning. In: ICCV (2019) 9, 10

39. Zhang, Y., Qin, J., Park, D.S., Han, W., Chiu, C.C., Pang, R., Le, Q.V., Wu, Y.:
Pushing the limits of semi-supervised learning for automatic speech recognition.
arXiv preprint arXiv:2010.10504 (2020) 4

40. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for
scene recognition using places database. Advances in neural information processing
systems 27 (2014) 9

41. Zhu, X.J.: Semi-supervised learning literature survey. Tech. rep., University of
Wisconsin-Madison Department of Computer Sciences (2005) 1


