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Abstract. Current state-of-the-art semi-supervised object detection meth-
ods (SSOD) typically adopt the teacher-student framework featured with
pseudo labeling and Exponential Moving Average (EMA). Although the
performance is desirable, many remaining issues still need to be resolved,
for example: (1) the teacher updated by the student using EMA tends to
lose its distinctiveness and hence generates similar predictions compar-
ing with student and causes potential noise accumulation as the train-
ing proceeds; (2) the exploitation of pseudo labels still has much room
for improvement. We present a diverse learner semi-supervised object
detection framework to tackle these issues. Concretely, to maintain dis-
tinctiveness between teachers and students, our framework consists of
two paired teacher-student models with diverse supervision strategy. In
addition, we argue that the pseudo labels which are typically regarded as
unreliable and obsoleted by many existing methods are of great value. A
particular training strategy consisting of Multi-threshold Classification
Loss (MTC) and Pseudo Label-Aware Erasing (PLAE) is hence designed
to well explore the full set of all pseudo labels. Extensive experimental
results show that our diverse learner framework outperforms the previous
state-of-the-art method on the MS-COCO dataset by 2.10%, 1.50% and
0.83% when training with only 1%, 5% and 10% labeled data, demon-
strating the effectiveness of our proposed framework. Moreover, our ap-
proach also performs well with larger amount of data, e.g. using full
COCO training set and 123K unlabeled images from COCO, reaching a
new state-of-the-art performance of 44.86% mAP.
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1 Introduction

Machine vision systems have witnessed a remarkable progress over the last
decades in the wave of deep neural networks, including image classification [5, 6],
object detection [16, 17], and image segmentation [18, 3], etc. Recent years, object
detection task is dominated by the deep neural network based approaches [14,
30, 11] which require a large amount of labeled training data. However, obtain-
ing large-scale labeled object detection data is laborious and time-consuming. To
mitigate this issue, semi-supervised object detection (SSOD) is proposed [7, 20],
where it exploits theoretically unlimited and cost-free unlabeled data to boost
the performance of the fully-supervised object detector. Current state-of-the-
art SSOD methods typically follow the teacher-student framework featured with
pseudo labeling [31, 15] and exponential moving average [22]. In most existing
teacher-student framework, reliable pseudo labels of the unlabeled data are se-
lected, e.g. by thresholding the outputs of the teacher, and then they are used
to train the student model. Afterwards, an EMA form strategy is employed to
update the teacher model for temporally ensembling the student models in differ-
ent time steps, which alleviates the detrimental effect caused by the imbalanced
and noisy pseudo labels. Although the performance of this popular framework
is competitive, according to our observation, there are two unresolved problems:
(1) existing teacher-student frameworks suffer from erroneous pseudo labels es-
pecially in the late of training stage when the teacher and the student models
become nearly identical and lose their distinctiveness. (2) the exploitation of
pseudo labels is naive and more sophisticated methods are preferable. For ex-
ample, STAC [20] and Unbiased Teacher [13] only exploit a single-thresholding
method to pick some reliable pseudo labels and disregard all the rest.

To illustrate the first problem, we delve into the EMA updating equation,
which is defined as follows,

θtea = αθtea + (1− α)θstu, (1)

where θtea and θstu are the parameters of the teacher and the student respec-
tively. α is the blending hyper-parameter balancing the historical teacher’s pa-
rameters and current student’s parameters. Normally, α is set to 0.999, accumu-
lating more historical information for model stability concerns. However, given
traditional one pair of teacher-student model, since EMA updates the teacher
model in each training iteration, the model weights of the teacher becomes ex-
tremely similar to those of the student especially when the learning rate is small
at the last phase of the training process. This will lead to the fact that the
prediction of the teacher model and the student model become nearly identical,
which hinders the teacher model from digging information from the unlabeled
data to supervise the student. To address this problem, we propose a diverse
learner framework consisting of two-paired teacher-student models to maintain
the distinctiveness of the teacher against the student. DL introduces diverse su-
pervision for each learner from the counterpart which is important to alleviate
the less informative teacher problem during the later training process.
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On the other hand, the exploitation of pseudo labeling in existing teacher-
student framework is severely underexplored. Previous works [20, 13] typically
use a single high value threshold to generate high confident pseudo labels and
the performance depends heavily on the choice of the threshold. Even worse,
the quality of the pseudo labels produced by the teacher is misaligned with the
image-level erasing operator [28], a typical operation of strong augmentation
used in existing weak-strong augmentation module [29, 24] of SSOD methods.
Specifically, the operator may erase the entire foreground object due to the lack
of ground-truth foreground information on the unlabeled images.

To make full use of pseudo labels, we divide the pseudo labels into certain and
uncertain categories and propose a multi-threshold classification loss, which uses
hard labels for certain pseudo labels and soft labels for uncertain pseudo labels.
This ensures the high quality of pseudo labels, meanwhile, increases the number
of available foreground pseudo labels. Therefore, the recall of foreground objects
is enhanced without sacrificing precision. Additionally, to take full advantage of
the high-quality certain foreground pseudo labels, we devise a pseudo label-aware
erasing module by masking the contents of certain foreground objects in the
unlabeled images according to the bounding box coordinates of the high-quality
certain pseudo labels, guiding the erasing operator to become more focused on
the foreground objects, which leads to a more generalized model and shows
superior performance according to our experiments.

To conclude, this paper has the following contributions:

– We investigate the defects of existing EMA mechanism in SSOD and pro-
pose a diverse learner framework with diverse supervision that maintains the
distinctiveness of the teacher against the student as the training proceeds.

– We introduce a more favorable pseudo labeling strategy. Specifically, we di-
vide the pseudo labels into two different categories and propose a multi-
threshold classification loss to smoothly combine high quality pseudo labels
with potential foreground pseudo labels. Thanks to this strategy, our ap-
proach is capable to achieve a much higher recall rate of foreground objects
at the same precision against existing SOTA methods .

– We extend the exploitation of pseudo labeling. Concretely, we introduce a
simple yet efficient pseudo label-aware erasing module that guides the image-
level erasing operator to become more focused on the foreground objects.

– Extensive experiments show that our method outperforms all previous state-
of-the-art methods by clear margins under various SSOD settings on the MS
COCO benchmark dataset.

2 Related Works

2.1 Semi-Supervised Image Classification.

Recent semi-supervised image classification methods can be roughly divided into
two categories: consistency based methods [22, 9, 23] and pseudo labeling based
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methods [19, 2, 1]. The consistency based methods are predicated on the assump-
tion that modest data disturbances should not change the predictions of images.
There are several ways to implement perturbations. UDA [23] proposes image
augmentations on unlabeled images to boost the performance of model. Tempo-
ral Ensembling [9] introduces an exponential moving average of label predictions
on each training example. Mean Teacher [22] develops Temporal Ensembling [9]
by averaging student model’s parameters instead of predictions to obtain supe-
rior teacher models. The pseudo labeling based approaches annotate unlabeled
data by generating pseudo labels with a strict threshold. Mixmatch and Remix-
match [1, 2] apply stochastic data augmentation to unlabeled images and obtain
pseudo labels by averaging the corresponding predictions. Fixmatch [19] gen-
erates pseudo labels on weakly-augmented unlabeled images and then trained
to predict the pseudo-label when fed a strongly-augmented version of the same
image. Flexmatch [26] sets a flexible thresholds for different classes at each time
step to let pass informative unlabeled data and their pseudo labels. However, due
to the complexity of object detection task, these image classification methods
can not be directly applied to semi-supervised target detection field.

2.2 Semi-Supervised Object Detection.

Similar to semi-supervised image classification task, consistency based and pseudo
labeling based methods are widely utilized in semi-supervised object detection
methods [20, 13, 7, 8, 29, 25, 24, 21]. Consistency based methods enforce models
to generate consistent predictions on augmented images. CSD [7] is typical of
consistency based methods, which constrains the consistency of features between
original images and horizontal flip images. ISD [8] further proposes a mixup data
augmentation method specially designed for semi-supervised object detection to
create data perturbations.

For its excellent performance, the mainstream method in semi-supervised ob-
ject detection is pseudo labeling based method and our method also belongs to
this category. STAC [20] firstly proposes a teacher-student framework in semi-
supervised object detection task which uses weak augmented images for teacher
model to generate pseudo labels and trains student model to match the respective
pseudo labels. Many other works [24, 13, 21, 25] further improve the performance
based on STAC [20]. In Unbiased Teacher [13], focal loss is introduced to solve
the class imbalance issue. Soft Teacher [24] assesses the uncertainty of bound-
ing boxes by box jittering and selects certain bounding boxes for regression.
However, all these pseudo labeling based methods inevitably suffer from minor
updates in the late training process since the teacher model is deeply related
to the student model due to EMA mechanism. In contrast, we design a di-
verse learner framework with a diverse supervision strategy to keep discrepancy
between teacher and student model which is beneficial for training process. Re-
cently, data augmentations have proven to be an effective strategy for boosting
model performance in semi-supervised object detection [4, 28]. Some works [13,
21, 24, 20] apply random erasing in strong augmentation, Instant Teaching [29]
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further combines Mixup and Mosaic augmentations to increase data perturba-
tions. However, these augmentations operate on image level and neglect the
information of pseudo labels. By introducing pseudo box location information,
we propose a pseudo label-aware erasing module that encourages the random
erasing operator to concentrate on the foreground objects.

3 Methodology

Preliminary. We follow the conventional setting of the semi-supervised object
detection task, where the training set consists of two types of images: labeled
images Ds = {si, yi}Ns

i=1 and unlabeled images Du = {ui}Nu

i=1, where Ns and
Nu are the number of labeled images s and unlabeled images u respectively. y
represents the annotations for s.

Previous semi-supervised object detection works [24, 13] mostly use Faster
RCNN [17] and apply the pseudo labeling method in their framework, we also
follow this setting. We denote the pseudo label of the j-th bounding box in image
i as pji . Specifically, p

j
i consists of bounding box locations bji ∈ R4 and confidence

cji ∈ R which is the highest classification score in all categories. There are two
types of training loss: unsupervised loss Lu and supervised loss Ls. Both Ls

and Lu consist of the classification loss Lcls and regression loss Lreg. For more
details, please refer to Faster RCNN [17]. The overall loss for semi-supervised
object detection is defined as:

L = Ls + λLu, (2)

Ls =
1

Ns
(

Ns∑
i=1

(Lcls(si, yi) + (Lreg(si, yi))), (3)

Lu =
1

Nu
(

Nu∑
i=1

(Lcls(ui, pi) + (Lreg(ui, pi))), (4)

where λ indicates unsupervised loss weight.

3.1 Diverse Learner

Existing most semi-supervised object detection methods adopt teacher-student
framework. However, in the traditional framework teacher and student models
tend to lose their distinctiveness in the late of training stage and this will cause
a less informative teacher problem. We further illustrate this phenomenon in
Figure 1 where the similarity metric is calculated by

Similarity =
1

Nc

Nc∑
i=1

M c
tea

⋂
M c

stu

M c
tea

⋃
M c

stu

, (5)

where Nc is the number of classes. M c
tea is obtained by aggregating all detection

results of class c produced by the teacher. The aggregation process is performed
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Fig. 1. Evaluation of models trained with 1% labeled images on COCO-val dataset.
Similarity between predictions of two models. T1, T2, S2 denote teacher1, teacher2, stu-
dent2 models respectively in our diverse learner framework. T and S represent teacher
and student models in a traditional one paired teacher-student model correspondingly.

by setting the foreground area to 1 and background area to 0, thus generating a
binary mask for each class. M c

stu is generated by similar process. This similarity
metric measures the prediction consistency between the teacher and the student.
Obviously, as the training iteration increases, the predictions of the teacher and
the student tend to be more similar, which manifests that the teacher becomes
less informative and thus limits further performance improvement (the blue line
in Figure 1).

We observe in Figure 1 that for two pairs of randomly initialized teacher-
student models, the teachers exhibit a small similarity score at the beginning
of the training (the orange line in Figure 1). This leads us to ponder: can this
discrepancy be maintained in the two paired teacher-student models where the
teacher in one pair supervises the student in the other pair? In this paper, we
argue that the diverse supervision strategy does create distinctive teachers as
the training proceeds (see the red and orange lines in Figure 1). The underlying
working principle is three-fold: (1) our diverse learner framework creates two
different learners of the same unlabeled input image through differently initial-
ized teachers; (2) the evolution of one pair of teacher-student models receive
diverse supervisory signal (pseudo labels) from the other pair, which alleviates
the less informative teacher problem mentioned above; (3) the teacher in one
pair is regularized by its corresponding student to maintain its distinctiveness,
which prevents itself from overfitting to the supervision signal from the other
pair.

Our proposed diverse learner adopts diverse supervision strategy, as shown
in Figure 2(a), students are supervised by the counterpart teacher instead of the
paired teacher. Specifically, we apply two randomly chosen weak augmentations
W1,W2 to the unlabeled input images U and feed them to each teacher to obtain
pseudo labels Ptea1, Ptea2 correspondingly. Ptea1, Ptea2 act as diverse supervising
signal for the counterpart student student2, student1. Formally:

Ptea1 = ft (W1(U), θtea1) , (6)
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T1->S2

Pseudo Label-Aware Erasing
（PLAE）

Multi Threshold
Classification Loss

(MTC)

Weak
Aug
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Aug

Pseudo Labels

EMA EMA Certain
Label

Uncertain
Label

Unlabeled

Pair1 Pair2

(b)T1->S2(a)

Diverse
Supervision

Teacher1 Student2

Student1 Teacher2

Teacher1

Student2

T2->S1

Fig. 2. Overview of our proposed Diverse Learner (DL) framework. (a) Framework
Abstraction. It contains two learners, each consists of a pair of teacher-student mod-
els, where the teacher is updated by the student using EMA. In order to maintain
the distinctiveness of the teacher against the student in each learner, each student
receives diverse supervision from the teacher of the counterpart learner in each train-
ing iteration. All these models are randomly initialized. (b) Detailed Framework
and Training Procedure. For simplicity, here we only illustrate supervision process
of teacher1 and student2 on the unlabeled data in each training iteration, and the
process of teacher2 and student1 is similar. Specifically, weak-augmented unlabeled
images are fed to teacher1 to generate pseudo labels. Then we divide pseudo labels
into certain labels and uncertain labels. On one hand, we devise a Pseudo Label-Aware
Erasing (PLAE) module to enhance the strong augmentation for the training samples
of the student2 model. On the other hand, we propose to calculate a Multi-Threshold
Classification Loss (MTC) which treats certain labels and uncertain labels differently
for supervising student2.

Ptea2 = ft (W2(U), θtea2) , (7)

where ft(∗) represents the inference process of teacher, θtea1, θtea2 are the net-
work parameters of teacher1 and teacher2, respectively. In order to further intro-
duce diversity between two learners, both θtea1 and θtea2 are randomly initialized.

Similarly, students’ inputs are generated by two randomly chosen strong aug-
mentation operations S1, S2. We define the unsupervised loss as:

Lu = Lstu1
u + Lstu2

u , (8)

Lstu1
u = Lu(fs(S1(U), θstu1), Ptea2), (9)

Lstu2
u = Lu(fs(S2(U), θstu2), Ptea1), (10)

where fs(∗) represents the prediction process of student, θstu1, θstu2 are the
network parameters of the two students. In each training iteration, the teacher
is updated by the student in the same pair learner via EMA,

θtea1 ← αθtea1 + (1− α)θstu1, (11)

θtea2 ← αθtea2 + (1− α)θstu2, (12)

Besides, when only one single pair of teacher-student is applied, once the
teacher produces a wrong pseudo label for the unlabeled data, there is little
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(a) (b)

human

cake Dining table

bench

umbrella kite

human human

human human

Fig. 3. Examples of the pseudo labels generated by diverse learner. Red boxes denote
false predictions while green boxes stand for correct predictions. (a) Predictions of
teacher1; (b) Predictions of teacher2.

chance that the noise can eliminated in the subsequent training process. However,
our proposed diverse learner framework makes this rectification possible. As
shown in Figure 3, although some wrong pseudo labels such as the red boxes exist
in one teacher model, another teacher still keeps the opportunity for generating
correct labels.

3.2 Multi-Threshold Classification Loss

A common way [20, 13, 24] to ensure the precision of pseudo labels is setting
a high threshold to filter unreliable labels, while this strategy brings another
problem that only few pseudo labels can remain after the filtering so that many
correct labels are treated as background by mistake. Figure 4 shows that in
standard teacher-student framework, high precision of pseudo labels comes with
the cost of low recall. On the contrary, when confidence threshold decreases,
although recall of pseudo labels increases, precision declines significantly. Thus,
it is not feasible to simply set a threshold to determine whether the pseudo label
is foreground or background.

Based on such observation, we propose a Multi-Threshold Classification Loss,
which deals with the pseudo labels differently according to the classification
score. Specifically, we denote a lower bound threshold as δl and an upper bound
threshold as δu. Then, we divide the pseudo labels pj into two categories: uncer-
tain pseudo labels pjuncertain and certain pseudo labels pjcertain :

pj =

{
pjuncertain δl ≤ cj ≤ δu
pjcertain otherwise

(13)

For the pseudo labels whose cj are higher than δu or lower than δl, we believe
that these pjcertain are reliable thus we follow the standard object detection task’s

setting, which adopts one-hot label yjhard and cross entropy loss.

For those pjuncertain whose cj are in the uncertain interval [δl,δu], we use the

classification score of pjuncertain as soft label yjsoft instead of one hot label yjhard
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Fig. 4. precision and recall under different threshold in traditional teacher-student
framework

since soft labels retain the estimations over all categories thus tolerate noisy
predictions well in the uncertain interval. Next, to deal with these uncertain
pseudo labels, we mainly propose following three methods:

1. Neglect loss: neglect all Puncertain, i.e. loss function is not calculated.
2. Binary cross entropy loss : neglect the specific class of Puncertain, only

compute the binary cross entropy loss of foreground/background.
3. KL divergence loss: compute the KL divergence loss of Puncertain.

We find that the KL divergence loss achieves the best performance (see Ta-
ble 5), thus the final Multi-Threshold Classification Loss for unlabeled data is
defined as follows:

Lj
MTC =

{
KL(yjsoft||p

j
uncertain), δl ≤ cj ≤ δu

CE(yjhard, p
j
certain), otherwise

(14)

where KL and CE stand for KL divergence loss and cross entropy loss, re-
spectively. By replacing Lcls with LMTC , the final unsupervised loss LU is:

Lu =
1

Nu
(

Nu∑
i=1

(LMTC(ui, pi) + (Lreg(ui, pi))) (15)

3.3 Pseudo Label-Aware Erasing

In addition to employing Multi-Threshold Classification loss in classification
branch, in order to further make full utilization of certain foreground pseudo
labels, we introduce pseudo label-aware erasing which randomly erases some
content inside these high confidence pseudo boxes.

In previous works [20, 24, 21], random erasing [28] on the whole image are
widely utilized as a way of strong augmentation. We observe two major draw-
backs when the random erasing is performed on the whole image. Firstly, the
erased areas are likely to locate in the background, as shown in the first row
of figure 5(c). This is ineffective for training object detection models since the
appearance of foreground objects are unchanged. Secondly, for object detection
task, image level random erasing is possible to obscure objects completely, as
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(a) (b) (c) (d)

Fig. 5. (a)the original images; (b)green boxes mean pseudo labels; (c)the effect of
random erasing; (d)the effect of our pseudo label-aware erasing. Red boxes indicate
erasing regions.

shown in the second row in Figure 5(c). This will definitely mislead students and
harms the whole training process.

Figure 5(d) shows our proposed pseudo label-aware erasing strategy on the
unlabeled data. We take the pseudo label’s location information into account
and only random erase the objects inside the pseudo bounding box according to
a certain proportion. Comparing with image level random erasing method, this
erasing strategy pays more attention to foreground area and does not have the
risk of dispelling the objects completely.

4 Experiments

4.1 Experiments Setting

Datasets.We validate the efficacy of our method on the MS-COCO dataset [12].
The original COCO-standard set contains 118K labeled images, COCO-additional
set contains 123K unlabeled images and COCO-val set contains 5K images. Fol-
lowing the previous works [13, 24], two experimental settings are used: (1)Par-
tially labeled data: we randomly sample 1%, 5% and 10% of the labeled training
data from COCO-standard as a labeled training set and form the rest data into
the unlabeled training data. (2)Fully Labeled data: we utilize the full labeled
data in COCO-standard as training data set and COCO-additional as the un-
labeled data set. We analyze the above settings on COCO-val set using mean
average precision(mAP) as the evaluation metrics.
Implementation Detail. For fair comparison, we follow the previous works [20,
13, 24], using Faster-RCNN [17] with FPN [10] as our detection framework. We
initialize the parameters of backbones in four models with the Resnet-50 [5]
pre-trained on ImageNet and the parameters of detection heads randomly. In
regression branch, we use box-jittering strategy mentioned in Soft Teacher [24].
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For partially labeled data, we train models for 180k iterations, and set un-
supervised loss weight λ to 4.0, batch size to 40, unlabeled data sampling ratio
to 0.2. For fully labeled data, we train models for 720k iterations, and set un-
supervised loss weight λ to 2.0, batch size to 64, unlabeled data sampling ratio
to 0.5. And we set EMA update parameter α to 0.999 in both partially labeled
data and fully labeled data setting.

For the multi-threshold classification loss, we set lower bound confidence
threshold δl = 0.8 and upper bound confidence threshold δu = 0.9. We apply
pseudo label-aware erasing strategy to bounding boxes with confidence score
higher than 0.9 since 80000 iteration to meet the demand of accurate bound-
ing box locations. Besides, we utilize random resize and horizontal flip as weak
augmentation and strong augmentation contains random erasing, rotation, color
jittering, etc.

In inference, since two teacher models both achieve high performance, we
report the performance of the better teacher model.

4.2 Results

Partially labeled data. We first compare our method with previous state-of-
the-art methods with 1%, 5% and 10% labeled data from MS-COCO. As shown
in Table 1, our method achieves the SOTA performance under all three settings.
Diverse learner outperforms the latest best method Soft Teacher [24] by 2.10%,
1.50% and 0.83% under 1%, 5% and 10% setting respectively. It is worth men-
tioning that diverse learner outperforms other methods especially when labeled
data is extremely rare.

Table 1. Comparsion with CSD [7], STAC [20], Unbiased Teacher [13], Humble
Teacher [21], Instant Teaching [29] and Soft Teacher [24] on MS-COCO dataset with
partially labeled data setting.

Method 1%COCO 5%COCO 10%COCO

supervised 10.0 20.92 26.94
CSD [7] 10.51 18.63 22.46

STAC [20] 13.97 21.18 26.18
Humble Teacher [21] 16.98 27.70 31.61
Instant Teaching [29] 18.05 26.75 30.40
Unbiased Teacher [13] 20.75 28.27 31.50
Soft Teacher [24]⋆ 21.62 30.42 33.78

Ours 23.72 31.92 34.61

Fully labeled data. Aside from the excellent performance on the partially
labeled dataset, we also show that our method can surpass other methods

⋆ Metrics reported on Soft Teacher’s official Github repo.
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Table 2. Results on fully labeled data comparison with with CSD [7], STAC [20],
Unbiased Teacher [13], Humble Teacher [21], Instant Teaching [29] and Soft Teacher [24]

Method mAP

supervised 40.89
CSD [7] 38.82

STAC [20] 39.21
Humble Teacher [21] 42.37
Instant Teaching [29] 40.20
Unbiased Teacher [13] 41.30
Soft Teacher [24]⋆ 44.05

Ours 44.86

trained on fully labeled dataset. As shown in Table 2, our method exceeds Soft
Teacher [24] by 0.81% and reaches 44.86%, demonstrating the effectiveness of
diverse learner in case of large amount of labeled data and unlabeled data.

4.3 Ablation Study

In this section, in order to validate our key designs, we conduct extensive abla-
tion experiments using 1% labeled MS-COCO dataset. We choose the popular
STAC [20] framework as our baseline method which contains one pair of teacher-
student models with EMA strategy. Additionally, we apply the box jittering
techniques [24] to enhance the performance of the regression branch. Based on
the baseline method, we gradually integrate our proposed key designs and ablate
the effectiveness.

Table 3. Effect of all the key designs, we denote multi-threshold classification loss as
MTC, pseudo-label aware erasing as PLAE, diverse learner as DL and mutual learning
as ML.

No. MTC PLAE DL ML mAP

1 20.6
2

√
22.1 (+1.5)

3
√ √

22.7 (+2.1)
4

√ √ √
19.0 (-1.6)

5
√ √ √

23.7 (+3.1)

Effectiveness of MTC. Result NO.1 and NO.2 in Table 3 illustrate that train-
ing with MTC surpasses the baseline method over 1.5 points. For a better under-
standing of the effectiveness of MTC, we analyze the precision and recall values

⋆ Metrics reported on Soft Teacher’s official Github repo.
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(a) (b)

Fig. 6. Evaluation on COCO-val dataset under iou threshold=0.5. (a)Diverse learner
with multi-threshold classification loss(MTC) achieves almost the same precision as
diverse learner without MTC. (b)Diverse learner with MTC achieves much higher recall
than diverse learner without MTC.

during the training progress. As shown in Figure 6, when MTC is applied, the
recall increases significantly while the precision is maintained comparing with
the baseline.
Effectiveness of PLAE. As demonstrated by the result NO.2 and NO.3 in
Table 3, a further improvement of 0.6% mAP is achieved when PLAE strategy
is applied.
Effectiveness of Diverse Learner. Here we first ablate the effect of incor-
porating our proposed DL framework. As shown in result NO.5 in Table 3, DL
achieves another 1% improvement in mAP, reaching 23.7% mAP, which is 3.1%
better than our baseline. Secondly, in order to further ablate the effects of using
a teacher-student pair instead of one single model in each learner, we conduct ex-
periment of integrating the conventional mutual learning method [27]. As shown
in Figure 7, directly integrating mutual learning strategy (green line) leads to an
unstable training process thus harms the performance. We observe a severe drop
(1.6%) in mAP, as shown in the result NO.4 in Table 3. On the contrary, our
proposed DL framework enjoys merits from the mutual learning strategy while
successfully stabilizes the training using the teacher-student pair with the EMA
updating mechanism in each learner.

We calculate the average layer-wise cosine similarity of random-initialized
layers’ parameters between the teacher and student to measure the similarity
of the teacher student pair. Results show that our proposed DL successfully
reduces the similarity of the teacher and student from 0.9987 (traditional one
paired teacher student) to 0.1498 (teacher1 and student2 in diverse learner).

Table 4. The comparison of choosing different lower threshold in MTC. The upper
threshold is fixed to 0.9.

mAP@δl=0.6 mAP@δl=0.7 mAP@δl=0.8

Ours (w\o DL) 22.6 23.1 22.7
Ours 23.2 23.4 23.7
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Fig. 7. The curves of mAP values corresponding to each setting in Table 3 during the
training stage.

Threshold choice in MTC. We simply set upper threshold δu to 0.9 in our
experiment and explore the choice of lower threshold δl from 0.6 to 0.8 (shown
in Table 4) and 0.8 is the most suitable value for diverse learner.

Loss type for uncertain pseudo labels. As mentioned in Section 3.2, we
experiment three types of loss functions to deal with the uncertain pseudo labels:
neglect loss, binary cross entropy loss and KL divergence loss. The results of
applying different loss functions on the baseline with PLAE module are shown
in Table 5, KL divergence loss obtains the best performance.

Table 5. Effect of different types of loss functions for the uncertain pseudo labels.

Loss type mAP

neglect 21.2
binary cross entropy loss 22.2

KL divergence loss 22.7

5 Conclusions

We present a diverse learner framework with diverse supervision that could main-
tain the distinctiveness of the teacher against the student. We also introduce a
multi-threshold classification loss for a better utilization of both high-quality
pseudo labels and potential uncertain pseudo labels and devise a simple yet ef-
ficient pseudo label-aware erasing strategy. Extensive experiments demonstrate
the superiority of our method on the MS-COCO benchmark dataset. We will
extend diverse learner to more learners in the future work, and study more elab-
orate supervision signals between multiple learners.
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