A Closer Look at Invariances in Self-supervised
Learning for 3D Vision
—Supplementary Material—

Lanxiao 1i0000—0003—3267-2525] .14 Michael Heizmann[0000—0001—9339—2055]

Institute of Industrial Information Technology, Karlsruhe Institute of Technology,
Karlsruhe, Germany
{lanxiao.li, michael.heizmann}@kit.edu

Abstract. This document contains more technical details and experi-
mental results which complement our main paper.

A Data Augmentation

Data augmentations play an important role in successful self-supervised learning.
In Tab. 1, we summarize the applied approaches under our unified framework.
Note that most augmentations are only used for specific input formats, as our
framework supports various data formats and network structures.

B Fine-tuning Details

B.1 VoteNet

Network Structure. VoteNet [8] consists of a PointNet++ backbone [10], a
voting module and a detection module. The backbone encodes 20,000 input
points into 1024 feature points with 256 channels, which are further centralized
by the voting module. The detection module applies bounding box regression
based on the centralized features. The voting module and detection module
follow the structure of PointNet [9], which is implemented as a shared MLP.
Detection on SUN RGB-D. The training setup follows the original publica-
tion [8]. The SUN RGB-D dataset [11] contains ~10K RGB-D images. Following
the official train/val split, we use ~5K samples for the fine-tuning and evaluate
the performance on the rest. We train the model with batch size 8 on a single
NVIDIA 2080ti. We use an ADAM optimizer with an initial learning rate of 0.001
to train the network for 180 epochs. We decay the learning rate by 10 after 80,
120, and 160 epochs, respectively. As data augmentation, the point clouds are
randomly scaled, horizontally flipped, and rotated around the vertical axis. The
mean average precision (mAP) is calculated over 10 representative classes. For
a fair comparison with previous works, we use the vl annotation instead of v2.
We also apply a warm-up with 10 epochs, where only the voting and detection
module are updated, to stabilize the fine-tuning.

2 L. Li and M. Heizmann

Augmentation ‘ Target ‘ Parameters
Random Crop Raw | crop ratio in Uniform[0.7, 0.9]
Box Erase Crop | erase ratio in Uniform|[0.2, 0.4]
Left-right Flip D,ILP,V probability of 0.5
Front-back Flip PV probability of 0.5
Scale P,V |scaling factor in Uniform[0.7, 1.3]
Rotation: x-axis PV angle in Uniform[—7 /6, 7/6]
Rotation: y-axis PV angle in Uniform[—7 /6, 7/6]
Rotation: z-axis PV angle in Uniform[—7/3, 7/3]
Rotation: principle point| D,I angle in Uniform[—7 /6, 7/6]
Set Zeros D 20% percent of pixels
Sub-sample P randomly sample 20000 points
Translation V |distance in Uniform[-0.1m, 0.1m]
Gaussian Blur LV probability of 0.5, kernel size 5
Gray Scale LV probability of 0.2
Color Jitter LV probability of 0.8

Table 1: Data augmentations used in the pre-training. The column ’target’ de-
scribes the data to which the augmentations are applied. Raw: raw input of our
unified pipeline. Crop: a random crop from the raw input. D: depth map. I: color
image. P: point cloud. V: voxel. We assume that D, I, P and V are converted
from a Crop.

Detection on ScanNet. The ScanNet consists of ~1500 multi-view point
clouds. We follow the official train/val split and use ~1.2K scans for training
and ~300 for validation. We use the v2 annotation for a fair comparison with
previous works. The mAP is calculated over 18 representative classes. Other
configurations follow the SUN RGB-D training.

B.2 2.5D-VoteNet

Network Structure. Similar to VoteNet, a 2.5D-VoteNet consists of a 2D CNN
backbone, a voting module, and a detection module. The backbone encodes the
input depth map into a feature map with 8 times smaller scale and 256 channels.
Meanwhile, the depth map is scaled to the same resolution as the feature map.
The scaled depth map is then converted into a point cloud, to which the feature
map is registered. Then, the point features are processed by the voting and
detection module.

Detection on SUN RGB-D. Most configurations follow the VoteNet fine-
tuning. The main difference lies in the data augmentation due to different in-
put data. For 2.5D-VoteNet, the depth maps are randomly resized, horizontally
flipped, and rotated around the principle point, following the original publica-
tion [7]. Also, we apply warm-up to only train the voting and detection modules
in the first 10 epochs. For evaluation, the input size is fixed to 416x544.

A Closer Look at Invariances in Self-supervised Pre-training for 3D Vision 3

B.3 Sparse Residual U-Net for Segmentation

Network Structure. Since the voxel encoder used in our work is a U-shaped
network with the same input and output resolution, we simply modify the last
convolution layer to fit the number of classes and remove the last batch norm and
activation function for fine-tuning. Other layers are initialized with pre-trained
weights. Also, note that the voxel encoder supports both color (3 input channels)
and geometric (1 input channel) inputs. For semantic segmentation, the color
variant is used.

Segmentation on S3DIS. We follow the configurations in [4]. Specifically,
we use the Area 5 of S3DIS dataset [1] for validation. With this split, 199 point
clouds are used for training and 67 for validation. We use the SGD optimizer
with an initial learning rate 0.1 and batch size 6. We train the model for 60K
iterations and use polynomial learning rate decay with power 0.9 and step size
2000. The voxel size is fixed to 5 ¢m in the fine-tuning. Also, standard data
augmentations are applied e.g., random rotation, scaling, translation, and color
jitter. The mean intersection over union (mloU) is calculated over 13 classes.
Segmentation on ScanNet. We follow the official train/val split and use
~1.2K scans for training and ~300 for validation. We use batch size 7 and train
the model for 120K iterations. Other configurations follow the S3DIS training.

C DMore Experimental Results

C.1 Transfer on Synthetic Data

Network ‘ Input ‘From Scratch ‘ Pre-trained

PointNet++ Point Clouds 88.6 90.4
Sparse Residual U-Net Voxels 88.1 89.2

Table 2: Classification accuracy on ModelNet4(validation set.

In our main paper, we report the performance of the pre-trained encoders
(e.g., PointNet++, sparse residual U-Net) on object detection and semantic
segmentation tasks. The pre-training and fine-tuning use both the real-world
data from depth sensors. In this experiment, we investigate whether the pre-
trained features can generalize on synthetic data. To this end, we pre-train the
point cloud and voxel encoder with DPCo and DVCo respectively, and fine-tune
the encoders on ModelNet40 dataset [12], which consists of ~9.8K and ~2.4K
CAD models for training and validation, respectively. Note that the PointNet++
and sparse residual U-Net contain up-sampling layers to increase the resolution.
For the classification task, we skip the up-sampling layers and aggregate global
features at the lowest scale level.

4 L. Li and M. Heizmann

B - a Encoder Head Projektor
D j J Head J— -

EMA
m5> B Encoder == Head =— Projektor
| N

EMA _l
\;

A 11 P S W [LC R— ..o C25INE SITllEriEy
’ + Momentum + M.

" = AL [L —— Cosine Similarity

= + Momentum + M.

(a)
‘ E> y a Encoder H Head H Projektor]—

Share

;‘: . 7&
:> B Encoder == Head =— Projektor
N
Share
L

A T B T ..,| Cosine Similarity
BEnCOder wnn Head Cosine Slmlla”ty

(b)

Fig. 1: Non-contrastive self-supervised learning methods for 3D vision. (a) frame-
work following BYOL. (b) framework following SimSiam.

— with gradient
----- + no gradient

As shown in Tab. 2, the pre-trained weights generalize well on synthetic data.
The classification accuracy with point clouds and voxels is improved by 1.8% and
1.1% (absolute), respectively. Note that the baseline performance is lower than
the original PointNet++ paper [10], as our network configuration is specialized
for complex indoor scenes, which might be not suitable for simple single-object
synthetic data in ModelNet40.

C.2 Non-contrastive Methods

As introduced in the main paper, our pipeline uses a contrastive loss consisting of
alocal and a global sub-loss. The global sub-loss follows the well-known MoCo |[2,
6] contrastive scheme. In this experiment, we investigate whether our idea of
jointly pre-training a 2D and a 3D encoder works with non-contrastive methods
e.g. SimSiam [3] and BYOL [5].

In comparison to MoCo, BYOL applies the cosine similarity loss instead of
the contrastive loss. Also, it uses a projector to break the symmetry and prevent
the mode collapse. SimSiam further simplifies the BYOL pipeline by removing
the momentum encoder and sharing weights of the Siamese networks. To address
the mode collapse issue, SimSiam stops the gradient from back-propagation in

A Closer Look at Invariances in Self-supervised Pre-training for 3D Vision 5

one of the Siamese networks. Since SimSiam and BYOL are originally applied
for Siamese networks with the same structure and input formats, their pipelines
are modified in this work. As shown in Fig. 1, we still only calculate the losses
with features from different input formats, following the unified framework in
our main paper.

We jointly pre-train a depth map and a point cloud encoder using these non-
contrastive frameworks and fine-tune the point cloud encoder on the 3D object
detection task. For simplicity, we omit the local correspondence in this exper-
iment. Besides the aforementioned two methods, we also test an even simpler
end-to-end pipeline, which pre-trains the two encoders and projection heads end-
to-end and optimizes the cross-format similarity directly. It can be interpreted
as SimSiam without projectors and stop-gradient (see Fig. 1 (b)).

Pre-training [SUN RGB-D| ScanNet
AP25 AP50 [AP25 AP50

From Scatch | 58.4 33.3 | 60.0 37.6

BYOL 58.2 325 | 62.7 402
SimSiam 58.6 33.6 | 624 39.9
End-to-End | 585 340 | 625 39.7
DPCo (MoCo)| 59.4 34.9 | 63.8 41.0

Table 3: VoteNet fine-tuning results on point cloud object detection task. Only
the global correspondence is used in pre-training.

The results in Tab. 3 show that all pre-training methods significantly im-
prove the detection quality on ScanNet benchmark. However, the contrastive
method DPCo, which follows the idea of MoCoV?2, achieves better results than
non-contrastive methods. We believe that it’s because the pre-training data are
extracted from continuous RGB-D videos and contain a lot of similar (hard)
samples. To optimize the contrastive loss, the encoders must maximize the sim-
ilarity of positive pairs and the dissimilarity with negative samples. On the con-
trary, the non-contrastive methods don’t take into account the dissimilarity and
cannot benefit from hard samples. Moreover, the non-contrastive methods ei-
ther bring marginal improvement or degrade the performance on SUN RGB-D
dataset. It’s probably because SUN RGB-D benchmark is more challenging as
it contains more noisy data and requires oriented bounding box predictions in-
stead of axis-aligned ones. Another interesting result of this experiment is that
the simple end-to-end method shows good performance in fine-tuning. Note that
this method leads to mode collapse in the case of Siamese networks. To address
this issue, previous works introduce e.g. momentum encoders, memory banks,
unsymmetrical projectors, stop-gradients [2, 3,5, 6]. Since we use two different
encoders in this work, this problem is avoided without the bells and whistles.

6

L. Li and M. Heizmann

References

10.

11.

12.

. Armeni, I.; Sax, S., Zamir, A.R., Savarese, S.: Joint 2d-3d-semantic data for indoor

scene understanding. CoRR abs/1702.01105 (2017)

Chen, X., Fan, H., Girshick, R.B., He, K.: Improved baselines with
momentum contrastive learning. CoRR abs/2003.04297 (2020),
https://arxiv.org/abs/2003.04297

Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 15750-15758 (June 2021)

Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolu-
tional neural networks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3075-3084 (June 2019)

Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Do-
ersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., kavukcuoglu,
k., Munos, R., Valko, M.: Bootstrap your own latent - a new approach to self-
supervised learning. In: Advances in Neural Information Processing Systems.
vol. 33, pp. 21271-21284 (2020)

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2020)

Li, L., Heizmann, M.: 2.5D-VoteNet: Depth map based 3d object detection for
real-time applications. In: Britisch Machine Vision Conference (BMVC) (2021)
Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3d object detec-
tion in point clouds. In: The IEEE International Conference on Computer Vision
(ICCV). pp. 9277-9286 (October 2019)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for
3d classification and segmentation. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 652-660 (July 2017)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Guyon, 1., Luxburg, U.V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 30, pp. 5099-5108. Curran Associates, Inc. (2017)
Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: A RGB-D scene understand-
ing benchmark suite. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 567-576 (June 2015)

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2015)

