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Abstract. Self-supervised pre-training for 3D vision has drawn increas-
ing research interest in recent years. In order to learn informative rep-
resentations, a lot of previous works exploit invariances of 3D features,
e.g ., perspective-invariance between views of the same scene, modality-
invariance between depth and RGB images, format-invariance between
point clouds and voxels. Although they have achieved promising results,
previous researches lack a systematic and fair comparison of these in-
variances. To address this issue, our work, for the first time, introduces a
unified framework, under which various pre-training methods can be in-
vestigated. We conduct extensive experiments and provide a closer look
at the contributions of different invariances in 3D pre-training. Also,
we propose a simple but effective method that jointly pre-trains a 3D
encoder and a depth map encoder using contrastive learning. Models
pre-trained with our method gain significant performance boost in down-
stream tasks. For instance, a pre-trained VoteNet outperforms previous
methods on SUN RGB-D and ScanNet object detection benchmarks with
a clear margin.

Keywords: 3D Vision, Self-supervised Learning, Contrastive Learning,
Invariances, Point Clouds, Depth Maps

1 Introduction

In order to cope with challenging tasks e.g ., object detection, scene understand-
ing, and large-scale semantic segmentation, neural networks for 3D vision are
continuously becoming deeper, more complicated, and thus, more data-hungry.
In recent years, self-supervised pre-training has shown promising progress in nat-
ural language processing and computer vision. By learning powerful representa-
tions on non-annotated data, the models gain better performance and conver-
gence in downstream tasks. Self-supervised pre-training is especially appealing
in 3D vision because 3D annotation is more costly than the 2D counterpart.

Self-supervised pre-training for 3D vision has already gained some research
interests. A lot of previous works use contrastive learning as a pretext task to
pre-train models, as it has shown superior performance in other domains [22,29,
56, 62]. One classic hypothesis in contrastive learning is that a powerful repre-
sentation should model view-invariant factors. A common approach to creating
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Fig. 1: Invariances in contrastive learning for 3D vision. Without loss of gener-
ality, we only consider the local correspondence here. Each column includes two
views of the same scene. The exemplary correspondences across two views are
illustrated with arrows, which means the two points/pixels have the same co-
ordinate in the 3D space. In self-supervised pre-training, the similarity between
corresponding local features is maximized, which forces networks to learn in-
variance between views. (a) Perspective-invariance in two views of the same
scene from different view angles. We visualize RGD images instead of point
clouds for better clarity. (b) Modality-invariance in an aligned image-point
cloud pair. The data formats are also different in this case. But we still refer
to it as modality-invariance to distinguish it from the format-invariance within
a single modality. (c) Format-invariance between a depth map and a point
cloud converted from it.

different views is data augmentation. Moreover, a 3D scene can be captured from
various view angles, with different sensors (e.g ., RGB and depth cameras) and
represented with different formats (e.g ., voxels, point clouds, and depth maps)1,
whereas the major semantic information in the scene is not changed by these
factors. Thus, previous works exploit the perspective- [22, 56] , modality- [29]
and format-invariance [62] of 3D features in self-supervised learning, as shown
in Fig. 1. Although these works have shown impressive results, the contribution
of the invariances is still under-explored, and a fair and systematic comparison
of them hasn’t been performed yet.

In this work, we first establish a unified framework for 3D self-supervised
learning. Our framework takes into account the local point/pixel-level corre-
spondence as well as the global instance-level correspondence. Also, our frame-

1 To avoid ambiguity, we use the term data format instead of data representation in
this work.
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work unifies contrastive learning with different input data formats and network
structures, including Depth-Depth, Point-Point, Depth-Point, Image-Point, and
Point-Voxel. By comparing various training strategies exploiting different invari-
ances, we gain non-trivial results. The first insight of this work is that jointly
pre-training a 3D encoder and a 2D encoder (Image-Point, Depth-Point) brings
better performance than pre-training them separately or jointly pre-training two
encoders with the same dimension (e.g ., a voxel and a point cloud encoder, which
are both three dimensional).

Also, we propose the simple but effective idea to exploit the format-invariances
between depth maps and point clouds/voxels. Our intuition is that depth maps
are complementary to point clouds and voxels, although they contain almost the
same information. The depth map format has the advantage that it’s the natural
view of the scene and clearly shows the perspective relationship between objects.
Also, real-world depth maps usually contain bad pixels, which means the depth
values are unmeasurable. In depth maps, the outlines of unmeasurable regions are
sharp and clear, e.g ., the chair leg in Fig. 1 (c). On the contrary, this information
is lost if depth maps are lifted into 3D space. Moreover, thanks to its efficiency,
the 2D encoder allows high-resolution depth maps as input, which preserves
more fine-grained details in data. However, point or voxel-based networks usu-
ally take down-sampled or quantized input to avoid the excessive computational
cost and memory usage, which results in inevitable information loss. On the other
hand, point clouds and voxels are 3D formats and the corresponding networks
can directly capture accurate 3D geometry, whereas depth map-based networks
learn spatial relationships indirectly. Also, depth maps alone don’t contain the
information of camera calibrations. By contrasting the features extracted from
two complementary data formats, the two networks learn appreciated properties
from each other. This simple idea has less requirements on pre-training data and
outperforms previous methods in our experiments.

The contribution of this work is many-fold:

1. We introduce a unified self-supervised pre-training framework for all major
network types and data formats in 3D vision.

2. We provide a closer look at invariances in 3D pre-training, e.g ., format-,
perspective- and modality-invariance.

3. We propose a novel approach for 3D self-supervised pre-training, which is
based on the format-invariance between depth maps and points/voxels.

4. Our method reaches new SOTA results in multiple downstream tasks e.g .,
object detection on SUN RGB-D dataset [48] and ScanNet [11] dataset.

5. The proposed method is also the first self-supervised pre-training approach
for depth map-based networks.

2 Related Works

Feature Learning with 3D Data. PointNet [43] is the pioneer in deep learn-
ing methods for point clouds. To aggregate local information, PointNet++ [44]
down-samples and groups point clouds hierarchically. Recent works [27, 51, 54]
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define point convolution on point clouds. Voxel-based methods convert irregu-
lar point clouds to regular 3D grids and apply 3D convolution [34, 64] or deep
sliding windows [49]. Also, some works [10,16] introduce sparse CNNs to reduce
the computational cost and memory footprint. Some other works use 2D CNNs
to extract features from depth maps [26, 57, 58], LiDAR range images [4, 24, 28]
or pseudo images [23]. Also, a lot of works use more than one format of 3D
data [12, 23, 28, 33, 47]. They and our work share the same motivation to com-
bine the advantages of different data formats. However, our method learns the
appreciated property via contrastive learning in the pretext task. In fine-tuning
for downstream tasks, only one format is used.
Self-supervised Pre-training in Computer Vision. A lot of pretext tasks
for self-supervised learning has been proposed. Some generative approaches re-
cover images under some corruption, e.g ., auto-encoders for colorization [60,61]
and denoising [50]. Some discriminative approaches generate pseudo-labels for
e.g ., rotation prediction [15], Jigsaw puzzle solving [36] and objects tracking [52].
Recently, contrastive learning achieved impressive performance in self-supervised
learning [3,7,8,19,35,37]. Besides the instance-level discrimination, some works
also exploit the local correspondence for better transfer in tasks which need
dense features, e.g ., object detection and semantic segmentation [5, 39,53].
Self-supervised Pre-training for 3D Data. Some works [1,18,45,46] perform
self-supervised learning on synthetic data e.g ., ShapeNet [55]. However, these ap-
proaches don’t transfer well to real-world data [56]. PointContrast [56] first uses
real-world point cloud data for self-supervised training. It learns perspective-
invariance by predicting point-wise correspondence between two partially over-
lapping point clouds. Liu et al . [29] pre-train a 3D encoder by using a pre-trained
2D encoder as teacher. On the other hand, Liu et al . [32] propose a distillation
pipeline to improve 2D encoders by using geometry guidance from 3D encoders.
DepthContrast [62] extends the successful MoCo [8, 19] pipeline to 3D domain
and exploits the cross-format contrast between point clouds and voxels. Hou et
al . [22] propose spatial partition to improve the contrastive learning and inves-
tigate the data-efficiency and label-efficiency of pre-trained models.
Multi-modal Feature Fusion. The idea of learning from two complementary
sources is similar to data fusion. In 3D computer vision, a common practice is
to fuse the color and geometry information. A lot of fusing approaches have
been proposed, e.g ., for object detection [21,40,42,59] and salient object detec-
tion [14,25,57,63]. Some other works use self-supervised pre-training to improve
the feature fusion [30, 31]. The difference between fusing and contrasting multi-
modal features is that fusion enriches features by combining complementary
information from different modalities, while contrastive learning maximizes the
shared information between modalities.

3 Method

In this work, we intend to research the invariances in 3D self-supervised learning,
including perspective-, modality- and format-invariance. For a fair comparison,
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it’s meaningful to investigate them under a unified framework. In this section,
we first briefly revisit some representative works. Then, we introduce a unified
framework to which all previous methods fit. Moreover, we introduce several
contrastive learning methods under the unified framework. At last, we provide
technical details of the framework.

3.1 Unified Framework for 3D Constrastive Learning

In this work, we pay attention to three previous works. (1) PointContrast [56]:
it generates two views of the same scene from different perspectives and learns
the local correspondence between 3D points using a contrastive loss. (2) Depth-
Contrast [62]: following the successful MoCo pipeline [8, 19], it augments two
views of the same point cloud to build positive pairs and learn global correspon-
dences by distinguishing the positive samples from a large number of negative
samples. Also, it proposes to exploit cross-format contrast between point clouds
and voxels. (3) Pixel-to-point [29]: its overall pipeline is similar to PointContrast.
However, it learns local correspondences between point clouds and RGB images,
in order to benefit from strong pre-trained RGB encoders.

Therefore, a unified framework must support both the local and global corre-
spondence of 3D data and at least two different input types, either from different
modalities (e.g ., RGB images and point clouds) or with different data formats
(e.g ., depth maps and point clouds).
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β Encoder

α Encoder 
+ Momentum

β Encoder
+ Momentum

Point/Pixel-level 
Contrastive Loss

Instance-level 
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Fig. 2: A unified framework for 3D contrastive learning. Here, α and β refer to
data types, e.g ., point clouds, images, and depth maps.

We show our framework in Fig. 2, which uses a single-view depth map or
RGB-D image for simplicity. However, experiments show that the pre-trained
weights generalize well on reconstructed multi-view 3D scans. Without loss of
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generality, we assume the input of the framework is a depth map in this section.
We randomly crop the input to get crop C1, which is further randomly aug-
mented and converted into views α1 and β1. Here α and β refer to data formats
(e.g ., depth maps and point clouds, as visualized in Fig. 2). Then, α1 and β1 go
through respective encoders and are encoded into pixelwise or pointwise features
{xα} and {xβ}. Note that the α and β encoders are usually different networks
matching the input formats. But in the case of α = β, they share the weights,
following [56]. As α1 and β1 are generated from the same crop C1, the dense
correspondence between {xα} and {xβ} can be easily calculated without cam-
era extrinsic. In this work, we follow [56] and use InfoNCE loss to train dense
local correspondence, which is further explained in Sec. 3.3.

In order to learn informative representations, our framework also considers
the global correspondence between views. Following [62], we perform instance
discrimination based on global features qα and qβ , which are globally pooled
and projected from {xα} and {xβ}. To preserve a large number of negative
samples for effective contrastive learning, we use memory banks and momentum
encoders, following the successful MoCo pipeline [8,19]. However, in supplemen-
tary material, we further show that our methods can be generalized to other
pipelines, e.g . BYOL [17] and SimSiam [9].

Analog to crop C1, we randomly crop C2 from the same depth map, gen-
erate α2 and β2 and feed them to the momentum encoders. We refer to the
globally pooled and projected features from momentum encoders as kα and kβ ,
respectively. They are dynamically saved and updated in memory banks during
training. Note that unlike [62] our work only contrasts features from different
input formats, as we empirically found the gains from additional contrast within
the formats are marginal.

3.2 Variants of Strategies

As the overall framework is shown, we now introduce various contrastive learning
strategies under this framework. As shown in Fig. 3, we investigate the following
variants in this work:

1. DPCo (Depth-Point Contrast), our proposed method, which learns format-
invariance between depth maps and point clouds.

2. DVCo (Depth-Voxel Contrast), our proposed method, which learns format-
invariance between depth maps and voxels.

3. PVCo (Point-Voxel Contrast), which learns format-invariance between point
clouds and voxels. It’s extended from PointContrast [62].

4. PPCo (Point-Point Contrast), which only uses point clouds as input. It serves
as a baseline method as it only learns invariance against data augmentation.

5. IPCo (Image-Point Contrast), which learnsmodality-invarince between RGB
images and point clouds. It’s inspired by Pixel-to-point [29].

6. PointContrast [56], which learns perspective-invariance between view angles.
It can be interpreted as a special case of our unified framework, since it gen-
erates the crops C1 and C2 from two overlapping depth maps from different
view angles and only considers the local correspondence.
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Fig. 3: Contrastive learning strategies under a unified framework.

In this work, we propose to contrast a 3D format and a 2D format of the same
geometric data (i.e., DPCo and DVCo). Although they represent the same 3D
scene, the two formats are complementary to some extent. As discussed in Sec. 1,
point clouds and voxels directly represent 3D geometry while having inevitable
information loss due to sampling and bad pixels. On the contrary, depth maps
reserve more information but only represent the 3D scene indirectly. Experiment
results show that our methods bring significantly better performance than PPCo
and PVCo, which contrast only 3D formats.

3.3 Details

Point Cloud Encoder.We use a U-shaped PointNet++ [44] and follow the net-
work configuration in [41], which consists of 4 down-sampling and 2 up-sampling
modules. We use 20K points as input in the pre-training. The number of output
points is fixed to 1024.
Voxel Encoder. We use a sparse residual U-Net [10] with 34 convolution layers
to encode voxel inputs, following previous works [22,56]. We use the implemen-
tation of sparse convolution in [10]. For geometry-only input, we set all input
features to 1. For input with colors, we use normalized RGB values as input
features. In pre-training, we quantize inputs with the voxel size of 2.5 cm. The
output of the voxel encoder has the same resolution as the input.
Depth Map Encoder. We use the U-shaped 2D CNN in [26] as depth map
encoder. The network is a modified ResNet-34 [20] with relative depth convolu-
tion [26] and extra up-sampling layers. The input is resized and zero-padded to
352×352. The output is a feature map down-sampled with factor 8.
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Color Image Encoder. Analog to the depth map encoder, we use a ResNet-34
with extra up-sampling layers to encoder the RGB images. We initialize this en-
coder with the pre-trained weights on ImageNet [13], following the setup in [29].
Momentum Encoders and Projection Heads. The momentum encoders
have the same structure as the encoders. Their weights are updated via ex-
ponential moving average (EMA) from the corresponding encoders instead of
back-propagation. We use global max pooling to aggregate the global features.
The pooling layer is followed by an MLP consisting of 3 fully connected layers.
The intermediate and the output layer have 512 and 128 channels, respectively.
The projection heads of momentum encoders are updated via EMA as well.
Loss Functions. Our loss function consists of a local sub-loss Ll and a global
sub-loss Lg. The local sub-loss is an InfoNCE loss which optimizes the local
dense correspondence:

Ll, αβ = −
∑
i

log
exp(xα, i · xβ, i/τ)

exp(xα, i · xβ, i/τ) +
∑

j ̸=i exp(xα, i · xβ, j/τ)
(1)

With xα, i ∈ {xα} and xβ, j ∈ {xβ}. If the corresponding 3D coordinates of
feature vector xα, i and xβ, j are close, they’re considered as a positive pair and
have i = j. The temperature τ is a hyperparameter and is set to 0.07 in this
work. All features are L2-normalized before being fed into the loss function.

The global sub-loss is applied to optimize an instance discrimination task:

Lg, αβ = − log
exp(qα · kβ/τ)

exp(qα · kβ/τ) +
∑N−1

n=1 exp(qα · kβ, n/τ)
(2)

The vector qα refers to the global feature from the α encoder and kβ the global
feature from the β momentum encoder. Since qα and kβ are generated from the
same data sample, they make a positive pair. Features kβ, n correspond to other
samples and are read from a memory bank with the size N . We use N = 215 in
this work. Following previous works, we make our loss symmetric to α and β.
The total loss can be formulated as

L = Ll + Lg = 0.25 · (Ll, αβ + Ll, βα + Lg, αβ + Lg, βα) . (3)

Principally, L can be a weighted sum of Ll and Lg and the weighting factors can
be tuned. But we empirically found that the simple arithmetic average already
generates good results.
Data Augmentation. We randomly crop C1 and C2. Also, we randomly drop
a square area in each crop. We apply random rotation, scaling, and flipping to
the point clouds and voxels. We randomly rotate depth maps around principal
points and set 20% pixels on the depth map to zero. For RGB images, we apply
random color jitter, grayscale, and Gaussian blur.
Dataset. We use ScanNet [11] for the pre-training, following previous works [22,
31, 56, 62]. ScanNet is a large-scale indoor dataset, which contains about 1500
scans reconstructed from 2.5M RGB-D frames. We follow the official train/val
split and sample 78K frames (one in every 25 frames) from the train set.
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Training. We pre-train the encoders for 120 epochs. We use SGD optimizer
with momentum of 0.9 and an initial learning rate of 0.03. We train models on
two NVIDIA Tesla V100 GPUs with a total of 64 GB memory and use as large
batch size as it fits. The batch size of different strategies varies from 32 to 64.
The learning rate is decayed with a cosine schedule. The pre-training takes from
two to four days using PyTorch with Distributed Data Parallel.

More technical details can be found in the supplementary material.

4 Experiments and Results

In this section, we first briefly introduce the experimental setups. Then, we com-
pare and analyze different contrastive learning strategies in detail under our uni-
fied framework, to clarify the contribution of the invariances. Then, we compare
our method (DPCo) with state-of-the-art methods in the point cloud object de-
tection task. At last, we show transfer learning results of our methods on voxels
and depth maps. More experimental results can be found in the supplementary
material.

4.1 Invariances in 3D Self-supervised Pre-training

In this subsection, we focus on the performance of transfer learning on point
cloud-based 3D detection task, since we believe the 3D detection reflects the
encoder’s capability of capturing both semantic (i.e., objects classification) and
geometric (i.e., bounding box regression) information and is thus representative.
Also, 3D detection using raw points is well studied in previous works [6, 40–
42]. In this work, we fine-tune a VoteNet [41] with a PointNet++ backbone on
SUN RGB-D [48] and ScanNet [11] object detection benchmark. The evaluation
metrics are the mean Average Precision over the representative classes with the
threshold of 25% and 50% 3D-IoU (i.e., AP25 and AP50).
Comparison under the Unified Framework. In this experiment, we com-
pare various contrastive learning strategies under our unified framework. As
shown in Tab. 1, all pre-training methods deliver better results than training
from scratch in both 3D detection benchmarks. Note that ScanNet benchmark
uses point clouds reconstructed from multiple views. Our unified framework,
which assumes that the pre-training data are independent single depth maps or
RGB-D images, still significantly improves the detection results on this dataset.
It implies that the weights pre-trained on single-view data generalize well on
multi-view data.

The baseline strategy PPCo utilizes solely the invariance against data aug-
mentation. However, it surpasses PointContrast, which relies on extrinsic pa-
rameters, in two out of four metrics. It implies that with a proper design (in
our case, the local dense contrast and the MoCo-style instance discrimination),
the perspective-invariance is unnecessary in pre-training. A similar observation
is also reported in [62]. We hypothesize that in the instance discrimination sub-
problem, the network has to distinguish inputs from very similar view angles,
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as we extract training data from continuous RGB-D videos. This can be inter-
preted as hard example mining, which forces the network to focus on perspective-
relevant details. Thus, with the help of global correspondence in pre-training,
the encoders implicitly learn perspective-relevant information, but not necessar-
ily the invariance in this case.

Method Invariance Correspond. SUN RGB-D ScanNet
AP25 AP50 AP25 AP50

From Scratch - - 58.4 33.3 60.0 37.6

PPCo Augmentation Local+Global 58.6 34.9 62.6 39.5
PointContrast Perspective Local 59.6 34.1 62.8 38.1
PVCo Format (3D-3D) Local+Global 59.3 34.9 62.8 39.5
IPCo Modality Local+Global 60.2 35.5 63.9 40.9
DPCo (Ours) Format (2D-3D) Local+Global 59.8 35.6 64.2 41.5

Table 1: VoteNet fine-tuning performance of self-supervised pre-training strate-
gies with different invariances. We reproduce the results without pre-training
using the open-source code of [41], which are slightly better than the original
publication.

Moreover, PVCo, which contrasts features from point clouds and voxels,
brings slightly better though very similar results as PPCo. It’s probably due
to the nature of point clouds and voxels as they both represent 3D coordinates
directly. Also, PointNet++ is similar to 3D ConvNets, as it conducts convolution-
like local aggregation, uses shared weights in a sliding window manner, and has a
hierarchical topology with sub- and up-sampling. Thus, jointly pre-training voxel
and point cloud encoders bring limited benefits to the point cloud encoder, com-
pared to pre-training it alone. In this case, incorporating voxel features can be
interpreted as a strong data augmentation to point clouds.

However, IPCo and DPCo, which contrast a 2D data format (e.g ., color
images or depth maps) and a 3D format (e.g ., point clouds) achieve significantly
better results than PPCo and PVCo, which utilize only 3D formats. It confirms
our intuition that the 2D data format is complementary to the 3D format and
the correspondence between them can provide strong contrast in self-supervised
pre-training. More interestingly, our proposed method DPCo, which uses solely
the geometrical information, reaches on-par or better performance as the one
using both geometrical and color inputs (IPCo). This is an important advantage
in practice, as our method is applicable even if the RGB images are not available
or hard to align with depth maps. It also implies that the performance gains of
IPCo come probably not from the color information, but from other factors
e.g ., different resolutions and perspective fields of 2D and 3D networks. Another
advantage of DPCo is that it trains faster than PPCo and PVCo, thanks to the
efficiency of 2D CNN.
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Local and Global Correspondence. Our unified framework supports both
the local and global correspondence of 3D data in the pre-training. In the follow-
ing experiments, we investigate the contribution of each type of correspondence
separately. As shown in Tab. 2 and Tab. 3, using local and global correspondence
alone in the pre-training improves the performance of encoders. Also, compar-
ing with Tab. 1, it’s clear that combining them can bring further improvement,
which is also observed in 2D pre-training, as discussed in [53]. Moreover, Tab. 2
and Tab. 3 show similar trends as Tab. 1, where IPCo and DPCo show superior
performance over others. Interestingly, in Tab. 2 IPCo and DPCo achieve better
results than PointContrast even without the global correspondence.

Contrast SUN RGB-D ScanNet
AP25 AP50 AP25 AP50

w/o 58.4 33.3 60.0 37.6

PPCo 58.7 34.8 62.2 38.8
PVCo 59.1 34.6 62.2 39.0
PointCo. 59.6 34.1 62.8 38.1
IPCo 60.1 35.6 62.5 39.4
DPCo 59.6 35.1 64.2 40.5

Table 2: Different choices of local cor-
respondence in pre-training.

Contrast SUN RGB-D ScanNet
AP25 AP50 AP25 AP50

w/o 58.4 33.3 60.0 37.6

PPCo 59.3 35.1 62.7 39.3
PVCo 59.0 35.3 62.5 39.6
IPCo 59.4 34.5 63.3 40.2
DPCo 59.4 34.9 63.8 41.0

Table 3: Different choices of global cor-
respondence in pre-training.

Summary. Our observations concerning with the invariances can be summa-
rized as follows:

1. Explicit perspective-invariance in 3D self-supervised learning is unnecessary.
2. Format-invariance between 3D formats (e.g ., point clouds and voxels) im-

proves the performance but the gains are marginal.
3. Format-invariance between depth map and a 3D formats (e.g ., depth maps

and point clouds) significantly improves the performance, which is slightly
better than modality-invariance between point clouds and RGB-images but
has fewer requirements on the training data.

4.2 Comparison with SOTA Methods

In the previous subsection, our proposed method DPCo shows the best perfor-
mance among all variants. In this subsection, we compare it with other SOTA
self-supervised pre-training methods. Still, we use the fine-tuning performance
in point cloud object detection task as the metric. To obtain a strong supervised
baseline, we follow the setup in [26] and generate bounding box annotations for
single frames in ScanNet. Then, we pre-train a VoteNet with full supervision.
For a fair comparison, the supervised baseline and other self-supervised methods
use exactly the same number of frames for pre-training.
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In Tab. 4, we compare our methods with PointContrast [56], DepthCon-
trast [62], pixel-to-point [29] and the method of Hou et al . [22], which are al-
ready discussed in Sec. 2 and Sec. 3.1. As Tab. 4 shows, our method outperforms
other self-supervised pipelines in three metrics out of four. It even outperforms
the fully supervised baseline on ScanNet AP25 and AP50. Also, our method
has on-par performance on SUN RGB-D AP50 und ScanNet AP25 with the up-
scaled version of DepthContrast [62], which uses a 3-times larger network and
is pre-trained with 5-times more data. This result implies that the contribu-
tion of format-invariance between point clouds and depth maps is comparable
with scaling up the model capacity and the data amount. Also note that be-
sides depth maps (or the equivalence e.g ., range images) and camera intrinsic,
which are available in almost all 3D datasets, our method doesn’t require any
extra data, e.g ., color images and camera extrinsic, while a lot of SOTA methods
do [22,29,56].

Pre-training SUN RGB-D ScanNet
AP25 AP50 AP25 AP50

From Scatch 58.4 33.3 60.0 37.6

PointContrast [56] - 34.8 - 38.0
PointContrast (Ours) 59.5 34.0 61.6 38.2
Hou et al . [22] - - - 39.2
Pixel-to-point [29] 57.2 33.9 59.7 38.9
Pixel-to-point (Ours) 60.1 35.6 62.5 39.4
DepthContrast [62] 60.4 - 61.3 -
DPCo (Ours) 59.8 35.6 64.2 41.5

DepthContrast† [62] 61.6 35.5 64.0 42.9
Supervised 62.0 36.3 61.9 38.6

Table 4: Fine-tuning results of VoteNet on SUN RGB-D and ScanNet (scan-
level) object detection benchmark with different pre-traning methods. The ab-
sent values are not reported in original publications. We report the results of
PointContrast and pixel-to-point with our own implementations, as the original
papers use a voxel-based backbone instead of a PointNet++. Grayed methods
refer to results with extra data or annotations. Specifically, DepthContrast† [62]
uses a scaled PointNet++ backbone with 3× more parameters and is pre-trained
on both ScanNet and Redwood indoor RGB-D scan dataset [38].

4.3 Data Efficiency

One important goal of pre-training is to transfer the features to very small
datasets. To simulate this scenario, we randomly sample a small partition from
the downstream datasets (e.g ., 5%, 10%) and fine-tune a VoteNet with the back-
bone pre-trained by DPCo. Experiments with the same percentage share the
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same data samples. The validation set is not sampled. As shown in Fig. 4 and
Fig. 5, the pre-training brings more improvement, when less fine-tuning data are
available. The trend is more obvious on ScanNet, as it contains fewer training
samples than SUN RGB-D (1.2K vs. 5K in total). Especially, the DPCo pre-
training boosts the AP25 on ScanNet from 13.3% to 36.5% and the AP50 from
2.4% to 14.4%, when only 5% of training data are used.
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Fig. 4: Detection results on SUN RGB-
D with reduced amount of data.
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Fig. 5: Detection results on ScanNet
with reduced amount of data.

4.4 Transfer on Depth Map and Voxel Encoders

Till now, we only showed the transfer learning results of point cloud encoders
(PointNet++). In this subsection, we investigate the generalization of our meth-
ods (DPCo and DVCo) on the depth map and voxel encoders.
Depth Map Encoders. We fine-tune a 2.5D-VoteNet [26], which is a variant of
VoteNet with a depth map-based backbone, by initializing its backbone with the
pre-trained weights. In order to clarify the contribution of format-invariance, we
also pre-train the depth map encoder with solely depth map input. This strategy
is similar to PPCo in Fig. 3 and we name it DDCo (Depth-Depth Contrast). Since
2.5D-VoteNet doesn’t support multi-view input, we only fine-tune it on SUN
RGB-D dataset. One surprising result in Tab. 5 is that the pre-training using
DDCo degrades the performance. As a depth map is an indirect representation of
3D coordinates, we hypothesize that DDCo makes the depth map encoder focus
on the 2D textures instead of the true 3D geometry, which can be interpreted as
cheating in the pre-training. It also implies that the pre-training of depth map
encoders is non-trivial and requires a careful design. However, our proposed
methods DPCo and DVCo consistently improve the detection results. Since the
point cloud and voxel encoders are able to capture 3D geometrical information
by their nature, they can provide guidance to the depth map encoder and prevent
the depth map encoder from paying too much attention to 2D patterns. Also,
combined with the results in Tab. 4, it’s worth noticing that DPCo improves
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the 3D and 2D encoders at the same time. It proves that the principle of our
methods is different from knowledge distillation (KD), which uses a stronger
model as a teacher to improve a weaker student model.

Pre-training AP25 AP50

From Scratch 60.8 36.9

DDCo 56.0 31.2
DVCo 61.0 39.3
DPCo 61.4 38.8

Table 5: Fine-tuning results of 2.5D-
VoteNet on SUN RGB-D dataset with
different contrasting strategies.

Pre-training S3DIS ScanNet

From Scratch 66.1 69.6

PVCo 66.6 70.3
DVCo 67.2 70.5

Table 6: Fine-tuning results of Sparse
3D ResNet in semantic segmentation
tasks. The evaluation metric is mean
IoU over classes (mIoU).

Voxel Transfer. To evaluate our methods on voxel-based networks, we use
DVCo to pre-train a voxel encoder and fine-tune it for semantic segmentation
on ScanNet [11] and S3DIS [2] dataset. We compare the performance with the
not pre-trained baseline and PVCo. As shown in Tab. 6, DVCo brings significant
improvement to the baseline on both segmentation tasks. The performance is also
higher than PVCo, which is consistent with the transfer learning results of point
cloud encoders.

5 Conclusion and Future Works

In this work, we establish a unified framework to fairly compare the contribution
of perspective-, format- and modality-invariance in 3D self-supervised learning.
With the help of our framework, we find out that contrasting a 3D data format
(e.g . point clouds and voxels) with a 2D data format (e.g . images and depth
maps) is especially beneficial. Moreover, we propose to contrast point clouds
or voxels with depth maps instead of RGB images, which brings better perfor-
mance and has fewer requirements on the training data than previous methods.
Experimental results show that our methods improve all types of encoders in 3D
vision, including point cloud, voxel, and depth map encoders.

Furthermore, some concerns deserve more research effort. For instance, in
our framework, we jointly pre-train two different encoders. Although they both
gain performance boost in downstream tasks, it’s still unclear, whether each
encoder has reached the optimum in the pre-training. In future work, we intend
to investigate the optimization and convergence of the joint pre-training.
Acknowledgement. Parts of this work were financed by Baden-Württemberg
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