
ConMatch: Semi-Supervised Learning with
Confidence-Guided Consistency Regularization

Jiwon Kim1,2⋆⋆⋆ and Youngjo Min1⋆⋆, Daehwan Kim3⋆⋆, Gyuseong Lee1,
Junyoung Seo1, Kwangrok Ryoo1, and Seungryong Kim1

1 Korea University
2 NAVER AI Lab

3 Samsung Electro-Mechanics

In this supplementary document, we provide additional experimental results
and implementation details to complement the main paper. The source code and
a pre-trained model will be released in the near future.

1 Implementation Details - Hyper-parameters

For a fair comparison, we basically followed the default hyperparameters of our
baselines, i.e., FixMatch [5] and FlexMatch [6] as demonstrated in the Sec 4.2 of
the main paper. In addition to this, we also provide the best hyperparameters
for the specific loss functions and each training stage, as shown in Table 1.

Table 1. Additional hyper-parameter list of ConMatch

Stage hyper-parameters

Feature encoder pre-training
λsup 1.0
λun 1.0

Confidence estimator pre-training
λconf 0.1

λconf-sup 1.0

Fine-tuning

λsup 1.0
λun 1.0
λccr 1.0
λconf 1.0

λconf-sup 1.0

2 Additional Experimental Results

Results of ConMatch with FixMatch Baseline Since our framework ba-
sically works as a plug-and-play module, it can be combined with various semi-
supervised learners. We experimented FlexMatch [6]-based ConMatch (Con-
Match with FlexMatch) on general semi-supervised learning benchmarks in Ta-
ble 1 and Table 2 of the main paper. In this supplementary material, we addi-
tionally provide the benchmark results of FixMatch [5]-based ConMatch (Con-
Match with FixMatch) on SVHN and STL-10 datasets. On SVHN with 40 labels

⋆ Work done in Korea University
⋆⋆ Equal contribution

2 J. Kim et al.

Table 2. Comparison on error rates on SVHN [4] and STL-10 [1] ben-
chamarks on 3 different folds.

SVHN STL-10
Method 40 250 1,000

FixMatch [5] 3.96±2.17 2.48±0.38 7.98±1.50
FlexMatch [6] 4.97±0.06 4.98±0.09 5.77±0.18
ConMatch w/FixMatch [5] 3.25±1.06 1.86±0.06 5.90±0.17
ConMatch w/FlexMatch [6] 3.14±0.57 3.13±0.72 5.26±0.04

and 250 labels, ConMatch with FixMatch records the state-of-the-art accuracy
of 96.75% and 98.14% respectively as displayed in Table 2. We could observe
that ConMatch with FixMatch shows similar or even better results than Con-
Match with FlexMatch on SVHN dataset. This is mainly due to the weakness
of FlexMatch [6] on the unbalanced dataset. While training feature encoder of
FlexMatch on SVHN, class-wise imbalance of SVHN leads the classes with fewer
samples to have low thresholds. Such low thresholds allow noisy pseudo-labeled
samples to be learned throughout the training process and eventually reduce
the accuracy of model’s prediction. A feature encoder of FixMatch, on the other
hand, is not affected by class-wise imbalance of dataset, since it fixes its threshold
at 0.95 to filter out noisy samples. Consequently, this performance gap between
two encoders caused by class-wise imbalance of dataset allows ConMatch with
FixMatch to achieve similar or even higher accuracy score than ConMatch with
FlexMatch.

Class-wise Results with Other SSL Techniques In Table 2 and Table 3 of
the main paper, we demonstrated that semi-supervised learners [5, 6] combined
with ConMatch outperform their baselines by a significant margin in most SSL
benchmark settings. Additionally, to provide a detailed analysis for our perfor-
mance results on CIFAR-10, we also performed a per-class quantitative evalua-
tion as shown in Table 3. ConMatch w/ [5] achieves performance improvement
over FixMatch in all the classes except for the dog class. Although FixMatch
seems to predict dog class better than any other models, its prediction for the
cat class, which is very similar to dog, obtains significantly low accuracy score.
This result shows that Fixmatch suffers from a confirmation bias, and its pre-
diction accuracy for dog class is a distorted value. ConMatch w/ [5] on the other
hand, records high accuracy score for all classes including cat class. This verifies
that ConMatch w/ [5] effectively alleviate the confirmation bias by making use
of confidence estimator. Furthermore, ConMatch w/ [6] outperforms its base-
line [6] on all classes. Based on all these class-wise evaluation and comparison
results, we could confirm the effectiveness of combining ConMatch with existing
semi-supervised learners.

Convergence Time. In this section, we analyze the effect of performance-
boosting of ConMatch on end-to-end training. Specifically, we analyze the time
taken to achieve the best accuracy of FixMatch [5], 86.19% in CIFAR-10 40
labels for a fair comparison between FixMatch [5], FlexMatch [6], and ConMatch

ConMatch 3

Table 3. Per-class quantitative evaluation on ConMatch and base semi-
supervised learners [5, 6] on CIFAR-10 with 40 labels. The best results are in
bold.

Methods air. auto. bird cat deer dog frog horse ship truck total

FixMatch [5] 94.3 97.6 72.6 28.1 96.6 94.1 98.1 95.6 97.5 96.6 87.11
FlexMatch [6] 96.8 98.1 92.3 88.0 95.8 88.7 98.3 97.1 98.4 97.2 95.07

ConMatch w/ [5] 97.2 97.7 90.9 86.0 96.9 88.6 98.7 97.2 97.6 97.9 94.87
ConMatch w/ [6] 97.1 98.5 92.9 88.1 96.0 91.8 98.9 97.6 98.7 97.4 95.70

Table 4. Comparison of Convergence Time between FixMatch and Con-
Match w/FixMatch Convergence time means the time taken to reach the highest
accuracy of FixMatch, 86.19%, in CIFAR-10 40 labels. Runtime is measured in the
same setting using RTX 3090 Ti. The best results are in bold.

Method Iter Convergence Time

FixMatch 261.9k 1,699 mins
ConMatch w/FixMatch 27.1k 117 mins

FlexMatch 44.6k 138 mins
ConMatch w/FlexMatch 20.3k 89 mins

due to their different convergence speeds. As seen from Table 4, FixMatch [5]
takes 261.9k iters to converge, 1,699 minutes, while ConMatch w/FixMatch [5]
converges at 27.1k iters, 117 minutes, which means that ConMatch can boost
convergence about 14.5 times faster. Additionally, ConMatch w/FlexMatch [6]
converges at 20.5k iters, 89 minutes, which is 1.5 times faster than FlexMatch [6]
which converges at 44.6k iters, 138 minutes.

3 Ablation Studies

Warm-up Iteration As mentioned in Sec.3.5 of the main paper, we adopt
the warm-up stage when training, to stabilize the confidence estimator at the
early stage of training and to boost the convergence of training. Therefore, it
can be the question that how many iterations of pre-training are we needed,
so we perform an ablation study of these warm-up iterations at CIFAR-10 40
labels setting, and the results are shown in Table 5. After warm-up iteration,
we perform the pre-training stage for confidence estimator for 10,000 iterations
equally for all ablation settings except for the end-to-end training strategy. While
without warm-up stage training results the accuracy of 93.24%, pre-training the
feature extractor 10,000 iterations and the confidence estimator 10,000 iterations
results 94.87% accuracy, showing 1.63% improvement compared to the end-to-
end training strategy.

Designing Confidence Estimator Network The overall confidence estima-
tion network, consisting of two sub-networks, is built as the collection of linear
layer and ReLU activations. To input the logit values and features into the

4 J. Kim et al.

Table 5. Ablation study on warm up iterations for feature encoder. The best
results are in bold.

Warm up iter.
CIFAR-10

40

0 93.24
1000 93.78
4000 94.87
5000 93.29
10000 93.10
20000 92.34

confidence estimator, it includes feature projection embedding and logit pro-
jection embedding. For the first variant of the confidence estimator, as shown
in Fig. 1(b), we reduce the channel dimension of each linear layer of the con-
fidence estimator by a factor of two, which is called reduced version. It shows
93.26% accuracy with the same evaluation setting, which is 0.91% increased re-
sults compared to the basic architecture as shown in Table 7 (I) and (II). Given
the distributions of all classes from the classifier, we find that passing a part of
it, especially masking the lower values of logit makes the estimator more robust
and working well, shown in Fig. 1(c). The performance gap between (II) and
(III) proves that the top-k approach is effective for the confidence estimator. We
also find that the best top-k value is set by k=5 and that masking top-k, logit
dimension is same as the number of class but masking class value, not belonging
to top-k, is better than reducing top-k, logit dimension is same as top-k. For the
final variant of the confidence estimator, we test the effect of BatchNorm [2] that
came after the linear layer and a detailed architecture for this version is shown
in Fig. 1(d). As shown in Table 7, (IV) record the best accuracy, 2.52%, 1.61%,
and 0.93% better than (I), (II) and (III), respectively.

Similarity Functions in Non-parametric Approach In this section, we
analyze the similarity function of the confidence estimation module in a non-
parametric approach. We assume that the confidence of a strongly-augmented
sample can be represented by the similarity between a weakly-augmented sample
α(r) and a strongly-augmented sample A(r) in a probabilistic way. As seen in
Eq.(4), we define a similarity function as a cross-entropy loss between the logit
of weakly-augmented sample and the logit of the strongly-augmented sample.
The similarity function can be substituted in other ways. Specifically, it can
be formulated by L2 distance like ∥pmodel(y|A(r); θ) − pmodel(y|α(r); θfreeze)∥
or feature cosine-similarity like pmodel(y|A(r);θ)·pmodel(y|α(r);θfreeze)

∥pmodel(y|A(r);θ)∥∥pmodel(y|α(r);θfreeze)∥ where pmodel

is considered as logit and feature, respectively. Table 7 shows the results of
replacing the similarity function with the L2 distance of logits and feature cosine-
similarity. Through the result, we can find that the similarity function based on
cross-entropy is the most effective confidence measure, compared to others.

ConMatch 5

ReLU
Linear

ReLU
Linear

ReLU
Linear 128x128

ReLU
Linear 128x128

Linear 128x1

Sigmoid

feature classifier
outputs

estimated confidence

Confidence Estimator Block
(basic)

(a) Basic.

ReLU
Linear

ReLU
Linear

ReLU
Linear 128x64

ReLU
Linear 64x32

Linear 32x1

Sigmoid

feature classifier
outputs

estimated confidence

Confidence Estimator Block
(reduced)

(b)Reduced.

ReLU
Linear

ReLU
Linear

ReLU
Linear

ReLU
Linear

Linear

Sigmoid

feature classifier
outputs

estimated confidence

Confidence Estimator Block
(top-k masking)

top-k masking

(c) Top-k.

ReLU
BN

Linear

ReLU
BN

Linear

ReLU

Linear

ReLU

Linear

Linear

Sigmoid

feature classifier
outputs

estimated confidence

Confidence Estimator Block
(w/ batchnorm)

BatchNorm

BatchNorm

BN BN

(d)BatchNorm.

Fig. 1. Network Architecture Variants for Confidence estimator: (a) Basic-The
number of parameters of linear layers is always constant. (b) Reduced-The number of
parameters decreases to a multiplier of 2 according to the depth of the linear layers.
(c)Top-k - The top-k values of the classifier outputs are only used for confidence esti-
mator, by masking class values that do not belong to the top-k. (d)BatchNorm.-Batch
normalization layer is followed by the linear layer.

Table 6. Ablation study on network architecture variants for confidence
estimator.The best results are in bold.

Network Arch. for Confidence estimator CIFAR-10
Basic Reduced Top-K BatchNorm 40

(I) ✓ ✗ ✗ ✗ 92.35
(II) ✗ ✓ ✗ ✗ 93.26
(III) ✗ ✓ ✓ ✗ 93.94
(IV) ✗ ✓ ✓ ✓ 94.87

4 Visualization

Visualization of AUC-ROC curve of Confidence. The area under the
ROC curve (AUC) is used for measuring the accuracy of a classifier and the
better confidence prediction is closer to 1. On confidence estimation, it is also
used to evaluate the capability of the confidence measure to distinguish correct
class assignments from erroneous ones. As shown in Fig. 2, for overall training
iterations, ConMatch w/ [5] and ConMatch w/ [6] show the higher AUC-ROC
value compared to each baseline, FixMatch [5], and FlexMatch [6]. This explains
that the confidence estimator measures the confidences of augmented instances
more properly than FixMatch and FlexMatch, which use max class probability
as the confidence measure. This will be also proven in the following section.

6 J. Kim et al.

Table 7. Ablation study on similarity functions in non-parametric ap-
proach.The best results are in bold.

Similarity Function Target
CIFAR-10

40

Cross Entropy logit 4.89
L2 Norm logit 4.93

Cosine Similarity feature 5.02

0 20k 40k 60k 80k

0.5

0.6

0.7

0.8

0.9

Ours w/ FixMatch
Ours w/ FlexMatch
FixMatch
FlexMatch

Fig. 2. AUC-ROC Curve of ConMatch with various baselines The orange line
means FlexMatch w/ ConMatch, the blue line means FixMatch w/ ConMatch, the red
line means FlexMatch, and the green line means original FixMatch, respectively.

Visualization on Transition of Confidence. To explain the effectiveness of
ConMatch, we show the feature distribution of ConMatch w/FixMatch [5], Con-
Match w/FlexMatch [6], compared to [5] and [6] at different training iterations
in Table 8, Table 9, Table 10 and Table 11, respectively. For visualizing the high
dimensional features, the complex feature matrices are transformed into two-
dimensional points based on t-SNE [3]. As training progresses, we can confirm
that t-SNE visualization of labeled and weakly-augmented samples are clustered
into distinct groups, relatively faster than baseline [5] by comparing Table 8 and
Table 9. And we can also find that confident strongly-augmented samples are
also well-organized near confident weakly-augmented samples.

The color of dots means the confidence of each sample. The darkest color
dot means the high-confidence instances, and the empty dot means the low- or
zero-confidence instances, whose confidence values are relatively lower. For Con-
Match, we consider the confidence estimator output as the confidence of each
instance, and for the FixMatch [5] and FlexMatch [6], we consider the maximum

ConMatch 7

probability of the output distribution as the confidence of each instance. Both
methods, ConMatch and FixMatch / FlexMatch show that the high-confident
strongly-augmented instances are closer to high-confident weakly-augmented in-
stances than the low-confident strongly-augmented instances. About FixMatch
and FlexMatch, they measure the confidence of the insufficiently clustered strongly
augmented samples as relatively high around 0.5, expressed as the light-blue color
of figures. Otherwise, different to FixMatch and FlexMatch, ConMatch shows
sharp changes in confidence values, distinguishing the high- and low-confidence
instances definitely so the insufficiently clustered samples have low confidence
values around zero, expressed as the empty circle of figures, even from the early
stage of training. By this visualization, we can confirm that our confidence es-
timator effectively measures the confidence of samples and makes possible the
training between the strongly augmented images.

8 J. Kim et al.

Con+Fix Labeled samples Weakly augmented samples Strongly augmented samples

10000 iter

30000 iter

50000 iter

70000 iter

90000 iter

Table 8. Visualization on the transitions feature distribution with confidence in Con-
Match w/FixMatch (denoted as blue dots in colors) of training samples from CIFAR-
10 in the feature space at different training stages. Data projection in 2-D space is
attained by t-SNE based on the feature representation. The dark blue dots represent
the most confident samples, and the empty dots represent the least confident samples.

ConMatch 9

FixMatch Labeled samples Weakly augmented samples Strongly augmented samples

10000 iter

30000 iter

50000 iter

70000 iter

90000 iter

Table 9. Visualization on the transitions feature distribution with confidence in Fix-
Match. The details are same as above.

10 J. Kim et al.

Con+Flex Labeled samples Weakly augmented samples Strongly augmented samples

10000 iter

30000 iter

50000 iter

70000 iter

90000 iter

Table 10. Visualization on the transitions feature distribution with confidence inCon-
Match w/FlexMatch. The details are same as above.

ConMatch 11

FlexMatch Labeled samples Weakly augmented samples Strongly augmented samples

10000 iter

30000 iter

50000 iter

70000 iter

90000 iter

Table 11. Visualization on the transitions feature distribution with confidence in Flex-
Match. The details are same as above.

12 J. Kim et al.

References

1. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: AISTATS (2011)

2. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

3. Va der Maaten, L., Hinton, G.: Visualizing data using t-sne. JMLR (2008)
4. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in

natural images with unsupervised feature learning (2011)
5. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk,

E.D., Kurakin, A., Li, C.L.: Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In: NeurIPS (2020)

6. Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M., Shinozaki, T.:
Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In:
NeurIPS (2021)

	ConMatch: Semi-Supervised Learning with Confidence-Guided Consistency Regularization

