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Abstract. We present a novel semi-supervised learning framework that
intelligently leverages the consistency regularization between the model’s
predictions from two strongly-augmented views of an image, weighted
by a confidence of pseudo-label, dubbed ConMatch. While the latest
semi-supervised learning methods use weakly- and strongly-augmented
views of an image to define a directional consistency loss, how to define
such direction for the consistency regularization between two strongly-
augmented views remains unexplored. To account for this, we present
novel confidence measures for pseudo-labels from strongly-augmented
views by means of weakly-augmented view as an anchor in non-parametric
and parametric approaches. Especially, in parametric approach, we present,
for the first time, to learn the confidence of pseudo-label within the net-
works, which is learned with backbone model in an end-to-end manner. In
addition, we also present a stage-wise training to boost the convergence
of training. When incorporated in existing semi-supervised learners, Con-
Match consistently boosts the performance. We conduct experiments to
demonstrate the effectiveness of our ConMatch over the latest methods
and provide extensive ablation studies. Code has been made publicly
available at https://github.com/JiwonCocoder/ConMatch

1 Introduction

Semi-supervised learning has emerged as an attractive solution to mitigate the
reliance on large labeled data, which is often laborious to obtain, and intelligently
leverage a large amount of unlabeled data, to the point of being deployed in many
computer vision applications, especially image classification [38, 51, 53]. Gener-
ally, this task have adopted pseudo-labeling [1,19,29,38,44,49,59] or consistency
regularization [17, 23, 28, 34, 46, 51]. Some methods [4, 5, 40, 45, 50, 52, 56] pro-
posed to integrate both approaches in a unified framework, which is often called
holistic approach. As one of pioneering works, FixMatch [45] first generates a
pseudo-label from the model’s prediction on the weakly-augmented instance and
then encourages the prediction from the strongly-augmented instance to follow
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the pseudo-label. Their success inspired many variants that use, e.g., curriculum
learning [52,56].

On the other hand, concurrent to the race for better semi-supervised learning
methods [45,52,56], substantial progress has been made in self-supervised repre-
sentation learning, especially with contrastive learning [3,6,8,10,20,22], aiming
at learning a task-agnostic feature representation without any supervision, which
can be well transferred to the downstream tasks. Formally, they encourage the
features extracted from two differently-augmented images to be pulled against
each other, which injects some invariance or robustness into the models. Not
surprisingly, semi-supervised learning frameworks can definitely benefit from
self-supervised representation learning [24, 32, 33] in that good representation
from the feature encoder yields better performance with semi-supervised learn-
ing, and thus, some methods [24,32] attempt to combine the aforementioned two
paradigms to boost the performance by achieving the better feature encoder.

Extending techniques presented in existing self-supervised representation learn-
ing [3, 6, 8, 10, 20, 22], which only focus on learning feature encoder, to further
consider the model’s prediction itself would be an appealing solution to effec-
tively combine the two paradigms, which allows for boosting not only feature
encoder but also classifier. However, compared to feature representation learn-
ing [3, 6, 8, 10, 20, 22], the consistency between the model’s predictions from two
different augmentations should be defined by considering which direction is bet-
ter to achieve not only invariance but also high accuracy in image classification.
Without this, simply pulling the model’s predictions as done in [3,6,8,10,20,22]
may hinder the classifier output, thereby decreasing the accuracy.

In this paper, we present a novel framework for semi-supervised learning,
dubbed ConMatch, that intelligently leverages the confidence-guided consistency
regularization between the model’s predictions from two strongly-augmented
images. Built upon conventional frameworks [45, 56], we consider two strongly-
augmented images and one weakly-augmented image, and define the consistency
between the model’s predictions from two strongly-augmented images, while
still using an unsupervised loss between the model’s predictions from one of the
strongly-augmented images and the weakly-augmented image, as done in [45,56].
Since defining the direction of consistency regularization between two strongly-
augmented images is of prime importance, rather than selecting in a determin-
istic manner, we present a probabilistic technique by measuring the confidence
of pseudo-labels from each strongly-augmented image, and weighting the consis-
tency loss with this confidence. To measure the confidence of pseudo-labels, we
present two techniques, including non-parametric and parametric approaches.
With this confidence-guided consistency regularization, our framework dramat-
ically boosts the performance of existing semi-supervised learners [45, 56]. In
addition, we also present a stage-wise training scheme to boost the convergence
of training. Our framework is a plug-and-play module, and thus various semi-
supervised learners [4, 24, 32, 33, 45, 50, 52, 56] can benefit from our framework.
We briefly summarize our method with other highly relevant works in semi-
supervised learning in Table 1. Experimental results and ablation studies show
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Table 1. Comparison of our ConMatch to other relevant works which have
a form of consistency regularization combining pseudo-labeling [5,24,32,33,
45,52,56]

MixMatch FixMatch FlexMatch Dash SelfMatch CoMatch LESS ConMatch
[5] [45] [56] [52] [24] [32] [33] (Ours)

Using pseudo-labeling ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Using two strong branches ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Learning confidence measure ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Using stage-wise training ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

that the proposed framework not only boosts the convergence but also achieves
the state-of-the-art performance on most standard benchmarks [12,27,35].

2 Related Works

Semi-supervised Learning. Semi-supervised learning has been an effective
paradigm for leveraging an abundance of unlabeled data along with limited la-
beled data. For this task, various methods such as pseudo-labeling [19, 29] and
consistency regularization [28,42,46] have been proposed. In pseudo-labeling [29],
a model uses unlabeled samples with high confidence as training targets, which
reduces the density of data points at the decision boundary [19,41]. Consistency
regularization has been first introduced by π-model [42], which is further im-
proved by numerous following works [17, 23, 28, 34, 46, 51]. In the consistency
regularization, the model should minimize the distance between the model’s
predictions when fed perturbed versions of the input [23, 28, 34, 37, 46, 49, 51] or
the model [23, 28, 37, 46, 51, 57]. Very recently, advanced consistency regulariza-
tion methods [4,45,50] have been introduced by combining with pseudo-labeling.
These methods show high accuracy, comparable to supervised learning in a fully-
labeled setting, e.g., ICT [48], MixMatch [5], UDA [50], ReMixMatch [4], and
FixMatch [45]. The aforementioned methods can be highly boosted by simulta-
neously considering the techniques proposed in recent self-supervised represen-
tation learning methods [3, 6, 8, 20,22].

Self-supervised Representation Learning. Self-supervised representation
learning has recently attracted much attention [3, 6, 8, 16, 18, 20, 22, 36, 58] due
to its competitive performance. Specifically, contrastive learning [3, 6, 8, 20, 22]
becomes a dominant framework. It formally maximizes the agreement between
different augmented views of the same image [16,18,36,58]. Most previous meth-
ods benefit from a large amount of negative pairs to preclude constant outputs
and avoid a collapse problem [8]. An alternative to approximate the loss is to
use cluster-based approach by discriminating between groups of images with
similar features [6]. Some methods [10, 20] mitigated to use negative samples
by using a momentum encoder [20] and a stop-gradient technique [10]. The
aforementioned methods applied the consistency loss at the feature-level, un-
like recent semi-supervised learning methods [45, 56] that consider the consis-
tency loss in the logit-level, which may not be optimal to be incorporated with
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Fig. 1. Conceptual illustration of existing methods that leverage unlabeled
data: (a) semi-supervised learning- the model uses the model’s prediction itself to
produce a pseudo-label for unlabeled data [4, 5, 17, 28, 29, 34, 42, 45, 46, 48, 50], (b) self-
supervised representation learning- the model is learned to generate the same feature
embedding for two augmented views from unlabeled data [3, 6, 8, 10, 20, 20, 22], and
(c) semi-supervised learning with self-supervision representation learning- the model
simultaneously learns a feature representation with self-supervised representation loss,
while learning all the networks with semi-supervised learning [24,32,33].

semi-supervised learners. Formulating the consistency loss in the logit-level as
self-supervision is challenging because a direction between two augmented views
should be determined. Without this, simply pulling the model’s predictions as
done in [3,6,8,10,20,22] may hinder the classifier output, thereby decreasing the
accuracy.

Self-supervision in Semi-supervised Learning. Many recent state-of-the-
art semi-supervised learning methods adopt the self-supervised representation
learning methods [9,55] to jointly learn good feature representation. Self-supervised
pre-training, followed by supervised fine-tuning, has shown strong performance
on semi-supervised learning settings. Specifically, SelfMatch [24] adopted Sim-
CLR [8] for self-supervised pre-training and FixMatch [45] for semi-supervised
fine-tuning. However, it may learn sub-optimal representation for the image clas-
sification task due to the task-agnostic learning. On the other hand, some meth-
ods [30, 32] unify pseudo-labeling and self-supervised learning. [31] alternates
between self- and semi-supervised learning. There lacks a study to effectively
use self-supervision, rather than simply adopting this.

Confidence Estimation in Semi-supervised Learning. In semi-supervised
learning, a confidence-based strategy has been widely used along with pseudo
labeling so that the unlabeled data are used only when the predictions are suf-
ficiently confident. Such confidence in pseudo-labeling has been often measured
by the peak values of the predicted probability distribution [40, 45, 50, 52, 56].
Although the selection of unlabeled samples with high confidence predictions
moves decision boundaries to low density regions [7], many of these selected
predictions are incorrect due to the poor calibration of neural networks [21],
which has the discrepancy between the confidence level of a network’s individual
predictions and its overall accuracy and leads to noisy training and poor gen-
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eralization [14, 15]. However, there was no study how to learn the confidence of
pseudo-labels, which is the topic of this paper.

3 Methodology

3.1 Preliminaries

Let us define a batch of labeled instances as X = {(xb, yb)}Bb=1, where xb is an
instance and yb is a label representing one of Y labels. In addition, let us define
a batch of unlabeled instances as U = {ub}µBb=1, where µ is a hyper-parameter
that determines the size of U relative to X . The objective of semi-supervised
learning is to use both X and U to train a model with parameters θ taking an
instance r ∈ X ∪ U as input and outputting a distribution over class labels y
such that pmodel(y|r; θ). The model generally consists of an feature encoder f(·)
and a classifier g(·), and thus, pmodel(y|r; θ) = g(f(r)).

For semi-supervised learning, most state-of-the-art methods are based on
consistency regularization approaches [2,28,42] that rely on the assumption that
the model should generate similar predictions when perturbed versions of the
same instance are fed, e.g., using data augmentation [34], or model perturba-
tion [28, 46]. These methods formally extract a pseudo-label from one branch,
filtered by confidence, and use this as a target for another branch. For instance,
FixMatch [45] utilizes two types of augmentations such as weak and strong, de-
noted by α(·) and A(·), and a pseudo-label from weakly-augmented version of
an image is used as a target for strongly-augmented version of the same image.
This loss function is formally defined such that

Lun = c(r)H (q(r), pmodel (y|A(r); θ)) , (1)

where c(r) denotes a confidence of q(r), and q(r) denotes a pseudo-label gener-
ated from pmodel(y|α(r); θ), which can be either an one-hot label [40, 45, 52, 56]
or a sharpened one [4, 5, 50], and H(·, ·) is often defined as a cross-entropy loss.
In this framework, measuring confidence c(r) is of prime importance, but con-
ventional methods simply measure this, e.g., by the peak value of the softmax
predictions [40,45,50,52,56].

On the other hands, semi-supervised learning framework can definitely ben-
efit from existing self-supervised representation learning [24,32,33] in that good
representation from the feature encoder f(·) yields better performance with semi-
supervised learner. In this light, some methods attempted to combine semi-
supervised learning and self-supervised representation learning to achieve the
better feature encoder [24,32]. Concurrent to the race for better semi-supervised
learning methods, substantial progress has been made in self-supervised repre-
sentation learning, especially with contrastive learning [3, 6, 8, 10, 20, 22]. The
loss function for this task can also be defined as a consistency regularization
loss, similar to [40,45,50,52,56] but in the feature-level, such that

Lself = D(Fi(r), Fj(r)), (2)
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Fig. 2. Network configuration of ConMatch. A semi-supervised learning frame-
work built upon consistency loss with an additional strong branch to leverage confi-
dence loss between two strong branches. In the parametric approach, the confidence
estimator block takes a concatenated heterogeneous feature as an input and produces
the estimated confidence of pseudo label.

where Fi(r) = f(Ai(r)) and Fj(r) = f(Aj(r)) extracted from images with two
different strongly-augmented images Ai(·) and Aj(·), respectively. D(·, ·) can be
defined as contrastive loss [22] or negative cosine similarity [10]. Even though
this loss helps to boost learning the feature encoder f(·), the mechanism that
simply pulls the features Fi(r) and Fj(r) may not be optimal to boost a semi-
supervised learner and break the latent feature space, without considering a
direction representing which branch is better.

3.2 Formulation

To combine the semi- and self-supervised learning paradigm in a boosting fash-
ion, unlike [24, 32, 33], we present to effectively exploit a self-supervision be-
tween two strong branches tailored for boosting semi-supervised learning, called
ConMatch. Unlike existing self-supervised representation learning methods, e.g.,
SimSiam [10], we formulate the consistency regularization loss at class logit-
level4, as done in semi-supervised learning methods [45, 56], and estimate the
confidences of each pseudo-label from two strongly-augmented images, Ai(r) and
Aj(r) for r, and use them to consider the probability of each direction between
them. Since measuring such confidences is notoriously challenging, we present
novel confidence estimators by using the output from weak -augmented image
α(r) as an anchor in non-parametric and parametric approaches.

An overview of our ConMatch is illustrated in Fig. 2. Specifically, there exist
two branches for strongly-augmented images (called strong branches) and one

4 In the paper, class logit means the output of the network, i.e., pmodel(y|r; θ) for r.
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branch for weakly-augmented image (called weak branch). Similar to existing
semi-supervised representation learning methods [45,52,56], we attempt to apply
the consistency loss between a pair of each strong branch and weak branch. But,
tailored to semi-supervised learning, we present a confidence-guided consistency
regularization loss Lccr between two strong branches such that

Lccr = ci(r)H(qi(r), pmodel(y|Aj(r); θ)) + cj(r)H(qj(r), pmodel(y|Ai(r); θ)), (3)

where qi(r) and qj(r) denote the pseudo-labels generated from pmodel(y|Ai(r); θ)
and pmodel(y|Aj(r); θ), respectively. ci(r) and cj(r) denote estimated confidences
of qi(r) and qj(r). Our proposed loss function is different from conventional self-
supervised representation learning loss Lself in that the consistency is applied in
the logit-level (not feature-level) similar to [45,56], and adjusted by the estimated
confidence. However, unlike [40, 45, 50, 52, 56], we can learn the better feature
representation by considering two strongly-augmented views, while improving
semi-supervised learning performance at the same time. It should be noted that
this simple loss function can be incorporated with any semi-supervised learners,
e.g., FixMatch [45] or FlexMatch [56].

To measure the confidences ci(r) and cj(r), we present two kinds of confi-
dence estimators, based on non-parametric and parametric approaches. In the
following, we explain how to measure these confidences in detail.

3.3 Measuring Confidence: Non-parametric Approach

Existing semi-supervised learning methods [29, 42, 45] have selected unlabeled
samples with high confidence as training targets (i.e., pseudo-labels) in a straight-
forward way; which can be viewed as a form of entropy minimization [19]. It has
been well known that it is non-trivial to set an appropriate threshold for such
handcrafted confidence estimation, and thus, confidence-based strategies com-
monly suffer from a dilemma between pseudo-label exploration and accuracy
depending on the threshold [1, 33].

In our framework, estimating the confidence of pseudo-labels from strong
branches may suffer from similar limitations if the conventional handcrafted
methods [29, 42, 45] are simply used. To overcome this, we present a novel way
to measure the confidences, ci(r) and cj(r), based on the similarity between out-
puts of strongly-augmented images and weakly-augmented images. Based on the
hypothesis that the similarity between the logits or probabilities from strongly-
augmented images and weakly-augmented images can be directly used as a con-
fidence estimator, we present to measure confidence of each strong branch loss
by the cross-entropy loss value itself between strongly-augmented and weakly-
augmented images. Specifically, we measure such a confidence with the following:

si(r) =
1

H(pmodel(y|α(r); θ), pmodel(y|Ai(r); θ))
, (4)

where the smaller H(pmodel(y|α(r); θ), pmodel(y|Ai(r); θ)), the higher si(r) is.
sj(r) can be similarly defined with α(r) and Aj(r). Finally, ci(r) is computed
such that ci(r) = si(r)/(si(r) + sj(r)), and cj(r) is similarly computed.
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Algorithm 1: ConMatch-P (Parametric Approach)

1: Notation: strong augmentation A, weak augmentation α, model pmodel(·; θ)
consisting of feature encoder f and classifier g, confidence estimator h(·; θconf),
pseudo label q, leranable confidence c

2: Input: X = {(xb, yb) : b ∈ (1, . . . , B)}, U = {ub : b ∈ (1, . . . , µB)}
3: for b = 1 to B do
4: F (α(xb)), L(α(xb)) = f(α(xb)), g(f(α(xb)))
5: c(α(xb)) = h(F (α(xb)), L(α(xb)); θconf)
6: if yb == argmaxypmodel(y|α(xb); θ)) then
7: cGT(α(xb)) = 1
8: else
9: cGT(α(xb)) = 0
10: end if
11: end for
12: Lsup =

∑B
b=1 H(yb, pmodel(y|α(xb); θ))

13: Lconf−sup = H(cGT(α(xb)), h(F (α(xb)), L(α(xb)); θconf))
14: for b = 1 to µB do
15: (Fi, Fj), (Li, Lj) = f(Ai(ub),Aj(ub)), g(f(Ai(ub),Aj(ub)))
16: ci, cj = h(Fi, Li; θconf), h(Fj , Lj ; θconf)
17: Generate pseudo labels for differently augmented versions α,Ai,Aj

18: end for
19: Calculate Lun using c, q from α(ub), and pmodel(y|A(ub); θ) via Eq. 2
20: Calculate Lccr using c, q from A(ub) and pmodel(y|A(ub); θ) via Eq. 3
21: Calculate Lconf using c from A(ub) and pmodel(y|α(ub); θ) via Eq. 6
22: Update θ by minimizing Lsup, Lun and Lccr

23: Update θconf by minimizing Lconf−sup and Lconf

24: Return: Model parameters {θ, θconf}

In this case, the total loss for the non-parametric approach is as follows:

Lnp
total = λsupLsup + λunLun + λccrLccr, (5)

where λsup, λun, and λccr are weights for Lsup, Lun, and Lccr, respectively. Note
that for weakly-augmented labeled images α(xb) with labels yb, a simple classi-
fication loss Lsup is applied as H(yb, pmodel(y|α(xb); θ)), as done in [45].

3.4 Measuring Confidence: Parametric Approach

Even though the above confidence estimator with non-parametric approach yields
comparable performance to some extent (which will be discussed in experiments),
it solely depends on each image, and thus it may be sensitive to outliers or er-
rors without any modules to learn a prior from the dataset. To overcome this, we
present an additional parametric approach for confidence estimation. Motivated
by stereo confidence estimation [11, 39, 43, 47], obtaining a confidence measure
from the networks by extracting the confidence features from input and pre-
dicting the confidence with a classifier, we also introduce a learnable confidence
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measure for pseudo-labels. Unlike existing methods that simply use the model
output as confidence [40, 45, 50,52, 56], such learned confidence can intelligently
select a subset of pseudo-labels that are less noisy, which helps the network to
converge significantly faster and achieve improved performance by utilizing the
false negative samples excluded from training by high threshold at early training
iterations.

Specifically, we define an additional network for learnable confidence estima-
tion such that c(r) = h(F (r), L(r); θconf), where h(·) is a confidence estimator
with model parameters θconf , F (r) is a feature, and L(r) is a logit from an in-
stance r, as shown in Fig. 2. For the network architecture, the concatenation
of feature F (r) and logit L(r) transformed by individual non-linear projection
heads is used, based on the intuition that a direct concatenation of two their
heterogeneous confidence features does not provide an optimal performance [25],
followed by the final classifier for confidence estimation. The detailed network
architecture is described in the supplementary material.

The confidence estimator is learned with the following loss function:

Lconf = ci(r)H(pmodel(y|α(r); θfreeze), pmodel(y|Ai(r); θfreeze)) + log(1/ci(r)),
(6)

where θfreeze is a freezed network parameter with a stop gradient. The intuition
behind is that during the confidence network training, we just want to make the
network learn the confidence itself, rather than collapsing to trivial solution to
learn the feature encoder simultaneously. In addition, we also use the supervised
loss for confidence estimator Lconf−sup = H(cGT, h(F (α(xb)), L(α(xb)); θconf));
cGT = 1 if yb is equal to argmaxy pmodel(y|α(xb); θ), and cGT = 0 otherwise.

The total loss for the parametric case can be written as

Lparam
total = λsupLsup + λunLun + λconfLconf + λconf−supLconf−sup + λccrLccr (7)

where λconf and λconf−sup are the weights for Lconf and Lconf−sup, respectively.
We explain an algorithm for ConMatch of parametric approach in Alg. 1.

3.5 Stage-Wise Training

Even though our framework can be trained in an end-to-end manner, we fur-
ther propose a stage-wise training strategy to boost the convergence of training.
This stage-wise training consists of three stages, 1) pre-training for the feature
encoder, 2) pre-training for the confidence estimator (for parametric approach
only), and 3) fine-tuning for both feature encoder and confidence estimator (for
parametric approach only). Specifically, we first warm up the feature encoder
by solely using the standard semi-supervised loss functions with Lsup and Lun.
We then train the confidence estimator based on the outputs of the pre-trained
feature encoder in the parametric approach. As mentioned in [26], this kind of
simple technique highly boosts the convergence to discriminate between confi-
dent and unconfident outputs from the networks. Finally, we fine-tune all the
networks with the proposed confidence-guided self-supervised loss Lccr. We em-
pirically demonstrate the effectiveness of the stage-wise training by achieving
state-of-the-art results on standard benchmark datasets [12,27,35].
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4 Experiments

4.1 Experimental Settings

In experiments, we extensively evaluate the performance of our ConMatch on
various standard datasets [12,27,35] with various label fraction settings in com-
parison to state-of-the-art algorithms, such as UDA [50], FixMatch [45], Flex-
Match [56], SelfMatch [24], LESS [33] and Dash [52]. Our proposed methods
have two variants; ConMatch-NP (non-parametric approach), and ConMatch-
P (parametric approach) integrated to FlexMatch [56], which is the state-of-
the-art semi-supervised learner, even though it can be easily integrated to oth-
ers [32,45,49].

Datasets. We consider four standard benchmarks, including CIFAR-10/100 [27],
SVHN [35], and STL-10 [12]. CIFAR-10 [27] contains 50,000 training images
and 10,000 test images, which have resolution 32×32 with ten classes. Similar to
CIFAR-10, CIFAR-100 [27] has the same number of training/test images and im-
age size, but it differently classifies as 100 fine-grained classes. SVHN [35] consists
of 73,257 training images with 26,032 test images, having also 32×32 resolution
images, belonging to ten different classes of numeric digits. STL-10 [12] contains
5,000 labeled images with size of 96×96 from 10 classes and 100,000 unlabeled
images with size of 96×96.

Evaluation Metrics. For quantitative evaluation, we compute the mean and
standard deviation of error rates, when trained on 3 different folds for labeled
data, based on the standard evaluation protocol of selecting a subset of the
training data while keeping the remainder unlabeled. In addition, as in [32, 56],
we evaluate the quality of pseudo labels by training curves of precision, recall,
and F1 values.

4.2 Implementation Details

For a fair comparison, we generally follow the same hyperparameters with Fix-
Match [45]. Specifically, we use Wide ResNet (WRN) [54] as a feature encoder
for the experiments, especially WRN-28-2 for CIFAR-10 [27] and SVHN [35],
WRN-28-8 for CIFAR-100 [27], and WRN-37-2 for STL-10 [12]. We use a batch
size of labeled data B = 64, the ratio of unlabeled data µ = 7, and SGD op-
timizer with a learning rate starting from 0.03, The detailed hyperparameter
settings are described in the supplementary material. For a weakly-augmented
sample, we use a crop-and-flip, and for a strongly-augmented sample, we use
RandAugmnet [13].

4.3 Comparison to State-Of-The-Art Methods

On standard semi-supervised learning benchmarks, we evaluate the performance
of our frameworks, ConMatch-P and ConMatch-NP, compared to various state-
of-the-art methods, as shown in Table 2 and Table 3. We observe that the perfor-
mance difference between ConMatch-NP and ConMatch-P is not large, except in
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Table 2. Comparison on error rates on CIFAR-10 [27] and CIFAR-100 [27]
benchmarks on 3 different folds.

CIFAR-10 CIFAR-100
Methods 40 250 4,000 400 2,500

UDA [50] 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22
FixMatch (RA) [45] 13.81±3.37 5.07±0.65 4.26±0.06 48.85±1.75 28.29±0.11
FlexMatch [56] 4.97±0.06 4.98±0.09 4.19±0.01 39.94±1.62 26.49±0.20
SelfMatch [24] 6.81±1.08 4.87±0.26 4.06±0.08 - -
CoMatch [32] 6.91±8.47 4.91±0.33 - - -
LESS [33] 6.80±1.10 4.90±0.80 - 48.70±12.40 -
Dash (RA) [52] 13.22±3.75 4.56±0.13 4.08±0.06 44.76±0.96 27.18±0.21

ConMatch-NP 4.89±0.07 5.00±0.37 4.36±0.42 44.90±1.34 26.91±1.35
ConMatch-P 4.43±0.13 4.70±0.25 3.92±0.08 38.89±2.18 25.39±0.20

Table 3. Comparison on error rates on SVHN [35] and STL-10 [12] ben-
chamarks on 3 different folds.

SVHN STL-10
Method 40 250 1,000

UDA [50] 52.63±20.51 5.69±2.76 7.66±0.56
FixMatch (RA) [45] 3.96±2.17 2.48±0.38 7.98±1.50
FlexMatch [56] 4.97±0.06 4.98±0.09 5.77±0.18
SelfMatch [24] 3.42±1.02 2.63±0.43 -
CoMatch [32] 6.91±8.47 4.91±0.33 20.20±0.38
Dash (RA) [52] 3.03±1.59 2.17±0.10 7.26±0.40

ConMatch-NP 6.20±3.44 5.80±0.74 6.02±0.08
ConMatch-P 3.14±0.57 3.13±0.72 5.26±0.04

the label-scare setting. This may be explained by the fact that non-parametric
method highly depends on baseline performance since it does not consider other
samples which can be modeled as a prior. We show our superiority on most
benchmarks with extensive label setting, but we mainly focus the label-scare
setting, since it corresponds to the central goal of semi-supervised learning, re-
ducing the need for labeled data. We achieves 4.43% and 38.89% error rate for
CIFAR-10 and CIFAR-100 settings [27] with only 4 labels per class respectively.
Compared to the results of SelfMatch [24] and CoMatch [32], closely related
to ours, adopting self-supervised methods, we can prove the competitiveness of
our method by achieving 2.38% and 2.48% improvements at CIFAR-10 with 40
labels. On the other datasets, CIFAR-100 [35] and STL-10 [12], we record the
lowest error rate of 38.89% and 25.39% with 400 and 2500 labels setting, and
also slightly better than baseline [56] by recording 5.26% in STL-10 dataset.

4.4 Ablation Study

Effects of Different Baseline. We first evaluate our ConMatch with two
baselines, FixMatch [45] and FlexMatch [56], in both parametric (ConMatch-P)
and non-parametric (ConMatch-NP) approaches as shown in Table 4. ConMatch-
P w/ [45] boosts the performance significantly on CIFAR-10 with 40 labels from
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Table 4. Ablation study of different semi-supervised baselines. We evalu-
ate non-parametric (ConMatch-NP) and parametric (ConMatch-P) approaches with
different baselines, Fixmatch [45] and FlexMatch [56].

CIFAR-10 CIFAR-100
Methods 40 250 400

FixMatch [45] 13.81 5.07 48.85
ConMatch-NP w/ [45] 6.83 4.73 48.73
ConMatch-P w/ [45] 5.13 4.64 48.00

FlexMatch [56] 4.97 4.98 39.94
ConMatch-NP w/ [56] 4.84 4.74 44.90
ConMatch-P w/ [56] 4.68 4.70 38.89

Table 5. Ablation study of training schemes. E means end-to-end training and
S means stage-wise training.

Status
CIFAR-10 CIFAR-100

Methods 40 250 400

ConMatch w/ FixMatch [45]
E 4.85 4.77 47.81
S 5.13 4.60 48.00

ConMatch w/ FlexMatch [56]
E 4.68 4.70 57.16
S 4.43 4.70 38.89

13.81% to 5.13%, achieving the state-of-the-art result. The performance gains
of ConMatch-P w/ [45] is relatively higher than one w/ [56] on most setting
since [45] does not adaptively adjust the threshold depending on the difficulty
level of samples. Note that the thresholds of FixMatch [45] and FlexMatch [56]
are used only for Lun.

Effectiveness of Confidence Measure. In Table 4, we evaluate two confi-
dence measures in non-parametric and parametric approach. In extremely label-
scare setting, such as CIFAR-10 with 4 labels per class, the non-parametric
approach achieves relatively lower performance, 1.70% and 0.16%, in both Fix-
Match and FlexMatch baseline, while the parametric approach (ConMatch-P
w/ [56]) reaches the state-of-the-art performance. But, as the number of labels
increases, the gap between non-parametric and parametric approach decreases,
indicating that a certain number of labeled samples are required to measure the
confidence without the confidence estimator.

Effectiveness of Stage-Wise Training. In Table 5, we report the perfor-
mance difference between end-to-end training and stage-wise training. We can
observe that ConMatch-P has obtained meaningful enhancements in both train-
ing schemes, but stage-wise training shows more larger gap between baseline.

Architecture. Here we analyze the key components of ConMatch, the confi-
dence estimator and guided consistency regularization as shown in Table 6. For
the fair comparison, we construct three branches on FixMatch [45] as baseline
(I), one branch for a weakly-augmented sample and two branches for strongly-
augmented samples. (II) uses logit-level self-supervised loss, but not weighted
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Table 6. Ablation study of our component on CIFAR-10 [27] with 40 labels.

Three Logit-level Confidence net. input
Error rate

branches self-sup. logits features

(I) ✓ ✗ ✗ ✗ 18.11
(II) ✓ ✓ ✗ ✗ 77.50
(III) ✓ ✓ ✓ ✗ 7.05
(IV) ✓ ✓ ✓ ✓ 5.13

(a) Precision (b) Recall (c) F1-score

Fig. 3. Plots of evolution of pseudo-labeling between ours and baselines [45,
56] as training progresses on CIFAR-10 [27] with 40 labels: in terms of (a)
Precision, (b) Recall, and (c) F1-Score.

by confidence, i.e., Lccr with ci(r), cj(r) = 1/2. (III) and (IV) weight confi-
dences of strongly-augmented instances to logit-level self-supervised loss. (III)
only takes logits as an input of confidence estimator while both logits and fea-
tures are fed into (IV). The result of this ablation study shows that logit-level
self-supervised loss without confidence guidance causes network collapse. The
collapse occurred in (II) is one of the reasons why other semi-supervised meth-
ods [32] could not use self-supervision at logit-level and should use negative pairs.
(III) and (IV) show a significant performance improvement compared to (I)
without such collapse.

Evaluating Confidence Estimation. To evaluate the effectiveness of our con-
fidence estimator, we measure precision, recall, and F1-score of ConMatch and
FixMatch [45] as evolving the training iterations on CIFAR-10 [27] with 40
labels as shown in Fig. 3. The confident sample is defined as an unlabeled sam-
ple having max probability over than threshold in the baseline and confidence
measures over than 0.5 in ConMatch. The quality of the confident sample is
important to determine precisely to prevent the confirmation bias problem, sig-
nificantly degrading the performances. The three classification metric, precision,
recall and F1-score, are effective to evaluate the quality of the confidence. By
Fig. 3, we can observe that ConMatch, starting from the scratch for the fair
comparison, shows higher values in all metric compared to the baseline.

4.5 Analysis

Convergence Speed. One of the advantages of our ConMatch is its superior
convergence speed. Based on the results as shown in Fig. 4 (b) and (d), the loss of
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(a) (b) (c) (d)

Fig. 4. Convergence analysis of baselines [45,56] and ConMatch: A comparison
of top-1-accuracy and loss between FixMatch [45] and ConMatch w/ [45] are shown at
(a) and (b). A comparison between FlexMatch [56] and ConMatch w/ [56] is shown at
(c) and (d). Evaluations are done every 200K iterations on CIFAR-10 with 40 labels.

ConMatch decreases much faster and smoother than corresponding baseline [45],
demonstrating our superior convergence speed. Furthermore, the result of the
accuracy in Fig. 4 (a) also proves that the global optimum is quickly reached.
We also prove our effectiveness of our method by comparing the another baseline,
FlexMatch [56]. The convergence speed gap is relatively smaller than FixMatch
since it dynamically adjust class-wise thresholds at each time step, leading to
the stable training, but ConMatch achieves fast convergence at all time step
from the early phase where the predictions of the model are still unstable. It is
manifest that the introduction of ConMatch successfully encourages the model
to proactively improve the overall learning effect.

5 Conclusion

In this paper, we have proposed a novel semi-supervised learning framework built
upon conventional consistency regularization frameworks with an additional
strong branch to define the proposed confidence-guided consistency loss between
two strong branches. To account for the direction of such consistency loss, we
present confidence measures in non-parametric and parametric approaches. Also,
we also presented a stage-wise training to boost the convergence of training. Our
experiments have shown that our framework boosts the performance of base
semi-supervised learners, and is clearly state-of-the-art on several benchmarks.
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