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6 Appendix

6.1 Code Release & Implementation details

FedX is open-sourced at https://github.com/Sungwon-Han/FEDX. Algorithm 1
shows the overall training process.

Algorithm 1 Local update process of FedX

Input: the number of local epochs E, global model F , local model fm, projection
head hm, local dataset Dm, and temperature τ
Output: a trained local model fm and a projection head hm

In each client m,
fm ← F // Replace the local model with the global model

F ← F.detach() // Fix the global model for a given communication round

for epoch e ∈ {1, 2, ..., E} do
for batch B,Br ∈ Di do

B̃ ← Augment(B)
for xi ∈ B, x̃i ∈ B̃, and xj ∈ Br do

/* Local KD */

zi, zj , z̃i ← fm(xi), f
m(xj), f

m(x̃i)

// Local relationship vectors

rji =
exp(sim(zi,zj)/τ)∑

k∈Br
exp(sim(zi,zk)/τ)

r̃ji =
exp(sim(z̃i,zj)/τ)∑

k∈Br
exp(sim(z̃i,zk))/τ)

Llocal
c ← Calculate from Eq. 3 or 5

Llocal
r ← Calculate from Eq. 7

Llocal-KD = Llocal
c + Llocal

r

/* Global KD */

zli, z̃
l
i ← hm ◦ fm(xi), h

m ◦ fm(x̃i)
zgi , z

g
j , z̃

g
i ← F (xi), F (xj), F (x̃i)

// Global relationship vectors

r′ji =
exp(sim(zli,z

g
j )/τ)∑

k∈Br
exp(sim(zli,z

g
k
)/τ)

r̃′ji =
exp(sim(z̃li,z

g
j )/τ)∑

k∈Br
exp(sim(z̃li,z

g
k
)/τ)

Lglobal
c ← Calculate from Eq. 9

Lglobal
r ← Calculate from Eq. 11

Lglobal-KD = Lglobal
c + Lglobal

r

end
Ltotal-KD = Llocal-KD + Lglobal-KD // Calculate the total loss

Update fm, hm via back-propagation // Update local model parameters

end

end
return fm, hm

6.2 Further Results on Performance Evaluation

Statistical errors in Table 1. Table 5 reports standard errors from various
training iterations (i.e., last five epochs & best five epochs), which shows that
our model’s accuracy converges stably.
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Table 5: Adding FedX increases the performance of various federate learning
models. The final round accuracy and the best accuracy are reported with stan-
dard errors.

Method
CIFAR-10 SVHN F-MNIST

Last Best Last Best Last Best

FedSimCLR 51.31±0.25 52.88±0.06 75.19±3.14 76.50±0.04 77.66±0.75 79.44±0.06
+ FedX 56.88±0.72 57.95±0.03 77.19±1.67 77.70±0.09 81.98±0.74 82.47±0.02
FedMoCo 56.74±1.63 57.82±0.02 70.69±3.03 70.99±0.07 82.31±0.18 83.58±0.06
+ FedX 58.23±1.22 59.43±0.09 73.57±2.79 73.92±0.02 83.62±0.32 84.65±0.04
FedBYOL 52.24±0.61 53.14±0.06 65.95±1.62 67.32±0.24 81.45±0.27 82.37±0.06
+ FedX 56.49±0.72 57.79±0.12 68.94±1.13 69.05±0.07 83.18±0.31 84.30±0.07
FedProtoCL 51.33±1.03 52.12±0.03 49.85±0.77 50.19±0.11 81.76±0.22 83.57±0.04
+ FedX 55.36±0.98 56.76±0.01 69.31±1.72 69.75±0.15 82.74±0.35 83.34±0.04
FedU 50.79±0.47 50.79±0.05 66.02±1.83 66.22±0.17 80.59±0.42 82.03±0.05
+ FedX 56.15±0.58 57.26±0.05 68.13±1.17 68.39±0.07 83.73±0.20 84.12±0.03

Table 6: Performance improvement with three different algorithms on classifica-
tion accuracy. Both the final round accuracy and the best accuracy show that
FedX brings nontrivial improvement over the baseline algorithm.

Method
CIFAR-10 SVHN F-MNIST

Last Best Last Best Last Best

FedSimCLR 51.31 52.88 75.19 76.50 77.66 79.44
+ FedCA 47.46 48.54 59.40 59.86 81.51 82.05
+ MOON-unsup 51.78 52.84 75.36 76.03 80.58 80.93

+ FedX (ours) 56.88 57.95 77.19 77.70 81.98 82.47

Table 7: Performance improvement on ImageNet-10. Both last and best round
accuracy are reported.

Method
FedSimCLR FedSimCLR+FedX

Last Best Last Best

ImageNet-10 81.50 81.50 86.17 86.57

Comparison with other relevant baselines. We compared FedX with other
contrastive learning methods: FedCA (Zhang et al.)6 and MOON (Li et al.). We
followed the same implementation guidelines as in the original work, only sub-
stituting the InfoNCE objective for the supervised loss in MOON (calling this
MOON-unsup). FedSimCLR with FedAvg served as the base framework in both
cases. Our method continues to outperform, as shown in Table 6, demonstrat-

6 Note that the dictionary module has been removed from FedCA for fair comparison
as it directly shares the local data information of all clients.
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ing the benefit of the proposed knowledge distillation strategy in unsupervised
federated learning.

Performance on ImageNet. To verify our model’s applicability to the large-
scale dataset, we run FedX on ImageNet-10 benchmark, a 10-class subset of
ImageNet. FedX was trained for 10 local epochs in each communication round,
with a total of 50 rounds. Table 7 shows that adding FedX to FedSimCLR im-
proves the classification accuracy by 5pp. Extended results for the larger number
of the class will also be released.

Full comparison results over communication rounds. FedX brings mean-
ingful performance improvements than when using the baseline algorithms alone.
Figure 7 shows trajectories including three additional baselines – FedProtoCL,
FedMoCo, and FedU that were omitted in Fig. 4. We can check how quickly the
model benefits baselines over the varying communication rounds. Especially, in
FedSimCLR and FedProtoCL (F-MNIST) experiments, FedX prevents the local
bias degrading the performance during the entire training phase and thereby
stops such deterioration in performance.
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(a) Performance gain on FedSimCLR

(b) Performance gain on FedBYOL

(c) Performance gain on FedProtoCL

(d) Performance gain on FedMoCo

(e) Performance gain on FedU

Fig. 7: Performance comparison between all baselines (i.e., FedSimCLR, Fed-
BYOL, FedProtoCL, FedMoCo, and FedU) and FedX-enhanced versions over
communication rounds. FedX brings extra performance on baseline unsupervised
learning models in three benchmark datasets.


