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Abstract. This paper presents FedX, an unsupervised federated learn-
ing framework. Our model learns unbiased representation from decen-
tralized and heterogeneous local data. It employs a two-sided knowledge
distillation with contrastive learning as a core component, allowing the
federated system to function without requiring clients to share any data
features. Furthermore, its adaptable architecture can be used as an add-
on module for existing unsupervised algorithms in federated settings.
Experiments show that our model improves performance significantly
(1.58-5.52pp) on five unsupervised algorithms.

Keywords: Unsupervised representation learning, self-supervised learn-
ing, federated learning, knowledge distillation, data privacy

1 Introduction

Most deep learning techniques assume unlimited access to data during training.
However, this assumption does not hold in modern distributed systems, where
data is stored at client nodes for privacy reasons [28,34]. For example, personal
data stored on mobile devices cannot be shared with central servers, nor can
patient records in hospital networks. Federated learning is a new branch of col-
laborative technique to build a shared data model while securing data privacy;
it is a method to run machine learning by involving multiple decentralized edge
devices without exchanging locally bounded data [2,36].

In federated systems, supervised methods have been used for a variety of
downstream tasks such as object detection [22], image segmentation [31], and
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Fig. 1: Hlustration of two knowledge flows in FedX: (a) local knowledge distilla-
tion progressively learns augmentation-invariant features, and (b) global knowl-
edge distillation regularizes local models from bias.

person re-identification [45]. The main challenge here is the data’s decentralized
and heterogeneous nature (i.e., non-IID setting), which obscures the global data
distribution. To address this issue, several methods have been proposed, includ-
ing knowledge distillation [45], control variates [13], and contrastive learning [19)].
These methods necessitate that local clients have high-quality data labels.

Nowadays, the need for unsupervised federated learning is increasing to han-
dle practical scenarios that lack data labels. This is the new frontier in federated
learning. There have been a few new ideas; for instance, Zhang et al. proposed
FedCA, a model that uses local data features and external datasets to alleviate
inconsistency in the representation space [12]. Wu et al. proposed FCL, which
exchanges encrypted local data features for privacy and introduces a neighbor-
hood matching approach to cluster the decentralized data across clients [38].
However, these approaches allow data sharing among local clients and raise pri-
vacy concerns.

We present FedX, a new advancement in unsupervised learning on federated
systems that learns semantic representation from local data and refines the cen-
tral server’s knowledge via knowledge distillation. Unlike previous approaches,
this model is privacy-preserving and does not rely on external datasets. The
model introduces two novel considerations to the standard FedAvg [23] frame-
work: local knowledge distillation to train the network progressively based on
local data and global knowledge distillation to regularize data bias due to the
non-I1ID setting. This two-sided knowledge flow distinguishes our model.

Local knowledge distillation (Fig. la) maximizes the embedding similarity
between two different views of the same data instance while minimizing that of
other instances—this process is defined by the contrastive loss. We designed an
additional loss that relaxes the contrastive loss via soft labeling. Soft labels are
computed as similarities between an anchor and randomly selected instances,
called relationship vectors. We minimize the distance between relationship vec-
tors of two different views in order to transfer structural knowledge and achieve
fast training speed—this process is modulated by the relational loss.
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Global knowledge distillation (Fig. 1b) treats the sample representation passed
by the global model as an alternative view that should be placed near the em-
bedding of the local model. This process is also modulated by contrastive loss
and relational loss. Concurrent optimization allows the model to learn semantic
information while eliminating data bias through regularization. These objectives
do not require additional communication rounds or costly computation. More-
over, they do not share sensitive local data or use external datasets.

1. We propose an unsupervised federated learning algorithm, FedX, that learns
data representations via a unique two-sided knowledge distillation at local
and global levels.

2. Two-sided knowledge distillation helps discover meaningful representation
from local data while eliminating bias by using global knowledge.

3. FedX can be applied to extant algorithms to enhance performance by 1.58-
5.52pp in top-1 accuracy and further enhance training speed.

4. Unlike other unsupervised federated learning approaches, FedX preserves
privacy between clients and does not share data directly. It is also lightweight
and does not require complex communication for sending data features.

5. FedX is open-sourced at https://github.com/Sungwon-Han/FEDX.

2 Related Work

2.1 Unsupervised Representation Learning

There are two common approaches to unsupervised representation learning. One
approach is to use generative models like autoencoder [33] and adversarial learn-
ing [30] that learn the latent representation by mimicking the actual data distri-
bution. Another method is to use discriminative models with contrastive learn-
ing [5,27,40]. Contrastive learning approaches teach a model to pull the represen-
tations of the anchor and its positive samples (i.e., different views of the image)
in embedding space, while pushing the anchor apart from negative samples (i.e.,
views from different images) [7,18].

In contrastive learning, SimCLR [3] employs data augmentation to generate
positive samples. MoCo [8] introduces a momentum encoder and dynamic queue
to handle negative samples efficiently. BYOL [6] reduces memory costs caused by
a large number of negative samples. ProtoCL [18] uses prototypes to group se-
mantically similar instances into local clusters via an expectation-maximization
framework. However, under distributed and non-IID data settings, as in feder-
ated systems, these methods show a decrease in accuracy [42].

2.2 Federated Learning

Federated Averaging (FedAvg) by McMahan et al. is a standard framework for
supervised federated learning [23]. Several subsequent studies improved the lo-
cal update or global aggregation processes of FedAvg. For instance, external
dataset [13], knowledge distillation [45], control variates [13,20], and contrastive
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learning [19] can be applied for better local update process. Similarly, global ag-
gregation process can be improved via Bayesian non-parametric approaches [35],
momentum updates [1 1], or normalization methods [37].

Unsupervised federated learning is more difficult to implement because no
labels are provided and clients must rely on locally-defined pretext tasks that
may be biased. This is a less explored field, with only a few methods proposed.
FedCA [12] shares local data features and uses an external dataset to reduce
the mismatch in representation space among clients. FCL [38] encrypts the local
data features before exchanging them. Because of the explicit data sharing, these
methods raise new privacy concerns. We, on the other hand, consider a com-
pletely isolated condition that does not permit any local data sharing. FedU [14]
is another approach in the field that improves on the global aggregation method.
It decides how to update predictors selectively based on the divergence of local
and global models. Our model is orthogonal to FedU, and both concepts can be
used in tandem.

2.3 Knowledge Distillation

Knowledge distillation aims to effectively train a network (i.e., student) by dis-
tilling the knowledge of a pretrained network (i.e., teacher). Knowledge can be
defined over the features at the intermediate hidden layers [15,16], logits at the
final layer [10], or structural relations among training samples [29,3224]. Self-
knowledge distillation uses the student network itself as a teacher network and
progressively uses its knowledge to train the model [12,14]. We leverage this
concept to efficiently train the local model while preserving the knowledge of
the global model. FedX is the first-of-a-kind approach that uses the knowledge
distillation concept for unsupervised federated learning.

3 Model

3.1 Overview

Problem statement. Consider a federated system in which data can only be
viewed locally at each client and cannot be shared outside. Our goal is to train a
single unsupervised embedding model F that maps data points from each client
to the embedding space. Let us denote local data and model from client m as
D™ and fj" respectively (i.e., m € {1,..., M}). The main objective for the global
model Fy is as follows:

M
arg min = @
g min £(¢) mZ:l oy L@,
where L (6) = Exepr [l (x; 9)]- (1)

L., represents the local objective in client m and [,,, is the empirical loss objective
of L,, over D™. For simplicity, we hereafter denote the local model f;* at client
m and global model Fy as f™ and F'.
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Fig.2: Hlustration of the FedAvg framework [23], which is used as the base
structure of many federated systems. FedX modifies the local update process (D).

We use FedAvg [23] as the underlying structure, and the data flow is depicted
in Fig. 2. Four processes run in each communication round: Process (I) on local
update is when each local client trains a model f™ with its data D™ for E local
epochs; Process (2) on local model upload occurs when clients share the trained
model weights with the server; Process (3) on global aggregation occurs when
the central server averages the received model weights and generates a shared
global model F'; Process (4) on global model download is when clients replace their
local models with the downloaded global model (i.e., averaged weights). These
processes run for R communication rounds.

FedX modifies the Process (I) by redesigning loss objectives in order to distill
knowledge at both the local and global scales. The following sections introduce
the design components of our unsupervised federated learning model.

3.2 Local Knowledge Distillation

The first significant change takes place with local clients, whose goal is to learn
meaningful representations from local data. Let us define a data pair; x; and X;
be two augmented views of the same data instance. The local contrastive loss
Ll learns semantic representation by maximizing the agreement between x;
and X; while minimizing the agreement of views from different instances (i.e.,
negative samples). We showcase the proposed contrastive loss from two of the
unsupervised representation learning methods as vanilla baselines.

* SimCLR [3] utilizes a contrastive objective based on the InfoNCE loss [26].
Given a batch B with size n and its augmented version 1:3, each anchor has
a single positive sample and considers all other (2n — 2) data points to be
negative samples. The following is the definition of this (2n—1)-way instance
discrimination loss, where 7 is the temperature used to control the entropy
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Fig. 3: The overall architecture of FedX, with the local model f™, the projection
head h™, and the global model F' at local client m. Two-sided (a) contrastive
loss and (b) relational loss enable the model to learn semantic information from
local data while regularizing the bias by distilling knowledge from the global
model. FedX modifies the process (I) on local update in Fig. 2.

value and sim(-) is the cosine similarity function between two embeddings:

exp(sim(zi, 21)/7—) (2)
Y ke(BUB—{i}) eXp(sim(z;, zx) /T)’
where z;, = f™(x;), z; = f™(X;). (3)

Llcocal — log

* BYOL [6] does not train on negative samples. Instead, an asymmetric ar-
chitecture is used to prevent the model from learning trivial solutions. The
model f™ with a prediction layer g™ is trained to predict a view from the
exponential moving average model f7r . The loss is defined as follows:

2
zi/ ||zl — 25 /|2 (4)

where z; = g™ o [ (x;), Z{™* = fon (X;). (5)

local __
Llocal — ‘

We consider another design aspect to help the model learn structural knowl-
edge more effectively. Motivated by the concept of relational knowledge distil-
lation [1,11], structural knowledge represented as relations among samples is
extracted from the local model and progressively transferred back to itself. This
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entails selecting a set of instances at random B, and computing the cosine simi-
larity between the embeddings of two different views x;, X; and random instances
B,-. We then apply the softmax function to the similarity vector to compute re-
lationship probability distributions r; and r; (Eq. 6). In vector notation, the
superscript j represents the j-th component value of a given vector.

i exp(sim(z;,z;)/7) =i _ exp(sim(Z;, z;)/7) (6)
b Y oken, exp(sim(z;, zx) /) o > ke, eXD(sim(Z;, z1,)/7)

The above concept, local relational loss, is defined as the Jensen-Shannon
divergence (JSD) between two relationship probability distributions r; and ¥;
(Eq. 7). Minimizing the discrepancy between two distributions make the model
to learn structural knowledge invariant to data augmentation. In contrastive
learning with soft targets, this divergence loss can also be interpreted as relaxing
the InfoNCE objective.

1 1 1
Llocal — 51<L(rl-||r§“get) + iKL(i‘iHrEarg“), where r;"'5" = S +E)  (7)

The total loss term for local knowledge distillation is given in Eq. 8:

Llocal.KD — L}jocal + L}rocal. (8)

3.3 Global Knowledge Distillation

The second major change is to regularize the bias contributed by the inconsis-
tency between local and overall data distribution. The inconsistency addresses
the issue of decentralized non-IID settings, where local clients are unaware of
global data distribution. Training the local model f™ will be suboptimal in this
case because the local update process becomes biased towards local minimiz-
ers [12]. Such data inconsistency among local clients can be resolved by distilling
knowledge on a global scale.

We consider two kinds of losses: global contrastive loss and global relational
loss. Because the global model simply aggregates model weights at the local
clients in FedAvg, we can think of the sample’s embedding from the global model
as an alternate view of the same data instance. The global contrastive loss max-
imizes the agreement between the views of the local and global models from the
same instance while minimizing that of all other views from different instances.

Each communication round assumes that the central server sends a fixed set
of averaged model weights (i.e., global model F) to the client. The batch B and
its augmented version B are then used to train the local model f™ as in Eq. 9
with the InfoNCE loss. To match the embedding space between the local and
global models, we consider an additional prediction layer A™ on top of local
models. Similar method has been used in [4,6].

exp(sim(z},z{)/7)
> exp(sim(zl,z})/T)+ Y exp(sim(zl,z])/7)’
ke(B—{i}) ke(B—{i})
where zé =h"o f™(x;), Zi =h"o f"(x;), 2z} = F(x;), 2! = F(x;). (9)

7

L%IObal — _ IOg
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We introduce the global relational loss on top of the global contrastive loss.
This loss is defined in the same way as the local relational loss (Eq. 7), but it
includes global model embeddings. It regularizes the model by penalizing any
mismatch between two augmented views over the global embedding space after
the prediction layer h'™. As a result, the model maintains its local knowledge
based on local data while learning augmentation-invariant knowledge using the
global contrastive loss.

Given two different views x;, X; and random instances B,., the relationship
probability distributions for global relational loss, r; and ¥}, are defined (Eq. 10).
We again adopt the JS divergence between two relationship probability vectors
r; and ¥, as the global relational loss (Eq. 11).

g exp(sim(z}, 29) /7) i exp(sim(z},29)/7)
¢ > keB, exp(sim(z!,z]) /1)’ > keB, exp(sim(z!, z)/7)

1 1 1
L%lohal = iKL(r;Hrgtarget) + iKL(f‘Z—Hrgtarget), where rgtarg“ = 5(r; +1) (11)

(10)

i

The total loss for global knowledge distillation is given in Eq. 12. The overall
model then combines losses from knowledge distillation at the local and global
levels, as shown in Eq. 13. The detailed algorithm is described in the appendix.

LgIObal-KD = L%lobal + L%lobal (12)

Liotal- kD = Liocal-kD + Lglobal-KD (13)

4 Experiment

Using multiple datasets, we compared the performance of our model to other
baselines and investigated the role of model components and hyperparameters.
We also used embedding analysis to examine how the proposed model achieves
the performance gain. Finally, we applied the model in a semi-supervised setting.

4.1 Performance Evaluation

Data settings. Three benchmark datasets are used. CIFAR-10 [17] contains
60,000 images of 32x32 pixels from ten classes that include airplanes, cats, and
dogs. SVHN [25] contains 73,257 training images and 26,032 test images with
small cropped digits of of 32x32 pixels. F-MNIST [39] contains 70,000 images
of 28x28 pixels from ten classes, including dresses, shirts, and sneakers.

We used the Dirichlet distribution to enforce the non-IID property of local
clients. Let Dirn(8) denote the Dirichlet distribution with N clients and g as
the concentration parameter. We take a sample py ; from Diry(5) and assign
class k to client j based on the sampled proportion py ;. With this data allocation
strategy, each client will be assigned a few data samples for each class (or even
none) to ensure bias. By default, N and § are to 10 and 0.5, respectively, similar
to other research [19].
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Table 1: Performance improvement with FedX on classification accuracy over
three datasets. Both the final round accuracy and the best accuracy show that
our model brings substantial improvement for all baseline algorithms.

Method CIFAR-10 SVHN F-MNIST
Last Best Last Best Last Best
FedSimCLR| 51.31 52.88 75.19 76.50 77.66 79.44
+ FedX 56.88 57.95 77.19 77.70 | 81.98 82.47
FedMoCo 56.74 57.82 70.69 70.99 82.31 83.58
+ FedX 58.23 59.43 73.57 73.92 83.62 84.65
FedBYOL 52.24 53.14 65.95 67.32 81.45 82.37
+ FedX 56.49 57.79 | 68.94 69.05 83.18 84.30
FedProtoCL| 51.33 52.12 49.85 50.19 81.76 83.57
+ FedX 55.36 56.76 | 69.31 69.75 82.74 83.34
FedU 50.79 50.79 66.02 66.22 80.59 82.03
+ FedX 56.15 57.26 | 68.13 68.39 | 83.73 84.12

Implementation details. The model was trained for 100 communication
rounds, with 10 local epochs in each round. The ResNet18 backbone [9] and
the SGD optimizer with a learning rate of 0.01 were used. SGD weight decay
was set to 1e-5, SGD momentum was set to 0.9, and batch size was set to 128. For
all objectives, the temperature 7 was set as 0.1. Augmentations included random
crop, random horizontal flip, and color jitter. We used four A100 GPUs.

Baselines. We implemented five baselines: (1) FedSimCLR based on Sim-
CLR [3], (2) FedMoCo based on MoCo [8], (3) FedBYOL based on BYOL [(],
and (4) FedProtoCL based on ProtoCL [18]. These are unsupervised models
that are built on top of FedAvg [23]. The final baseline (5) FedU [44] is built
over FedBYOL and downloads a global model by divergence-aware module (see
process (@) in Figure 2). For a fair comparison, we applied the same experi-
mental settings on these baselines, including the backbone network, optimizer,
augmentation strategy, number of local epochs, and communication rounds. We
used the original implementations and hyper-parameter settings for FedU. Un-
less otherwise specified, we refer to FedSimCLR as the representative baseline
in the remainder of this section.

Evaluation. All models were compared using the linear evaluation protocol,
which is a method for training a linear classifier on top of representations [42,44].
We freeze the backbone network of each trained model after training. Then, for
the next 100 epochs, a new classifier is appended and trained with ground-
truth labels. The top-1 classification accuracy over the test set is reported as an
evaluation metric.

Results. Table 1 summarizes the performance comparison, where FedX brings
meaningful performance improvements over the baseline algorithms. On average,
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Fig. 4: Performance comparison between two vanilla baselines (i.e., FedSimCLR
and FedBYOL) and FedX-enhanced versions over communication rounds. FedX
helps models outperform in all three benchmark datasets and continues to bring
advantage with increasing communication rounds.

our model improves CIFAR-10 by 4.29 percent points (pp), SVHN by 5.52pp,
and F-MNIST by 1.58pp across all baselines. One exception is F-MNIST, where
FedProtoCL by itself has a slightly higher best accuracy. However, adding FedX
still contributes to improved final round accuracy, implying that the model has
good training stability.

We then examine how quickly the model improves baselines across the various
communication rounds. Figure 4 shows the trajectory for two example baselines
on FedSimCLR and FedBYOL.® These plots confirm that model-enhanced mod-
els outperform vanilla baselines; most plots show this benefit early in the commu-
nication rounds. We see that local bias can degrade the performance of a baseline
model during the early training phase in some cases (see the F-MNIST case in
Figure 4a). This is most likely due to the biased contrastive objective caused by
locally sampled negatives. In contrast, adding FedX prevents such deterioration
and even continues to improve accuracy as communication rounds increase.

4.2 Component Analyses

Ablation study. FedX used learning objectives at the local and global levels
separately, with two types of losses: contrastive loss and relational loss. In this
section, we look at ablations by removing each learning objective or loss compo-
nent and testing the added value of each design choice to overall performance.

5 Results for other baselines are presented in the Appendix.
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Fig.5: Performance comparison of ablations over communication rounds for
CIFAR-10. Removing any module leads to performance degradation. Ablation
on contrastive loss L, showed the best accuracy of 35.13% and hence excluded.

Table 2: Ablation results with different global-scale regularization methods. The
proposed global knowledge distillation performs the best among them.

Method CIFAR-10 SVHN F-MNIST
etho Last Best Last Best Last Best
Liocal.xp only 51.89 52.85 76.64 77.20 79.79 80.42

Ligcarxp + SCAFFOLD| 52.73 53.20 75.18 75.52 79.45 80.36
Liocarkp + FedProx 5248 53.34 T7.43 Tr.79 79.83 80.24
Liocal-kp + Lglobal-KD 56.88 57.95 77.19 7770 81.98 82.47

Figure 5 plots the performance comparison of different ablations across the com-
munication round. The complete model has the highest accuracy, implying that
removing any component reduces performance. It also confirms the importance
of a global knowledge distillation objective.

FedX used global knowledge distillation to convey global model knowledge
and regularize the local bias caused by the inconsistency between local and
overall data distribution. Several studies in supervised settings have addressed
a similar challenge using extra regularization or gradient update processes. We
replaced the global knowledge distillation loss (Lgiobal-kp — Eq. 12) with extant
strategies, such as FedProx [21] or SCAFFOLD [13] and verified its efficacy. The
performance comparison of different ablations across three benchmark datasets is
summarized in Table 2. The findings imply that our global knowledge distillation
technique is more effective than alternative designs.

Robustness test. The model’s robustness is then tested by varying key hy-
perparameters in different simulation settings. This allows us to test the system
in difficult scenarios, such as (a) when each client is only allowed to hold a small
amount of data (i.e., data size |D|), (b) when more clients participate in the
federated system (i.e., client count N), and (c) when communication with the
central server becomes limited and costly (i.e., the number of communication
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Table 3: Analysis of accuracy on CIFAR-10 over varying hyper-parameters indi-
cates FedX consistently enhances the baseline performance.

(a) Effect of the data size |D| (b) Effect of the client count N
Data si Baseline |Baseline+FedX Clients # Baseline |Baseline+FedX
AASIZC Tast Best | Last Best 1ents Last Best | Last Best
10% |46.80 47.37| 51.03 53.96 5 52.87 53.87| 58.55 58.55
25% |48.42 49.79| 52.84 54.45 10 51.31 52.88| 56.88 57.95
50% |51.17 52.04| 54.62 55.85 15 52.31 53.06| 55.12 56.82
100% |[51.31 52.88| 56.88 57.95 20 50.70 52.89| 56.56 56.56
(c) Effect of the communication round count R

Communication d Baseline Baseline+FedX

HCAton TOURG! 1 ast Best | Last  Best

20 52.01 52.80 | 56.97 56.97

50 51.95 53.53 | 57.29 57.29

100 51.31 52.88 | 56.88 57.95

200 52.79 53.23 | 57.35 57.58

rounds R) [36]. We test how our model performs under these scenarios in Ta-

ble 3. We note that when varying the communication rounds R, we also changed
the number of local epochs E accordingly such that R x E = 1000.

The table summarizes the effect of each hyperparameter for the baseline
model (FedSimCLR) and the FedX-enhanced model. We make several observa-
tions. First, reducing the data size |D| degrades performance. The drop, however,
is not severe and remains nearly 5pp drop even when clients only hold 10% of
the data. Second, increasing the number of clients N will add complexity and
degrade performance. However, when N increases from 10 to 20, the drop is only
marginal near 1pp. Third, while increasing communication rounds generally pro-
vides additional benefits, the gain appears to be marginal after some rounds, as
shown in the example. Regardless of these changes, FedX consistently leads to
nontrivial improvements over baseline.

4.3 Analysis of the Embedding Space

We next quantitatively examine the embedding space characteristics to see how
well FedX distills global knowledge into the local model and encodes data se-
mantic structure. We calculated the angle difference between the normalized
embeddings passed by local model f and global model F' as a quality metric:

Angle(x) = arccos (sim(f(x), F(x))), (14)
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Fig. 6: Embedding analysis of baseline and FedX-enhanced models on CIFAR-10
comparing the angle difference of the embedded features.

where x is an instance from the test data Diest and sim(-) is the cosine similar-
ity function. It should be noted that a larger angle represents more significant
deviance in the embedding distributions of the two models.

Figure 6a visualizes, for each of the ten classes in CIFAR-10, the angle dif-
ference between the embedding of each item between the local model and the
global model computed by Eq. 14. Compared to the baseline (FedSimCLR),
FedX-enhanced model reports a remarkably lower angle difference between the
local and global models. This indicates that the local model can learn the refined
knowledge of the global model through knowledge distillation.

When it comes to the embedding space of different class items, it is best
to have a large gap. Given Df, as a set of instances from class ¢, we can
compute a representative class prototype by averaging embeddings from Dg,,
(Eq. 15). Then, the inter-class angle difference can be defined between any pair of
class prototypes (Eq. 16). Figure 6b plots the histogram of the inter-class angle
difference of every class pair, showing that FedX-enhanced models have larger
angles of 93.15° on average than the baseline model of 82.36°. This demonstrates
that our model can better discriminate between different class items.

= o, 2 W 1

c
X€Dfeg

Angle(c;, ¢j) = arccos(sim(z, , zc,)) (16)

4.4 Extension to Semi-Supervised Settings

Finally, as a practical extension, consider a scenario in which each client has a
small set of partially labeled data. This may be a more natural setting in many
real-world federated systems [414]. To convert our model to a semi-supervised
setting, we first trained it without supervision and then fine-tuned it with an
additional classifier on labeled data for an additional 100 epochs. For fine-tuning,
an SGD optimizer with a learning rate of le-3 was used.
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Table 4: Classification accuracy in a semi-supervised setting on CIFAR-10. FedX
enhances the baseline performance even with a small set of labels.

| FedSimCLR | FedMoCo | FedBYOL | FedProtoCL |  FedU
‘Vanilla FedX ‘Vanilla FedX ‘Vanilla FedX ‘Vanilla FedX ‘Vanilla FedX

1% 21.37 23.33| 23.02 25.18] 18.10 21.86|18.44 18.17|21.41 21.23
5% 30.68 35.86| 34.24 37.63| 29.77 34.48| 19.64 26.66| 32.19 35.41
10% 31.14 39.40| 38.15 39.32| 32.23 37.89| 22.90 27.54| 34.51 37.51

Label Ratio

Table 4 shows the performance results on CIFAR-10 in the semi-supervised
setting with varying label ratios of 1%, 5%, and 10%. As expected, increas-
ing the labeling ratio from 1% to 5% brings an immediate performance gain.
FedX-enhanced models outperform most cases in the semi-supervised setting for
multiple baselines. Only minor exceptions can be seen with a 1% labeling rate,
where our model performs similarly to the baseline. Our model, on the other
hand, benefits more quickly from increasing the label ratio and can learn the
data representation from distributed local clients.

5 Conclusion

This work presented the first-of-its-kind unsupervised federated learning ap-
proach called FedX. We elaborate the local update process of the common feder-
ated learning framework and the model does not share any data directly across
local clients. Its unique two-sided knowledge distillation can efficiently handle
data bias in a non-IID setting while maintaining privacy. It is straightforward
and does not require any complex communication strategy.

The substantial performance gain of FedX shows great potential for many fu-
ture applications. For example, distributed systems with strict data privacy and
security requirements, such as learning patterns of new diseases across hospital
data or learning tending content in a distributed IoT network, can benefit from
our model. Unsupervised learning is facilitated even when local clients lack data
labels and contain heterogeneous data. This versatile and robust trait makes
unsupervised learning the new frontier in federated systems. We hope that our
technique and implementation details will be useful in tackling difficult problems
with decentralized data.
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