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Abstract. Adversarial training (AT) for robust representation learn-
ing and self-supervised learning (SSL) for unsupervised representation
learning are two active research fields. Integrating AT into SSL, mul-
tiple prior works have accomplished a highly significant yet challenging
task: learning robust representation without labels. A widely used frame-
work is adversarial contrastive learning which couples AT and SSL, and
thus constitutes a very complex optimization problem. Inspired by the
divide-and-conquer philosophy, we conjecture that it might be simplified
as well as improved by solving two sub-problems: non-robust SSL and
pseudo-supervised AT. This motivation shifts the focus of the task from
seeking an optimal integrating strategy for a coupled problem to find-
ing sub-solutions for sub-problems. With this said, this work discards
prior practices of directly introducing AT to SSL frameworks and pro-
posed a two-stage framework termed Decoupled Adversarial Contrastive
Learning (DeACL). Extensive experimental results demonstrate that our
DeACL achieves SOTA self-supervised adversarial robustness while sig-
nificantly reducing the training time, which validates its effectiveness and
efficiency. Moreover, our DeACL constitutes a more explainable solution,
and its success also bridges the gap with semi-supervised AT for exploit-
ing unlabeled samples for robust representation learning. The code is
publicly accessible at https://github.com/pantheon5100/DeACL.
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1 Introduction

Despite the phenomenal success in a wide range of applications [27, 30, 64, 60],
deep neural networks (DNNs) are widely recognized to be vulnerable to adver-
sarial examples [48, 21]. Adversarial training (AT) and its variants have become
the de facto standard approach for learning an adversarially robust model [36,
67]. AT targets robust generalization [46] which requires more data than stan-
dard training. In practice, however, samples with ground-truth (GT) labels are
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much more difficult to obtain than their unlabeled counterparts. To partly or
fully remove the dependence on human annotation, unlabeled samples can be
exploited for learning robust representation.

Multiple works [50, 7, 59, 38] have independently shown that unlabeled sam-
ples improve adversarial robustness in the semi-supervised setting. The perfor-
mance of such semi-supervised AT, however, is often reported to be poor when
only a small amount of labelled samples are available. Therefore, an interesting
question is whether reasonable robustness can be achieved with only unlabeled
samples. The past few years have witnessed substantial progress in the field of
self-supervised learning (SSL) [10, 25, 12] for representation learning without GT
labels. Inspired by such progress, multiple works [56, 31, 19, 32] have shown the
success of adversarial contrastive learning (CL) for achieving robustness without
labels, which constitutes a positive answer to the above question.

Nonetheless, robust SSL has been often recognized as a challenging problem
due to its two mixed challenging goals: (a) unsupervised representation learn-
ing; (b) robust representation learning. The first goal can be readily realized by
SOTA SSL frameworks, such as contrastive learning (CL)-based SimCLR [10],
MoCo [26], while AT constitutes a go-to solution for the second goal. Thus, a line
of works [56, 32, 31, 19] choose a natural strategy by introducing AT into SimCLR
or MoCo to perform adversarial CL. Despite having such off-the-shelf solutions
for both SSL and AT, how to effectively integrate the two techniques as an op-
timal solution remains not fully clear. Searching for such an optimal combining
strategy is non-trivial because the two goals are entangled in the optimization.
Moreover, SSL and AT often require different configuration choices for their
respective goals, and combining them inevitably involves a trade-off between
them. Inspired by the design philosophy of the divide-and-conquer algorithm,
we conjecture that the task might be simplified by solving two sub-problems in
a decoupled manner. This frustratingly simple motivation brings a fundamental
shift for the focus of robust SSL: from seeking an optimal combining strategy for
a coupled problem to finding sub-solutions for sub-problems.
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Fig. 1: Comparison of different
methods on robust accuracy and
total training time.

To this end, this work discards the
prior practice [56, 32, 31, 19] of introduc-
ing AT to SSL frameworks and pro-
poses a new two-stage framework termed
Decoupled Adversarial Contrastive Learning
(DeACL). At stage 1, we perform stan-
dard (i.e. non-robust) SSL to learn
instance-wise representation as a target
vector. At stage 2, the obtained target
vectors can be used for facilitating AT in
a pseudo-supervised manner for learn-
ing robust representation. We find that
DeACL significantly benefits from the
configuration for second-stage AT being
set differently from that of first-stage SSL.
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Except for enabling flexible yet simple configuration choices, another impor-
tant side benefit of our DeACL is to require much fewer computation resources.
At first sight, it might be counter-intuitive that two-stage approaches can be
much faster than single-stage counterparts. Ignoring specific implementation de-
tails, the basic rationale is as follows. SSL typically requires M times more
iterations than their supervised counterpart, and AT is often N times slower
than standard training. Compared with supervised standard training, combin-
ing them into a single-stage makes it M × N times slower, while our DeACL
makes it only M +N times slower due to the disentangling effect. As shown in
Figure 1, with SimCLR as the baseline SSL, our DeACL achieves state-of-the-art
robustness while significantly reducing the required training time. The superior
performance of our approach is also confirmed under adversarial full fine-tuning.

Overall, this work studies self-supervised robust representation learning. We
summarize the contributions as follows:

– In contrast to existing works seeking an optimal strategy for combing SSL
and AT to achieve robust SSL, our work investigates a different approach
by solving two sub-problems in a divide-and-conquer manner, which yields
a novel two-stage DeACL framework for robust SSL.

– The proposed DeACL has two advantages: (a) enabling flexible configuration
for the two sub-problems; (b) requiring much fewer computation resources.
Extensive experiments demonstrate that DeACL achieves SOTA robustness
while significantly reducing the training time.

– Our DeACL also constitutes a more explainable solution for robust SSL
and its success also bridges the gap with semi-supervised AT for exploiting
unlabeled samples for robust representation learning.

2 Related works

The task of robust SSL lies in the intersection between SSL and AT to learn
robust feature representation without GT labels. SSL and AT are two active
research fields, for which we summarize their recent progress.

Development in SSL. The success of SSL has been demonstrated in a
wide range of applications, ranging from natural language processing [33, 43, 16,
47, 39] to more recent vision tasks [34, 13, 17]. Without the need for GT labels
annotated by the human, early SSL approaches leverage handcrafted “pretext”
tasks, like solving Jigsaw puzzle [20] or predicting image rotation [40], while
recent methods seek to learn augmentation-invariant representation [2, 26, 10, 8,
24]. To make the encoder augmentation-invariant, a commonly adopted practice
is to minimize the distance between a positive pair, i.e. two views augmented
from the same image based on a Siamese network architecture. A widely known
issue in SSL is that the network might output an undesired constant, for which
contrastive learning (CL) provides a satisfactory solution by maximizing the
distance between negative samples, i.e. views of different images. CL has been
widely investigated in [41, 29, 53, 69, 2, 28, 49, 10, 26, 51, 52, 57], contributing to
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the progress of SSL. Recently, multiple works [12, 24, 18, 58, 3] have also explored
non-contrastive SSL. A unified perspective on contrasitve and non-contrastive
SSL is provided in [66, 65].

Development in AT. To improve adversarial robustness, early works have
attempted with various image processing or detection techniques, most of which,
however, are found to give a false sense of robustness [6, 1, 15]. Currently, AT
and its variants are widely recognized as powerful solutions to improve model
robustness, among which Mardy-AT [36] and Trades-AT [67] are two widely used
baselines. From the perspective of model architecture, AT often requires a larger
model capacity [50, 55]. Moreover, [54, 42] have found that a smooth activation
function, like parametric softplus, is often but not always [23] helpful for AT.
From the perspective of tricks, [42] has performed a comprehensive evaluation
for bags of tricks in AT and found that most of them provide no or trivial per-
formance boost over Mardy-AT and Trades-AT if basic hyperparameters, such
as weight decay, are set to proper values. From the perspective of data, [50, 7,
68] have shown that unlabeled data can be helpful for robustness improvement
over a basic supervised baseline. However, those approaches still depend on a
large amount of labeled samples. For example, [50, 7, 59] have shown that robust
accuracy drops significantly when only 10% of the CIFAR10 labels are avail-
able. Universal AT [5] has also been investigated for defending against universal
adversarial perturbations [37, 61, 4, 63, 62].

Self-supervised adversarial robustness. Clearly, self-supervised AT, i.e.
achieving robustness with only unlabeled samples, can be even more challenging
than the semi-supervised AT setting. Nonetheless, multiple recent works [9, 31,
32, 22, 19] have demonstrated encouraging success in this challenging yet highly
significant direction. Prior attempts mainly focused on finding effective tech-
niques to combine SSL and AT. What differentiates our approach from prior
attempts [56, 31, 32, 22, 19] lies in disentangling robust SSL into two decoupled
sub-problems (SSL and AT) which can be solved in two stages. In the following
section, we will detail existing single-stage frameworks as well as the motivation
behind our two-stage framework.

3 Proposed method

To avoid ambiguity, we start by presenting the problem of our interest, i.e.
robust SSL, and common fine-tuning methods for evaluating the learned robust
representation. Then, we briefly summarize how prior attempts [9, 31, 32, 22,
19] solve this problem in a single-stage framework. Compared with standard
supervised training, either SSL or AT makes the optimization more complex,
while simultaneously realizing SSL and AT clearly makes the problem complexity
to an even higher level thus is difficult to solve. Inspired by the philosophy of the
divide-and-conquer algorithm, we divide the complex robust SSL problem into
two sub-problems: non-robust SSL and pseudo-supervised AT, and sequentially
conquer them. We identify multiple important details that need to be configured
differently for AT at stage 2 from standard SSL at stage 1.
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3.1 Problem statement

Robust SSL. The goal of robust SSL is to learn robust feature representa-
tion with only unlabeled samples so that the model can be trained by a self-
supervision loss, such as InfoNCE in CL-based SSL frameworks [26, 10]. Note
that this is different from a semi-supervised setting, where labeled samples are
used together with unlabeled dataset. By contrast, robust SSL exclusively only
utilizes unlabeled dataset.

Standard linear finetuning. For quantitatively evaluating the learned rep-
resentation, a common practice is to train a linear classifier (denoted as ϕθc) on
top of the pretrained encoder (denoted as fθe) as:

SLF: min
θc

E(x,y)∈DℓCE(ϕθc ◦ fθe(x), y), (1)

where ℓCE represents the supervised CE loss with GT-labels y over a certain
dataset D. This is often termed standard linear finetuning (SLF) [31, 19] since
only a linear classifier is updated on Clean Examples (CEs). Training such a
linear classifier allows access to the ground-truth labels; otherwise, the learned
representation in the encoder cannot be evaluated. To not break the rule of the
SSL task, the backward gradient can only be propagated to the linear classifier so
that the pretrained encoder is fixed during the evaluation. The quality of learned
robust representation is finally evaluated on the full model ϕθc ◦fθe by measuring
its robust accuracy under PGD attack [36] or autoattack [15]. Adversarial full
finetuning. Except for the above linear finetuning as the primary evaluation
metric, one can also make the constraint less strict in the finetuning stage to
perform adversarial fullfinetuning [32] (AFF). AFF allows the encoder to be
updated during the finetunning as:

AFF: min
θc,θe

E(x,y)∈DℓCE(ϕθc ◦ fθe(x+ δ), y), (2)

where σ is adversarial perturbation. It is worth highlighting that the weight
initialization from robust SSL significantly improves the convergence speed of
supervised AT together with a non-trivial performance boost. Note that we do
not consider standard full finetuning because it cannot generate a robust model.

Basic setup. Following [32, 31, 19], we adopt ResNet18 as the encoder ar-
chitecture and investigate robustness on CIFAR10. Under the l∞ constraint, we
set the maximum allowable perturbation budget ϵ to 8/255 during both training
and evaluation. Following AdvCL[19], we evaluate the learned robust represen-
tation on three metrics: Standard Accuracy (SA), Robust Accuracy (RA) and
Autoattack Accuracy (AA). SA is the classification evaluated on clean exam-
ples, while RA is evaluated on adversarial examples generated by 20-step PGD
attacks. AA evaluates the model accuracy under Autoattack [15] for mitigating
the concerns for the phenomenon of obfuscated gradient. We follow [19] for the
settings of SLF and AFF (see the supplementary for a detailed setup).
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3.2 Existing single-stage framework for robust SSL

Since contrastive learning (CL) is a widely proven effective technique in SSL
for representation learning without labels, for which SimCLR [10] is a popular
representative. Therefore, multiple works [31, 32, 19] have adopted SimCLR as
the baseline SSL method and improved its robustness by combining it with AT.
Let us briefly recap how SimCLR framework works. The optimization goal of
CL is to make the anchor sample be attracted close to its positive sample, i.e.
a different view augmented from the same image while being pushed away from
its negative samples. The pipeline takes a batch of image samples as the input
and processes it with a backbone encoder followed by a projector which is an
MLP [10]. The output is a latent vector denoted as z. With · indicating the cosine
similarity between vectors and N indicating the number of negative samples, the
contrastive InfoNCE is shown as:

LCL = − log
exp(za · zb/τ)

exp(za · zb/τ) +
∑N

i=1 exp(za · zi/τ)
, (3)

where za and zb are a positive pair. τ denotes the temperature hyperparam-
eter. The negative samples are included to prevent a collapse mode where the
model outputs a constant regardless of the inputs. Note that the above loss can
be simplified to a cosine similarity loss by excluding negative samples.

RoCL. Introducing AT to the above CL, [32] is one of the pioneering works
to propose a robust contrastive learning (RoCL) framework. Following the pro-
cedure in vanilla AT [36], RoCL first generates adversarial examples (zadva ) by
maximizing its cosine distance from zb with multi-step PGD attacks and then
updates the network by minimizing the cosine distance between all positive sam-
ples. In contrast to standard SSL, RoCL has three positive samples, za, zb and
zadva , which forms three contrastive losses for training the network.

ACL. Concurrent to RoCL [32], another work [31] proposes a similar SimCLR-
based approach coined as adversarial contrastive learning (ACL). [31] has ex-
plored to improve the robustness of SimCLR with various attempts, among
which a dual stream consisting of a standard2standard (S2S) and adversar-
ial2adversarial (A2A) performs the best. S2S is a normal CL as introduced in
Eq 3, while A2A replaces za and zb with adversarial examples zadva and zadvb

which are generated by maximizing their cosine distance to each other.
AdvCL. Very recently, another SimCLR-based adversarial contrastive learn-

ing framework, which is coined as AdvCL in [19] to differentiate from ACL, has
been proposed. In essence, without dual-stream design, AdvCL is more similar
to RoCL than ACL. What differentiates AdvCL from them is its two distinc-
tive components: (a) introducing another positive view which is augmented by
keeping only high-frequency content; (b) adopting another supervision loss by
utilizing an additional encoder pretrained on a much larger dataset (ImageNet).
Empirically, these two designs improve its performance over RoCL and ACL by
a large margin. As reported in [19], this performance boost is at the cost of being
three times slower than RoCL and AdvCL. If the pretraining time on ImageNet
is considered, the required computation resources can be more intimidating.
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3.3 Decomposed Adversarial Contrastive Learning

Motivation. Divide-and-conquer is a widely used algorithm paradigm in ML
to break down a complex problem into two (or more) sub-problems which can
be easier to solve. Inspired by such design philosophy, we propose to divide
the complex robust SSL into two sub-problems, i.e. (a) (non-robust) SSL and
(b) (pseudo-)supervised AT. Such a decoupled optimization procedure simplifies
the robust SSL by shifting the task focus from seeking an optimal strategy to
combine SSL and AT to finding sub-solutions to sub-problems. Overall, with the
motivation to decompose robust SSL, we propose a new two-stage framework,
termed DeACL. For differentiation, we denote the encoder at stage 1 as fθ1 and
that at stage 2 fθ2.

Stage 1: non-robust SSL for optimizing fθ1. Following [31, 32, 19], this
work mainly adopts SimCLR as the SSL method. Following [14], we train the
model for 1000 epochs. A detailed setup is listed in the supplementary. The
purpose of non-robust SSL is to obtain label-alike pseudo-targets for guiding the
following pseudo-supervised AT.

Stage 2: pseudo-supervised AT for optimizing fθ2. In vanilla super-
vised AT, the model training is guided by GT labels. Conceptually, the term “la-
bel” is often associated with human predefined classes, cat or dog for instance,
which do not exist in the SSL. Thus, the representation vectors obtained from
SSL are termed targets to differentiate from labels. Moreover, since the targets
are generated by a SSL pretrained model instead of human annotation, we term
them pseudo-targets. Specifically, the pseudo-targets refer to the instance-wise
representation vectors by feeding the samples to a pretrained backbone encoder.
They serve a similar role as GT labels to guide the supervised AT.

Loss design. We use the default SSL loss (Eq 3 for instance) to optimize
fθ1 at stage 1 of our DeACL. At stage 2, we optimize the encoder fθ2 with the
loss as:

Lstage2 = CosSim(fθ2(x), z1) + λCosSim(fθ2(x
adv), fθ2(x)), (4)

where CosSim indicates cosine similarity loss and z1 indicates target vector
generated from the pretrained fθ1. The adversarial example xadv is generated by
maximizing CosSim(fθ2(x

adv), z1). Following AdvC [19], 5-step PGD (with the
step size α = 2/255) is adopted to generate xadv. Eq 4 consists of two terms where
the first one increases accuracy and the second one acts as a regularization loss
to increase robustness. λ is a hyper-parameter for achieving a trade-off between
accuracy and robustness. In this work, we set λ to 2 (see supplementary for
the ablation study). This design is inspired by a SOTA loss in (supervised)
Trades-AT [67]. A major difference from [67] is that we use CosSim instead
of KL divergence to measure the distance. We empirically find that CosSim
outperforms KL by a large margin. An alternative loss could be designed to
directly minimize CosSim(fθ2(x

adv), z1). Its performance is worse than Eq 4
(see the supplementary for ablation study), which aligns with the finding in
prior works [67, 42].
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Fig. 2: Overall framework of DeACL. It consists of two stages. At stage 1, DeACL
performs a standard SSL to obtain a non-robust encoder. At stage 2, the pre-
trained encoder act as a teacher model to generate pseudo-targets for guiding
a supervised AT on a student model. After two stages of training, the student
model is the model of our interest.

Overall framework. The overall framework of our DeACL is shown in
Figure 2, where the pretrained encoder in stage 1 is loaded and then frozen in
stage 2 as a teacher model for generating pseudo-targets.

Table 1: Influence of weight initial-
ization for the student model.

AA RA SA
DeACL 45.31 53.95 80.17
Student Scratch 44.63 54.06 79.47

At stage 2, we can initialize fθ2 with
random weights or pretrained weights by
loading fθ1 to the student model. Em-
pirically, we find that this only yields a
small performance variation as shown in
Table 1. In the beginning, loading pre-
trained (non-robust) weights boosts the
convergence speed (see the supplementary), which is well expected. Since this
convergence and performance boost is free, our DCL by default adopts this prac-
tice.

4 Advantages of our DeACL

4.1 Flexible configuration for SSL and AT

It has been shown in [42] that training configurations (e.g ., weight decay) can
have a significant influence on robustness in supervised AT. However, it is not
clear how to choose the optimal configurations in robust SSL, especially consid-
ering the differences of main configurations in SSL and supervised AT, as shown
in Table 2. Since recent works [32, 31, 19] all train the model in a single stage, it
is not clear whether configurations of SSL or supervised AT should be applied.
RoCL and ACL both follow the configuration as standard SSL, such as small
weight decay, strong augmentation, adopting a projector head, and preventing
collapse with InfoNCE loss. For the weight decay, AdvCL adopts a value that
lies between those for SSL and AT. For augmentation, AdvCL adopts strong
augmentation on CEs and weak augmentation on AEs. [19] shows that their
AdvCL performance drops by a large margin if strong augmentation is applied
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on AEs. A major drawback for existing single-stage frameworks lies in seeking
an optimal configuration that simultaneously fits both SSL and AT.

Table 2: Summarization of four configuration details in various settings.

Configuration SSL AT
Single-stage frameworks Two-stage DeACL

RoCL ACL AdvCL SSL AT

Weght decay 1e-5 5e-4 1e-6 1e-6 1e-4 1e-5 5e-4
Data augmentation Strong Weak Strong Strong Strong/weak Strong Weak

Projector head Yes No Yes Yes Yes Yes No
Collapse prevention Yes No Yes Yes Yes Yes No

By contrast, our DeACL enables stage-specific configuration. In other words,
we can freely choose the optimal experimental configurations during each stage.
For the first stage which aims to train a standard model, we follow the open
source SSL library [14] for optimal configuration. In the following, we detail why
and how each configuration is set at stage 2 of our DeACL.

Table 3: Influence of weight decay
at stage 2 with the SSL results on
CIFAR10.

Weight Decay
SLF

AA RA SA
1e-6 34.77 40.45 81.88
1e-5 36.33 44.21 80.29
1e-4 43.26 52.39 80.21
5e-4 45.31 53.95 80.17
1e-3 43.07 53.32 78.24
5e-3 24.80 33.45 55.76

Weight decay. SSL typically has a
strong regularization effect due to strong
augmentation and the weight decay is often
set to a relatively small value, 1e-5 for in-
stance [14]. Supervised AT, however, often
suffers from robust overfitting [44] and re-
quires a large weight decay [42]. [42] has per-
formed an extensive study on a bag of tricks
on supervised AT, and has found that weight
decay is the most significant factor, which
has a much higher influence than tricks re-
ported in most works. With the weight decay
set to 5e-4, [42] has shown that most tricks
bring no or marginal performance boost over the widely used Madry-AT [36]
and Trades-AT [67]. Table 3 shows that a relatively large weight, i.e. 5e-4, is
required for achieving high robustness and accuracy. Note that [42] also shows
that 5e-4 is the optimal weight decay for vanilla supervised AT on the same
dataset CIFAR10.

Table 4: Influence of data aug-
mentation at stage 2 with the SSL
results on CIFAR10.

Augmentation SLF
AE CE AA RA SA
Weak Weak 45.31 53.95 80.17
Strong Strong 6.93 17.43 48.12
Weak Strong 34.47 45.45 74.85
Strong Weak 7.62 18.36 79.93

Data augmentation. SSL is widely
known to require strong augmentation
to learn augmentation-invariant represen-
tation, while supervised training (either
standard or adversarial one) typically of-
ten adopts weak augmentation. On the CI-
FAR10 dataset, the strong augmentation
consists of random resized crop, color jitter-
ing, color change, Gaussian blur, solarization
and horizontal crop, while the weak augmen-
tation only consists of random crop (after
padding) and horizontal flip. The results in 4 show that applying strong aug-
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mentation on either clean examples (CEs) or adversarial examples (AEs) in Eq 4
yields significantly inferior performance.

Table 5: Influence of projector head
at stage 2 with the SSL results on
CIFAR10.

AA RA SA
w/o projector 45.31 53.95 80.17
w/ Projector 42.48 50.60 78.80

Projector head. Projector head has
become a de facto standard component in
SSL to be added after the backbone dur-
ing training for performance boost [10, 11,
45]. After the training is done, only the
backbone is kept for the downstream task.
In the case of supervised AT [36], no pro-
jector is used during training. The results
in Table 5 show that adding the projector at stage 2 of our DeACL is harmful
to both robustness and accuracy.

Table 6: Influence of collapse prevention at
stage 2 with the SSL results on CIFAR10.

AA RA SA
w/o collapse prevention 45.31 53.95 80.17
w/ collapse prevention 34.18 39.32 72.19

Collapse prevention. A
widely known phenomenon in
SSL is that the model output a
constant output, i.e. collapse, if
the loss only maximizes the co-
sine similarity between a pair of
positive samples. A widely used
approach to mitigate this phenomenon is to introduce a contrastive component,
i.e. simultaneously minimizing the cosine similarity between negative samples
(See Eq 3). The results in Table 6 show that adding a contrastive component
decreases the performance by a large margin. At stage 2 of our DeACL, there is
low or no risk of collapse because it is supervised by distinctive pseudo-targets.

Takeaway on the configuration. Overall, our above investigation shows
that our DeACL significantly benefits from the fact that the configurations for
AT in our DeACL can be set differently from those in SSL. The best configura-
tions at stage 2 of our DeACL are the same as those in supervised AT, which
is reasonable considering the second stage our DeACL conducts a i.e. pseudo-
supervised AT. As shown in Table 7, thanks to the flexible configuration, our
DeACL achieves superior performance over existing single-stage frameworks. No-
tably, our proposed DeACL achieves the highest robustness for both AA and RA
on both CIFAR10 and CIFAR100. For SA, our DeACL outperforms all existing
methods except for AdvCL on CIFAR10. On CIFAR100, our DeACL outper-
forms all existing methods by a large margin.

Performing a similar investigation on existing single-stage frameworks might
also bring a performance boost. However, it is not guaranteed considering the
configuration trade-off between SSL and AT. Moreover, such a search for optimal
configuration in single-stage frameworks can be intimidating if taking compu-
tation resources into account. In the following, we discuss another advantage of
our DeACL for significantly reducing the training time.

4.2 Two-stage DeACL is faster than single-stage frameworks

As shown in Table 7, among the three single-stage frameworks (RoCL, ACL,
AdvCL), the very recent AdvCL achieves the best robustness but at the cost of
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Table 7: SLF results on CIFAR10 and CIFAR100. All the methods are evaluated
with ResNet18 under the same condition following [19]. We report three metrics
(Auto Attack (AA), Robust Accuracy (RA), Standard Accuracy (SA)) as well
as the pretraining time (in days). For all metrics, the best performance is high-
lighted in bold.

Method
CIFAR10 CIFAR100 Computation resource

AA(%) RA(%) SA(%) AA(%) RA(%) SA(%) Time GPU Total

AP-DPE 16.07 18.22 78.30 4.17 6.23 47.91 10.11 1 10.11
RoCL 23.38 39.54 79.90 8.66 18.79 49.53 1.59 2 3.18
ACL 39.13 42.87 77.88 16.33 20.97 47.51 2.65 1 2.65

AdvCL 42.57 50.45 80.85 19.78 27.67 48.34 3.15 4 12.60

DeACL 45.31 53.95 80.17 20.34 30.74 52.79 0.45 1 0.45

significantly more training time. As noted in [19], their superior performance is
partly attributed to introducing additional views as well as additional pseudo su-
pervision regularization from encoder pretrained on ImageNet. These two design
choices are also the reason that makes their AdvCL significantly slower. Com-
pared with them, our DeACL requires the least training time, which is mainly
attributed to the effect of disentangling SSL and AT. It is worth highlighting that
our DeACL achieves a significant performance boost over RoCL and ACL, with-
out relying on additional high-frequency views or additional supervision from
ImageNet pretrained models. These two techniques might further improve the
performance of our DeACL, and we leave such investigation for future work. We
do not include them in this work to make our DeACL simple and fast.

Rationale for why DeACL is fast. Given that RoCL and ACL do not
use the two design choices as AdvCL, why are they still significantly slower
than our DeACL? At first sight, it seems counterintuitive that the two-stage
DeACL can be faster. The rationale is briefly discussed as follows. SSL and AT
are both widely known to require much longer training time than their standard
supervised counterpart. Specifically, SSL often requires M (10 for instance) times
more training iterations (epochs) due to the lack of GT labels. AT makes the
iteration-wise training time N (7 for instance) times longer because generating
adversarial examples with the commonly used multi-step PGD attack is very
slow. Directly solving a robust SSL requires M × N times more training time,
while disentangling them into two stages is expected to only require M + N
times more training time. In practice, training time can be more than complex
than the above reasoning rationale, depending on the implementation details.

5 Additional experimental results

The results in the above section demonstrate that our DeACL outperforms ex-
isting single-stage frameworks by a large margin while requiring significantly less
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Table 8: AFF results on CIFAR10 and CIFAR100. All the methods are evaluated
with ResNet18 under the same condition following [19]. For all metrics (AA, RA,
SA), our DeACL achieves the best performance which is highlighted in bold.

SSL-AT
CIFAR10 CIFAR100

AA(%) RA(%) SA(%) AA(%) RA(%) SA(%)

Supervised 46.19 49.89 79.86 21.61 25.86 52.22
AP-DPE 48.13 51.52 81.19 22.53 26.89 55.27
RoCL 47.88 51.35 81.01 22.28 27.49 55.10
ACL 49.27 52.82 82.19 23.63 29.38 56.61

AdvCL 49.77 52.77 83.62 24.72 28.73 56.77

DeACL 50.39 54.18 83.95 25.48 29.65 59.86

training time. Here, we further conduct extra experiments to verify the effective-
ness of our approach from different angles.

AFF results. Table 8 reports the AFF results on both CIFAR10 and CI-
FAR100. Compared to the results in Table 7, for all methods, AFF brings a
consistent performance boost over SLF, which is expected since AFF also allows
the encoder to be updated. Similar to the trend with SLF, we observe that our
DeACL achieves SOTA performance for all the three considered metrics on both
CIFAR10 and CIFAR100.

Fig. 3: RA on CIAR10 with various PGD steps and ϵ. Our DeACL consistently
achieves the best performance.

Influence of attack steps and perturbation magnitude. For the RA,
by default we use 20-step PGD, i.e. PGD-20, with ϵ set to l∞ 8/255. Here, we
evaluate with various steps and ϵ values. The results in Figure 3 show that our
DeACL consistently outperforms existing methods by a non-trivial margin.

Qualitative results. With t-SNE [35], the visualization of learned represen-
tation on CIFAR10 is shown in Figure 4, where each point is colored by its GT
label. The class boundary of our DeACL is clearer than that of existing methods,
which suggests that DeACL might be more robust to adversarial perturbation.
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(a) RoCL (b) ACL DS (c) AdvCL (d) DeACL (ours)

Fig. 4: Visualization of robust representation learned with different methods. Our
method gives a more clear classification boundary than existing methods.

6 Implications of our findings

6.1 Towards a more explainable solution

Table 9: Results on Cifar10 with var-
ious SSL frameworks at stage 1 of
our DeACL.

SSL frameworks
SLF

AA RA SA
SimCLR [10] 45.31 53.95 80.17
MoCo v2 [11] 46.29 53.97 80.56
BYOL [24] 44.14 52.42 80.89

BarlowTwins [58] 41.31 50.47 80.88
VICReg [3] 43.65 50.56 82.10

It is desirable to have a more explainable
solution for a given task. For the task of
robust SSL, the success of existing solu-
tions based on a single-stage framework
is much more difficult to explain because
it couples two sub-problems. Our DeACL
decouples the task, which makes the so-
lution significantly more explainable. For
example, an interesting question to ask in
robust SSL is how much the SSL frame-
work choice influences the performance.
With the existing single-stage framework,
such influence is much more difficult to analyze due to its interaction with AT.
Note that SSL framework often has its optimal configuration setting. As we
can see from Section 4.1, such configuration detail can have a significant influ-
ence when considering AT. With our DeACL, we can adopt a unified configu-
ration in the second-stage AT to exclude such influence of configuration on AT.
With this said, Table 9 reports the influence of SSL frameworks. We observe
an interesting phenomenon that CL-based frameworks tend to outperform non-
CL-based frameworks for achieving higher robustness but possibly at the cost
of slightly lower accuracy. [56] claims that adversarial momentum contrastive
learning (AMOC) outperforms adversarial contrastive learning by showing a
non-trivial performance gain of their AMOC over ACL. Since many configura-
tions in MoCov2 and SimCLR are different and many other details like how to
generate adversarial examples are also very different, their conclusion might be
not fully convincing. Our results in Table 9 show that MoCov2 and SimCLR
achieve comparable RA and SA, suggesting their non-trivial performance boost
is likely to be caused by the influence of different configurations on AT.
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6.2 Towards a unified perspective on semi/self-supervised AT

It is worth noting that a similar two-stage approach is also used in semi-supervised
AT for exploiting unlabeled dataset. the success of such a two-stage approach
in both semi-supervised and self-supervised settings suggests a new unified per-
spective on how to effectively exploit unlabelled dataset for learning robust rep-
resentation. Intuitively, in the semi-supervised settings, the unlabeled dataset
can also be used to improve the robustness in a single-stage manner through a
regularization loss for instance. However, [50] has found that such a single-stage
approach achieves inferior performance than the two-stage approach. Given that
our two-stage DeACL also outperforms existing single-stage SOTA baselines in
self-supervised setting, it suggests a unified understanding on semi-supervised
and self-supervised AT: pseudo-targets (either pseudo-labels or pseudo-vectors)
are all you need for exploiting unlabeled dataset to learn robust representation.

Despite such a unified perspective, it is also important to note distinctions
between them. Their core distinction lies in their different motivations. A semi-
supervised setting allows access to labeled datasets and the motivation of using
unlabeleld images is to use more samples. Note that more samples are used for
training a robust model at stage 2 of semi-supervised AT than those used at stage
1 for training a non-robust model. By contrast, our DeACL in the self-supervised
setting is not motivated to increase the sample size and the second stage uses the
same number of samples as those at stage 1. Instead, the motivation of the two-
stage procedure in our DeACL lies in decomposing the robust SSL. Moreover,
what connects the two stages is the supervision targets which are pseudo-labels
and pseudo-vectors in semi-supervised and self-supervised settings, respectively.
Due to this difference, at stage 2, our DeACL needs to adopt the cosine similarity
loss instead of the commonly adopted CE loss.

7 Conclusion

This work revisits the task of robust SSL for learning robust representation with-
out labels. Discard the practice of seeking an optimal strategy to combine SSL
and AT, we propose a novel two-stage framework termed DeACL. Our DeACL
enables independent configuration for SSL and AT for achieving SOTA robust-
ness by using significantly smaller training resources. Extensive results confirm
the effectiveness and efficiency of our DeACL over existing single-stage frame-
works by a significant margin. Our findings also have non-trivial implications for
pushing (a) towards a more explainable solution for robust SSL and (b) towards
a unified perspective of understanding on semi/self-supervised AT regarding how
to effectively exploit unlabeled samples for robust representation learning.
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