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Here, we provide additional results and analysis on self-supervised (section A),
cross modal constraint (section B), semi-supervised (section C) and supervised
(section D) settings. Additional results include analysis of retrieved far neighbors
(Figs. A1 and A2) and ablations to justify various design choices (tables A5,
A6, A7, A8, A10, A12, A13). More details on implementation (section E)
and compute calculation (Eq. 1, table A11) are provided. We also provide the
code as part of the supplementary materials.

A Results on Self-supervised Setting

A.1 Using far neighbors in unconstrained MSF:

In CMSFself, we use augmented images from previous epoch to obtain distant
neighbors. A trivial way to sample farther neighbors is to just increase the
number of neighbors k in the original (unconstrained) MSF [15] method. Here
we train MSF with k = 500 to compare with our CMSFself. We train all models
for 80 epochs. Settings are similar to our self-supervised settings in section 3.1.
For fair comparison, we use memory-bank of size 256k for MSF while we use
128K for CMSFself. Results are in Table A.1. While increasing k in MSF helps
to sample far NNs, it degrades the accuracy. We hypothesize that this happens
due to reducing purity of top-k in unconstrained MSF with increasing k (also
shown in Fig. 5 of the main submission). This experiment shows that it is not
trivial to to sample far NNs with good purity.

A.2 Effect of number of neighbors k

CMSFself uses top-k NNs as part of loss calculation. Here we study the effect of
k in CMSFself performance. We set k′ = k in all models. Note that as described
in Line 350 of the main submission, k′ is the number of NNs retrieved from
the second memory bank M ′. We train all models for 80 epochs. All settings
are similar to that of CMSFself in Section 3.1. Results are shown in Table A.2.
Higher values of k and k′ degrade model performance. We thus use k′ = k = 5
in all our main experiments.

we experimented with ResNet-18 and ResNet-101 networks. ResNet-101 is
trained for 100 epochs. CMSF outperforms MSF by 1.9 points (51.7% vs 49.8%)
with ResNet-18 and 0.8% points (71.9% vs 71.1%) with ResNet-101.
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Table A1. Using far neighbors in unconstrained MSF [15]: Using far NNs by
trivially increasing k in MSF baseline degrades the accuracy. This is due to the low
purity of far NNs in MSF when no constraint is utilized. However, CMSFself achieves
high accuracy while using distant NNs.

MSF [15] MSF [15] CMSFself

Top-k = 500 Top-k = 5 Top-k = k′ = 5

NN 35.8 49.7 51.4
20-NN 40.2 54.0 55.5

Table A2. Effect of k in top-k NNs sampling within M : We set k = k′ in all
models and varied k. We use memory bank of size 256k. Increasing k degrades the
accuracy of the model.

k′=k=5 k′=k=10 k′=k=20 k′=k=50

NN 51.4 51.3 51.1 49.5
20-NN 55.5 55.3 55.3 53.8

A.3 Results with Different Architectures

In addition to the ResNet-50 architecture, we experiment with a smaller and a
larger backbone architecture. We consider ResNet-18 and ResNet-101 networks.
The results are shown in table A3. The proposed CMSFself improves over MSF
across different architectures. Note that the networks are trained only for 100
epochs on ResNet-101.

Table A3. Results with different backbone architectures: We compare
performance of our method with that of CMSF with ResNet architectures of different
sizes. We observe that CMSF consistently outperforms MSF. * models were trained for
100 epochs instead of 200.

Method ResNet-18 ResNet-50 ResNet-101*

MSF [15] 49.8 72.2 71.1
CMSFself 51.7 73.0 71.9

B Cross-modal Constraint

Fig. 6 of main submission showed that proposed CMSFsup is more robust to
noisy labels. Here, we explore another such noisy constraint: a pre-trained SSL
model from another modality. We consider an unlabeled video dataset and use
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the RGB and optical flow inputs as the two different modalities. We first train
two SSL models on the RGB and Flow modalities separately using InfoNCE
method [21,11]. Then we continue the training on one modality while freezing
the other modality and using it as a constraint. In training the flow network using
RGB network as constraint, we sample k′ nearest neighbors in RGB’s memory
bank and then search for top-k nearest neighbors among those samples in the
memory bank corresponding to Flow.

Implementation Details. Following [11], we use split-1 of UCF-101 [26] (13k
videos) as the unlabeled dataset. We use similar augmentation and pre-processing
as [11] and calculate optical-flow using unsupervised TV-L1 [30] algorithm. For
cross-modal experiments, we use S3D [29] architecture with the input size of
128 × 128 pixels. We initialize from the pretrained weights of InfoNCE (400-
epoch) released by [11]. We use following settings for our method: memory bank
of size 8192, n = 10, k = 5, batch size 128, weight decay 1e−5, initial lr of 0.001,
and learning rate decay by factor of 10 at epoch 80. We train each modality for
additional 100 epochs using PyTorch Adam optimizer. For a fair comparison,
we run CoCLR using their official code by initializing it from the same model as
ours. We use the code from [11] for linear evaluation.

Results: The results are shown in Table A4. We report top-1 accuracy for
linear classification and recall@1 for retrieval on the extracted features of frozen
networks. All experiments use spatio-temporal 3D data either in RGB or flow
format. At the end of 3 stages of training on Flow modality, our method outperforms
CoCLR [11] baseline and MSF with 2 stages.

C Results on Semi-supervised Setting

Unless specified, we use the ImageNet100 dataset for all the ablations on the
semi-supervised setting for faster experimentation.

C.1 Role of Confidence Threshold in Pseudo-labeling

We use a MLP classification head to predict pseudo-labels for the unlabeled
set. As shown in Fig. A1, the accuracy of the classifier is low in the initial
stages and improves as training progresses. Using constraints from incorrectly
labeled samples might affect the learning process. Thus, we use confidence (class
probabilities) based thresholding to select the samples to be used for pseudo-
labeling. Only those samples with confidence higher than the threshold are
assigned a pseudo-label. Fig. A1 shows that the accuracy of the classifier on
the confident samples remains high throughout training, limiting the number of
incorrect pseudo-labels. Results for threshold value (t) selection are shown in
table A5. As expected, t = 0 (i.e, no thresholding) performs poorly compared
to higher threshold values. Pseudo-labeling accuracy increases with increasing
value of t and the best result is observed for t = 0.9. While further increase in
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Table A4. Cross-modal constraint: We initialize all models using an InfoNCE
pre-trained model. In CMSF-cross modal, one of the modalities is used to constrain
and train the other. Superscript indicate the constraint modality, subscript indicate
the training modality. For example, in CMSFFlow

RGB, we continue training CMSF on
RGB modality while using frozen pretrained Flow model as the constraint. Note that
CoCLR [11] also uses another modality as a constraint in the form of contrastive
learning. We continue training InfoNCE SSL model for 200 epochs using MSF [15] for
a fair comparison. We use S3D [29] architecture for all models. Models with the final
round of training on Flow modality are highlighted with yellow and those on RGB are
highlighted with blue. All rows with * contain results for the same model. Results are
repeated for easier understanding of the table.

Model Final Epochs R@1 Linear
modality

InforNCERGB RGB 400 35.5 47.9
InforNCERGB→ MSFRGB RGB 400+200 39.6 50.8

InforNCEFlow∗ Flow 400 45.3 66.1
InforNCEFlow→ MSFFlow Flow 400+200 47.3 64.7

InforNCEFlow∗ Flow 400 45.3 66.1

InforNCEFlow→ CoCLRFlow
RGB RGB 400+100 49.8 61.0

InforNCEFlow→ CoCLRFlow
RGB→ CoCLRRGB

Flow Flow 400+100+100 50.0 67.3

InforNCEFlow∗ Flow 400 45.3 66.1

InforNCEFlow→ CMSFFlow
RGB RGB 400+100 45.8 58.1

InforNCEFlow→ CMSFFlow
RGB→ CMSFRGB

Flow Flow 400+100+100 54.1 71.2

t could result in higher pseudo-labeling accuracy, it would also mean that fewer
samples are assigned pseudo-labels. Thus, we use t = 0.9 in all our experiments
on ImageNet100. Since ImageNet-1k has ten times more classes, we reduce the
value to 0.85 for all our experiments on ImageNet-1k.

C.2 Effect of Caching on Pseudo-label Training

In addition to optimizing the query encoder network using CMSF loss, we
train the pseudo-label classifier head at the end of each epoch of query encoder
training. Each round of pseudo-label training entails 40 epochs of classifier head
training on the supervised subset of the data (10%). While the time required
for backward pass is minimal since only the MLP head is updated, forward pass
through the encoder adds significant computational overhead. We thus employ
encoder feature caching to overcome this issue. We experiment with two caching
settings - offline caching and online caching. In offline caching, encoder features
for all the supervised samples are calculated once at the beginning of pseudo-label
training and kept fixed for the remaining 39 epochs. In online caching, encoder
features for the supervised samples are cached for each mini-batch during the
query network training. Similar to offline caching, these features are then fixed
and used throughout the 40 epochs of pseudo-labeling network training. Offline
technique requires one epoch of forward pass through the encoder, but has the
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Fig.A1. Unconstrained NN accuracy in semi-supervised: For analysis, we
track the pseudo-labeling accuracy and accuracy of top-k neighbors chosen with and
w/o applying the pseudo-label based constraint during training. The more accurate
constrained NNs provide a better training signal. Pseudo-label accuracy on confident
samples remains high throughout training, decreasing slightly as more confident
samples are added.

Table A5. Role of confidence threshold in pseudo-labeling (ImageNet100
results): Using confidence based threshold to pseudo-label helps improve performance
by eliminating noisy pseudo-labels. A higher threshold value results in higher pseudo-
label accuracy but also limits the number of samples that participate in constraint
selection. We set the value of t to 0.9 on the ImageNet100 dataset and to 0.85 on the
more diverse (1000 classes) ImageNet-1k dataset.

Threshold (t) 1-NN 20-NN Top-1

0 67.9 71.2 76.2
0.7 67.9 72.3 77.1
0.9 69.0 72.7 77.5
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advantage of using the most recent model parameters for feature calculation.
Online caching results in features for different images being calculated using
different encoder parameters. We observe that both these settings perform similarly
on the ImageNet100 dataset (refer table A6). We thus use the online version in
all our experiments since it has almost no overhead. With this setting, pseudo-
label training increases the training time of each epoch approximately by just
40 seconds.

Table A6. Feature caching for pseudo-label classifier training (ImageNet100
results): We experiment two different caching schemes for pseudo-label training -
offline and online. In offline caching, the features are calculated once at the beginning
each round of pseudo-label training while in the online setting, the features are cached
for each mini-batch during query encoder training. Since both approaches have similar
performance, we use the online version since it has minimal computational overhead.

Method 1-NN 20-NN Top-1

Offline Caching 67.9 71.2 76.2
Online Caching 66.5 71.9 76.0

C.3 Pseudo-label Classifier Selection

The classifier used to generate pseudo-labels plays a crucial role in obtaining
effective constraint sets for CMSFsemi. We experiment with two classification
techniques - k-NN classifier and MLP classifier trained with cross-entropy loss.
Results on ImageNet100 dataset are shown in table A7. k-NN classifier has
lower pseudo-labeling accuracy and thus results in poorer performance. We
additionally experiment with linear, two and three layer architectures for the
MLP classifier head. As shown in table A7, multi-layer head significantly outperform
the linear classifier. Since there is minimal difference in performance of two and
three layer MLPs, we use a two layer MLP head in all our experiments.

C.4 Fine-tuning without Pseudo-labels

Since we do not explicitly optimizer our encoder networks on the label classification
task in the pre-training stage, we perform two-stage fine-tuning. We initially fine-
tune the pretrained model on only the supervised samples and use the fine-tuned
model to obtain pseudo-labels for the unsupervised ones. The combined data is
then used to fine-tune the network again. In table A8, we present results with
just a single round of fine-tuning with the 10% supervised samples on ImageNet-
1k. Two rounds of fine-tuning provides a small improvement in performance over
the single-stage version.
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Table A7. Pseudo-label classifier selection (ImageNet100 results): We
experiment with different classifier methods and architectures for pseudo-label
prediction. Linear layer or multi-layer perceptron (MLP) heads trained using cross-
entropy loss on the supervised examples outperform a k-NN classifier. MLP classifiers
achieve higher accuracy on the pseudo-labeling task on both the train and test sets.
We use a two layer MLP head based classifier in all our experiments.

Pseudo-label Classifier 1-NN 20-NN Top-1

k-NN Classifier 64.9 69.5 74.7
Linear Classifier 65.6 70.0 75.5
2 Layer MLP Head 67.9 71.2 76.2
3 Layer MLP Head 67.1 71.0 76.1

Table A8. Role of network fine-tuning on classification performance
(ImageNet-1k results): We evaluate the trained models using the linear evaluation
technique commonly employed for evaluating self-supervised approaches and entire
network fine-tuning as performed in semi-supervised methods. Both the methods use
10% of the dataset as supervision. We observe an increase in classification performance
when both the encoder and MLP classifier are fine-tuned.

Fine-tune Method Top-1

Linear layer training 76.5
Full network fine-tune 76.9

D Results on Supervised Setting

D.1 Coarse-grained ImageNet

CMSFsup top-k groups together only top-k neighbors and thus can help in
preserving the latent structure of the data compared to top-all. To verify this, we
consider a dataset with coarse-grained labels where this difference is pronounced.
ImageNet dataset was constructed using the WordNet hierarchy. Consider the
subtree of WordNet that contains all the 1000 categories from ImageNet-1k
as the leaf nodes. To obtain a coarse-grained version, we merge each category
in the leaf node to its parent node. After merging, we further ensure that no
two of the newly obtained super-classes are in the same path in the graph by
merging the descendant into the ancestor class. The total number of classes is
thus reduced from 1000 in ImageNet-1k to 93 in our ImageNet-coarse. We train
CMSFselfand the baseline approaches in a supervised manner using the coarse
labels and then evaluate on the fine-grained (i.e., original) labels on ImageNet-1k
validation set. The training settings remain same as that of CMSFsup in Sec.3.2
of main submission.

In Table A9 we compare the top-all, top-1000 and top-k variants on the
coarse grained version of ImageNet. We consider the top-1000 variant to limit the
effect of dataset imbalance introduced due to the merging of classes. CMSFsup

top-k sees a minor drop in performance compared to training on ImageNet-1k.
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Table A9. Supervised learning on coarse grained ImageNet: We train on the
coarse grained version of ImageNet (93 super categories) and perform linear evaluation
on the original ImageNet-1k validation set with fine-grained labels (1000 categories).
CMSFsup top-10 outperforms all other variants and baselines.

Train Dataset
ImageNet-1k Validation Set

Xent SupCon CMSFsup CMSFsup CMSFsup

top-all top-1000 top-10

ImageNet-1k 77.2 77.5 75.7 - 76.4
ImageNet-coarse 61.4 58.7 67.0 71.0 74.2

However, methods in which most or all samples in a class are explicitly brought
closer - CMSFsup top-all and top-1000, cross-entropy and supervised contrastive
- see a huge drop in accuracy.

D.2 Ablations

We explore different design choices and parameters of our method and baselines.
We add the techniques used for our methods to the baselines to isolate the effect
of different losses. The results are reported in Table A10. Training and evaluation
details are the same as in Section 3.2 of the main submission.

E Implementation Details

E.1 Transfer Learning

We use the LBFGS optimizer (max iter=20, and history size=10) along with
the Optuna library [2] in the Ray hyperparameter tuning framework [18]. Each
dataset gets a budget of 200 trials to pick the best parameters on validation set.
The final accuracy is reported on a held-out test set by training the model on the
train+val split using the best hyperparameters. The hyperparameters and their
search spaces (in loguniform) are as follows: iterations ∈ [0, 103], lr ∈ [10−6, 1],
and weight decay ∈ [10−9, 1]. We also show that we can reproduce the transfer
results for BYOL [10] and SimCLR [6] with our framework. The features are
extracted with the following pre-processing for all datasets: resize shorter side
to 256, take a center crop of size 224, and normalize with ImageNet statistics.
No training time augmentation was used.

E.2 Supervised Setting

Implementation Details of Baselines SupCon: The MLP architecture for
SupCon baseline is: linear (2048x2048), batch norm, ReLU, and linear (2048x128).
To optimize the SupCon baseline, following [14], we use the first 10 epochs for
learning-rate warmup. For both SupCon and ProtoNW, the temperature is 0.1.
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Table A10. Ablations of baselines and CMSFsup: All experiments use 200 epochs
if not mentioned and use ImageNet-1k dataset. (a) More epochs does not improve
transfer accuracy for Xent. Thus, the model available from PyTorch [1] (last row) has
the best transfer accuracy; (b) We add components of our method to improve SupCon
baseline. The baseline implementation of SupCon uses std. aug and 16k memory size
and it does not include the target embedding u in the positive set. (c) We find that
our method is not very sensitive to the size of memory bank or top-k in supervised
settings; (d) Interestingly, excluding the target embedding u from C does not hurts
the results. Note that when we do not include the target, the nearest neighbors are
still chosen based on the distance to the target, so they will be close to the target.

Method Mean Linear
Trans IN-1k

(a) Xent
lr=0.05, cos, epochs=200, strong aug. 71.5 77.2
lr=0.05, cos, epochs=200, std. aug. 71.0 77.3
lr=0.10, cos, epochs=200, strong aug. 72.3 77.1
lr=0.05, cos, epochs=90, std. aug. 72.4 76.8
lr=0.10, cos, epochs=90, std. aug. 74.0 76.7
lr=0.10, step, epochs=90, std. aug. 74.9 76.2

(b) SupCon
Base SupCon 77.2 77.9
+ change to strong aug. 77.9 77.4
+ add target to positive set 77.8 77.4
+ change to weak/strong aug. 77.8 77.2
+ increase mem size to 128k 78.4 77.5

(c) CMSFsup

top-1 (BYOL-asym) 74.3 69.3
mem=128k, top-2 78.4 76.2
mem=128k, top-10 80.1 76.4
mem=128k, top-20 79.9 76.3
mem=128k, top-all 80.1 75.7
mem=512k, top-10 79.9 76.2
mem=512k, top-20 80.1 76.3

(d) CMSFsup

target in top-10 80.1 76.4
target not in top-10 80.3 76.4
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Table A11. ResNet50 backbone training FLOPs calculation:We provide the
number of forward and backward passes per image (including multi-crops) and the total
such passes for the entire training stage. Mean Shift and the proposed constrained mean
shift methods have the least compute requirement among all approaches. Eq. 1 provides
the formula to calculate the total number of passes and FLOPs. In PAWS, sup refers
to the size of the support set in the mini-batch.

Method Unlabeled Labeled Mini- Iters Epochs Total FLOPs
Fwd Bwd BS Fwd Bwd BS Batch per Pass

epoch (×108) (×1018)

Mean Shift [15] 2 1 256 768 5004 200 7.7 4
BYOL [10] 4 2 4096 24576 312 1000 76.7 40
SwAV [5] 3.1 3.1 4096 25395 312 800 63.4 37
SimCLRv2 [7] 2 2 4096 16384 312 800 40.9 16

UDA† [28] 2 1 15360 1 1 512 47104 40000 18.8 10

FixMatch† [25] 2 1 5120 1 1 1024 17408 250 300 13.1 70

MPL† [23] 3 2 2048 2 2 128 10752 500000 53.8 30
PAWS (sup=6720) [3] 3.1 3.1 4096 1 1 6720 38835 312 300 36.6 21
PAWS (sup=1680) [3] 3.1 3.1 256 1 1 1680 4947 5004 100 24.8 15
PAWS (sup=400) [3] 3.1 3.1 256 1 1 400 2387 5004 100 12.0 7
CMSFsemi-basic 2 1 256 768 5004 200 7.7 4
CMSFsemi 2 1 256 768 5004 200 7.7 4
CMSFsemi-mix prec. 2 1 768 2304 1668 200 7.7 4

Prototypical Networks (ProtoNW): In order to further study the effect
of contrast, we design another contrastive version of our top-all variation. We
calculate a prototype for each class by averaging all its instances in the memory
bank. Then, similar to prototypical networks [24], we compare the input with
all prototypes by passing their temperature-scaled cosine distance through a
SoftMax layer to get probabilities. Finally, we minimize the cross-entropy loss.
Note that this method is still contrastive in nature because of the SoftMax
operation.

E.3 Semi-supervised Setting

Pretraining: Similar to the self-supervised setting, we train the network for 200
epochs using SGD optimizer (batch size=256, lr=0.05, momentum=0.9, weight
decay=1e-4). Ten nearest neighbors are chosen from the constraint set for loss
calculation. The size of memory bank is set to 128000. We train the pseudo-
label classifier using an additional SGD optimizer (batch size=256, lr=0.01,
momentum=0.9, weight decay=1e-4) for 10 epochs at the end of each epoch
of query encoder training. A confidence threshold value of 0.85 is used to assign
pseudo-labels to the unlabeled samples.

Fine-tuning: In addition to pretraining, we use a two layer MLP atop the
CNN backbone and fine-tune the entire network on the supervised subset for 20
epochs. This fine-tuned network is used to pseudo-label the unlabeled set with
a confidence threshold of 0.9. Samples above the threshold are combined with
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Table A12. Noisy supervised setting on ImageNet-100: Our method is more
robust to noisy annotation compared to Xent and SupCon. The top-all variant suffers
greater degradation compared to top-10 since all images from a single category are
not guaranteed to be semantically related in the noisy setting.

Method Noise Food CIFAR CIFAR SUN Cars Air- DTD Pets Calt. Flwr Mean Linear
101 10 100 397 196 craft 101 102 Trans IN-100

Xent 0% 53.6 81.9 61.1 37.8 25.7 29.5 56.9 69.7 70.2 82.3 56.9 85.7
SupCon 0% 61.5 88.7 69.0 49.1 51.6 48.2 65.4 81.0 87.0 89.8 69.1 86.9
CMSFsup top-all 0% 61.6 88.2 68.5 49.9 54.6 52.7 64.7 82.2 89.6 89.1 70.1 84.9
CMSFsup top-10 0% 62.6 86.8 66.2 50.5 54.7 51.0 64.6 82.4 88.5 90.4 69.8 85.0

Xent 5% 46.5 81.1 58.1 35.8 27.5 36.0 58.7 67.5 73.3 77.0 56.1 81.5
SupCon 5% 60.0 87.1 66.4 48.2 52.1 47.8 65.1 80.8 85.7 89.3 68.3 85.7
CMSFsup top-all 5% 60.3 87.5 66.4 49.1 55.5 53.0 64.8 80.9 87.3 89.9 69.5 84.4
CMSFsup top-10 5% 61.6 86.8 67.4 49.6 55.8 51.2 63.4 81.5 86.7 90.6 69.5 84.7

Xent 10% 44.1 79.5 56.1 32.4 26.1 34.5 56.1 69.7 72.5 75.1 54.6 79.6
SupCon 10% 58.8 85.8 66.4 47.0 50.6 47.7 65.3 79.8 85.0 89.1 67.6 84.0
CMSFsup top-all 10% 59.4 86.4 66.0 48.8 55.0 51.4 64.7 80.1 87.8 89.0 68.9 83.1
CMSFsup top-10 10% 60.9 87.2 66.9 49.4 54.2 51.4 65.5 80.6 88.5 90.0 69.5 83.8

Xent 25% 49.0 77.2 54.5 30.6 25.9 30.7 53.1 66.6 64.1 77.8 53.0 75.2
SupCon 25% 55.6 84.9 63.4 43.1 43.9 43.7 62.9 74.3 82.1 86.8 64.1 81.1
CMSFsup top-all 25% 56.4 85.7 64.2 46.0 53.6 49.6 62.7 74.2 85.2 87.4 66.5 78.8
CMSFsup top-10 25% 58.9 85.2 64.9 47.8 55.0 50.6 64.0 80.0 86.3 89.7 68.2 81.8

Xent 50% 44.4 72.3 51.3 31.1 21.4 24.9 46.0 57.4 56.0 73.0 47.8 67.8
SupCon 50% 30.8 64.9 38.9 24.2 13.6 20.5 45.5 55.2 60.1 59.2 41.3 69.0
CMSFsup top-all 50% 44.7 79.3 54.9 35.2 35.7 41.2 54.9 54.6 75.3 75.1 55.1 61.6
CMSFsup top-10 50% 58.7 85.7 64.2 47.5 51.6 50.5 62.0 77.3 86.8 70.1 65.4 80.1
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Table A13. Transfer dataset details: Train, val, and test splits of the transfer
datasets are listed in this table. Test split: We follow the details in [15]. For
Aircraft, DTD, and Flowers datasets, we use the provided test sets. For Sun397, Cars,
CIFAR-10, CIFAR-100, Food101, and Pets datasets, we use the provided val set as
the hold-out test set. For Caltech-101, 30 random images per category are used as the
hold-out test set. Val split: For DTD and Flowers, we use the provided val sets. For
other datasets, the val set is randomly sampled from the train set. For transfer setup,
to be close to BYOL [10], the following val set splitting strategies have been used for
each dataset: Aircraft: 20% samples per class. Caltech-101: 5 samples per class. Cars:
20% samples per class. CIFAR-100: 50 samples per class. CIFAR-10: 50 samples per
class. Food101: 75 samples per class. Pets: 20 samples per class. Sun397: 10 samples
per class. Accuracy measure: Top-1 refers to top-1 accuracy while Mean refers to
mean per-class accuracy.

Dataset Classes Train Val Test Accuracy Test set
samples samples samples measure provided

Food101 [4] 101 68175 7575 25250 Top-1 -
CIFAR-10 [17] 10 49500 500 10000 Top-1 -
CIFAR-100 [17] 100 45000 5000 10000 Top-1 -
Sun397 (split 1) [27] 397 15880 3970 19850 Top-1 -
Cars [16] 196 6509 1635 8041 Top-1 -
Aircraft [19] 100 5367 1300 3333 Mean Yes
DTD (split 1) [8] 47 1880 1880 1880 Top-1 Yes
Pets [22] 37 2940 740 3669 Mean -
Caltech-101 [9] 101 2550 510 6084 Mean -
Flowers [20] 102 1020 1020 6149 Mean Yes

the supervised set for a second round of fine-tuning for 20 epochs. We observe
that nearly one third of the samples in the dataset have confidence higher than
the threshold at the end of the first fine-tuning stage. We use a SGD optimizer
(batch size=256, lr=0.005, momentum=0.9, weight decay=1e-4) for both the
fine-tuning stages. The learning rate is multiplied by 0.1 at the end of epoch 15.

Calculation of forward and backward FLOPs: In figure 1 of the main
submission, we present a plot of top-1 accuracy against total compute and
resources for various semi-supervised approaches. Here (table A11) we present
the calculation of the forward and backward FLOPS for each of the methods.
We set the backward FLOPs to be twice the forward number of FLOPs [12] for
a single image and the total FLOPs to be the sum of forward and backward
pass FLOPs for the entire training. We use a value of 3.9 GFLOPs for a single
forward pass of 224×224 resolution image through the ResNet50 backbone [13].
Additional compute due to the use of multi-crops are accounted for. A scalar

multiplier of ( K
224 )

2
is used for images of resolution K × K (e.g., using one

(96 × 96) image would be equivalent to 0.184 image of resolution (224 × 224)).
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However, we do not consider the floating point precision (mixed or full precision)
in our calculations. We show that similar performance can be achieved by using
both automatic mixed precision and full precision floating point during training
(table 4, main submission) and thus focus the compute calculation on the total
number of forward and backward passes. Eq. 1 provides the formula to calculate
the total number of training passes and FLOPs.

Fwd mini-batch = (Unlabeled fwd crops ∗Unlabeled batch-size)

+ (Labeled fwd crops ∗ Labeled batch-size)

Bwd mini-batch = (Unlabeled bwd crops ∗Unlabeled batch-size)

+ (Labeled bwd crops ∗ Labeled batch-size)

Fwd passes = Fwd mini-batch ∗ Iterations per epoch ∗ Epochs
Bwd passes = Bwd mini-batch ∗ Iterations per epoch ∗ Epochs

Total FLOPs = (Fwd passes + 2 ∗ Bwd passes) ∗ (3.9× 109)

(1)
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Fig.A2. CMSFself nearest neighbor selection: We use epoch 100 of CMSFself to
visualize Top-5 NN from primary (M) and auxiliary (M ′) memory banks. M stores
features for the current epoch while M ′ contains representations from a different
augmentation of the same image instance from the previous epoch. First row shows the
target image and its top-5 NNs from the auxiliary memory bank M ′. Samples of the
second row are the images in M corresponding to the ones in row 1. Thus, rows 1 and
2 contain different augmentations of the same image instances. We also report their
rank in M in row 2. The last row contains the top-5 NNs in M . Note that constrained
samples in M (second row), have high rank while they are semantically similar to the
target.
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