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Abstract. We are interested in representation learning in self-supervised,
supervised, and semi-supervised settings. Some recent self-supervised
learning methods like mean-shift (MSF) cluster images by pulling the
embedding of a query image to be closer to its nearest neighbors (NNs).
Since most NNs are close to the query by design, the averaging may not
affect the embedding of the query much. On the other hand, far away
NNs may not be semantically related to the query. We generalize the
mean-shift idea by constraining the search space of NNs using another
source of knowledge so that NNs are far from the query while still being
semantically related. We show that our method (1) outperforms MSF
in SSL setting when the constraint utilizes a different augmentation
of an image from the previous epoch, and (2) outperforms PAWS in
semi-supervised setting with less training resources when the constraint
ensures that the NNs have the same pseudo-label as the query. Our code
is available here: https://github.com/UCDvision/CMSF

1 Introduction

Recently, we have seen great progress in self-supervised learning (SSL) methods
that learn rich representations from unlabeled data. Such methods are important
since they do not rely on manual annotation of data, which can be costly, biased,
or ambiguous. Hence, SSL representations may perform better than supervised
ones in transferring to downstream visual recognition tasks.

Most recent SSL methods, e.g., MoCo [29] and BYOL [27], pull the embedding
of a query image to be closer to its own augmentation compared to some other
random images. Follow-up works have focused on improving the positive pairs
through generating better augmentations [62,51,41] and the negative set by
increasing the set size [29] or mining effective samples [35,34,67], but have
largely ignored possibility of utilizing additional positive images. More recently,
[37,21,5] expand the positive set using nearest neighbors. Inspired by classic
mean-shift algorithm, MSF [37] generalizes BYOL to group similar images together.
MSF pulls a query image to be close to not only its augmentation, but also the
top-k nearest neighbors (NNs) of its augmentation.
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Fig.1. Accuracy vs. training compute on ImageNet with ResNet50: We
report the total training FLOPs for forward and backward passes through the CNN
backbone. (Left) Self-supervised: All methods are for 200 epochs. CMSFgi¢ achieves
competitive accuracy with considerably lower compute. (Right) Semi-supervised:
Circle radius is proportional to the number of GPUs/TPUs used. The results are on
ImageNet with 10% labels. In addition to being compute efficient, CMSF is trained
with an order of magnitude lower resources, making it more practical and accessible.
* methods use self-supervised pre-training and finetuning on the labeled set.

We argue that the top-k neighbors are close to the query image by construction,
and thus may not provide a strong supervision signal. We are interested in
choosing far away (non-top) neighbors that are still semantically related to the
query image. This cannot be trivially achieved by increasing the number of NNs
since the purity of retrieved neighbors decreases with increasing k (See Fig. 4
and Fig. 5). Purity is defined as the percentage of the NNs belonging to the same
category as the query image.

We generalize MSF [37] method by simply limiting the NN search to a smaller
subset that we believe is reasonably far from the query but still semantically
related to it. We define this constraint to be (1) the nearest neighbors of another
augmentation of the query in SSL setting and (2) images sharing the same label
or pseudo-label as the query in supervised and semi-supervised settings. While we
aim to obtain distant samples of the same category, note that we group only a few
neighbors (k in our method) from the constrained subset instead of grouping the
whole subset together. This is in contrast to cross-entropy supervised learning,
where we pull all images of a category to form a cluster or be on the same side
of a hyper-plane. Our method can benefit from this relaxation by preserving the
latent structure of the categories and also being robust to noisy labels.

Our experiments show that the method outperforms the various baselines
in all three settings with same or less amount of computation in training (refer
Fig. 1). It outperforms MSF [37] in SSL, cross-entropy in supervised (with clean
or noisy labels), and PAWS [4] in semi-supervised settings. Our main novelty
is in developing a simple but effective method for searching for far away but
semantically related NNs and in generalizing it to work across the board from
self-supervised to semi-supervised and fully supervised settings. To summarize,

1. We propose constrained mean-shift (CMSF), a generalization of MSF [37],
to utilize additional sources of knowledge to constrain the NN search space.
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Fig. 2. Our method (CMSF): We augment an image twice and pass them through
online and target encoders followed by ¢2 normalization to get v and v. Mean-shift [37]
encourages v to be close to both u and its nearest neighbors (NN). To make NNs diverse,
we constrain the NN search space based on additional knowledge in the form of NNs of
the previous augmentation in self-supervised setting or the labels or pseudo-labels in
semi or fully supervised settings. These constraints encourages the query to be pulled
towards semantically related NNs that are farther away from the target embedding.
See Fig 3 for constructing the constrained set.

2. We develop methods to select the constraint set in self-, semi- and fully
supervised settings. The retrieved samples are empirically shown to be far
away in the embedding space but semantically related to the query image,
providing a stronger training signal compared to MSF.

3. CMSF achieves non-trivial gains in performance over self-supervised MSF
and a direct extension of MSF to semi-supervised version. CMSF outperforms
SOTA methods with comparable compute in self- and semi-supervised settings.

2 Method

Similar to MSF [37], given a query image, we are interested in pulling its
embedding closer to the mean of the embeddings of its nearest neighbors (NNs).
However, since top NNs are close to the target itself, they may not provide a
strong supervision signal. On the other hand, far away (non-top) NNs may not
be semantically similar to the target image. Hence, we constrain the NN search
space to include mostly far away points with high purity. The purity is defined as
the percentage of the selected NNs being from the same ground truth category
as the query image. We use different constraint selection techniques to analyze
our method in supervised, self- and semi-supervised settings.

Following MSF and BYOL, we use two embedding networks: a target encoder
f(.) with parameters 6y and an online encoder g¢(.) with parameters ¢,. The
online encoder is directly updated using backpropagation while the target encoder
is updated as a slowly moving average of the online encoder: 85 < méy+(1—m)b,
where m is close to 1. We add a predictor head h(.) [27] to the end of the online
encoder so that pulling the embeddings together encourages one embedding to be
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Fig. 3. CMSFscis: The indices of the NNs of the previous epoch’s memory bank M’
are used to construct the constrained set C' from the current memory bank M.

predictable by the other one and not necessarily encouraging the two embeddings
to be equal. In the experiments, we use a two-layer MLP for h(.).

Given a query image z;, we augment it twice with transformations 73 (.) and
T5(.), feed them to the two encoders, and normalize them with their > norm
to get u; = % and v; = %. We add wu; to the memory
bank M and remove the oldest entries to maintain a fixed size M. We select the
constraint set C; as a subset of M. Constraint set selection is explained in detail
in Sections 2.1, 2.2, and 2.3. We then find the set S; of top-k nearest neighbors
of u; in C; including u; itself. Finally, we update g(.) by minimizing:

L:Zn: L Zsz
i=1 Sil '

z€S;
where n is the size of mini-batch and |S;| is the size of set S;, e.g., k in top-k.
Finally, we update f(.) with the momentum update. In the top-all variation of
our method, number of neighbors & is set equal to the size of C;, i.e., S; = C;.
Note that since w; itself is included in the nearest neighbor search, the method
will be identical to BYOL [27] when k& = 1 and to self-supervised mean-shift
[37] when the constraint is fully relaxed (C; = M). Our method covers a larger
spectrum of algorithms by defining the constrained set. Below we discuss the
selection of constrained set in various settings.

2.1 Self-Supervised Setting

In addition to M, we maintain a second memory bank M’ that is exactly the
same as M but contains features from a different (3"?) augmentation of the
image x; fed through target encoder f(.). We assume w; € M’ and u; € M are
two embeddings corresponding to the same image x;. Then, we find NNs of w; in
M’ and use their indices to construct the search space C; from M (See Fig. 3).
Note that although the NNs of w; in M’ are already close to each other, their
corresponding elements in M may not be close to each other since M contains
different augmentations u; of the same images. As a result, C; will maintain
good purity while containing distant NNs (refer to Table 1-Right and Fig. 5).
Since it is expensive to embed a 3rd augmentation of each image, we embed
only two augmentations as in MSF and BYOL and cache the embeddings from
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the previous epoch, keeping the most recent embedding for each image. The
cached embedding will be still valid after one epoch since the target encoder is
updated slowly using the momentum update rule (similar to MoCo). Since cache
size is equal to the dataset size, we store it in the CPU memory and maintain the
auxiliary memory bank M’ by loading the corresponding part of it to the GPU
memory for each mini-batch. Caching of features is not essential for CMSF to
work and is only used to reduce computational cost. We performed experiments
with an actual 3rd augmentation instead and found the results to be similar to
our method except that it was nearly 30% slower due to forwarding an additional
augmentation. Table 1-Right shows that in the intermediate stages of learning,
the top elements of C; are spread apart in M with higher median ranks, and get
closer to the top elements of M as the learning progresses. Note that we use w;
instead of u; in finding the NNs in M’ since both w; and M’ use an older target
model, so are more comparable.

Since CMSF adds farther NNs only for stronger supervision, we additionally
employ MSF loss calculated on the unconstrained M. Then, in the self-supervised
setting, the total loss is an equally weighted sum of MSF and CMSF losses.

Our method can be extended to cross-modal self-supervised setting where the
constraint can use NNs in a different modality rather than the 3rd augmentation
of the same modality. We report the details and some preliminary experiments
on this setting in the supplementary.

2.2 Supervised Setting

While supervised setting is not our primary novelty or motivation, we study it to
provide more insights into our constrained mean-shift framework. With access
to the labels of each image, we can simply construct C; as the subset of M that
shares the same label as the query x;. This guarantees 100% purity for NNs.
Note that most supervised methods, including cross-entropy loss, try to group
all examples of a category together on the same side of a hyper-plane while
remaining categories are on the other side. However, our method pulls the target
to be close to only those examples of the same category that are already close
to the target. This results in a supervised algorithm that may keep the latent
structure of each category which can be useful for pre-training on coarse-grained
labels. Moreover, as shown in the experiments (Fig. 6), our method is more
robust to label noise since most mis-labeled images will be far from the target
embedding, thus ignored in learning. This motivates applying our method to
semi-supervised setting where the limited supervision provides noisy labels.

2.3 Semi-Supervised Setting

In this setting, we assume access to a dataset with a small labeled and a large
unlabeled subset. We train a simple classifier using the current embeddings
of the labeled data and use the classifier to pseudo-label the unlabeled data.
Then, similar to the supervised setting, we construct C; to be the elements of
M that share the pseudo-label with the target embedding. Again, this method
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increases the diversity of C; while maintaining high purity. To keep the purity
high, we enforce the constraint only when the pseudo-label is very confident (the
probability is above a threshold.) For the samples with non-confident pseudo-
label, we relax the constraint resulting in regular MSF loss (i.e., C; = M.)
Moreover to reduce the computational overhead of pseudo-labeling, we cache
the embeddings of labeled examples throughout the epoch and train a 2-layer
MLP classifier using the frozen cached features and their groundtruth labels in
the middle and end of each epoch.

3 Experiments

Implementation details: We use PyTorch for all our experiments. Unless
specified, we use the same hyper-parameter values in self-, semi- and fully supervised
settings. All models are trained on ImageNet-1k (IN-1k) for 200 epochs with
ResNet-50 [30] backbone and SGD optimizer (learning rate=0.05, batch size=256,
momentum=0.9, and weight decay=1le-4) with cosine scheduling for learning
rate. While we focus on single crop setting in most of our experiments, we
also report the results for multiple crop inputs in the SSL setting. Following
SwAV [11], we use four additional crops of 96296 resolution as input. These
are used as inputs only to the online encoder and not the target encoder. The
momentum value of CMSF for the moving average key encoder is 0.99. The 2-
layer MLP architecture for CMSFep; is as follows: (linear (2048x4096), batch
norm, ReLU, linear (4096x512)). The default memory bank size is 128k. Top-k
is set to 10 in the semi- and fully supervised settings and 5 in the self-supervised
setting. Additional details are provided in the supplementary. Our main CMSF
experiment with 200 epochs takes nearly 6 days on four NVIDIA-2080TI GPUs.
The overhead in training time due to NN search is negligible compared to the
forward and backward passes through the network (that is also done in BYOL):
the increase in time is 0.7% for MSF [37] and 2.1% for CMSFgqs.

Recent SSL methods are usually computationally expensive leading to worse
environmental impact and exclusion of smaller research labs. While our experiments
are more efficient and accessible than most SOTA methods, e.g., PAWS, we
limit our training length to 200 epochs due to resource constraints. We do not
empirically verify whether the improvements observed over SOTA approaches at
lower epochs (200) are persistent with longer training (e.g., 800 or 1000 epochs).
Evaluation: We evaluate the pre-trained models using linear evaluation (Linear
IN-1k) in both ImageNet classification and transfer settings. The model backbone
parameters are fixed and a single linear layer is trained atop them following the
setting in CompRess [2]. Additionally, we report k-nearest neighbor (k = 1,20)
evaluation for the SSL setting as in [2]. The transfer performance is evaluated
on the following datasets: Food101 [8], SUN397 [73], CIFARI0 [39], CIFAR100
[39], Cars196 [38], Aircraft [13], Flowers (Flwrs102) [16], Pets [19], Caltech-101
(Calt101) [22], and DTD [18] (additional details in supplementary material.)
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Table 1. Left: Evaluation on full ImageNet: We compare our model with
other SOTA methods in Linear (Top-1 Linear) and Nearest Neighbor (1-NN,20-NN)
evaluation. We use a memory bank of size 128K for CMSF and provide comparison with
both 256K and 1M memory bank versions of MSF. Since CMSFsjr uses NNs from two
memory banks, it is comparable to MSF (256K) in memory and computation overhead.
Both single crop and multi-crop versions of our method outperform other SOTA
methods, including MSF, with similar compute. Right: Histogram of constrained
sample ranks: We consider the 5" NN in the constrained set C' and obtain its rank
in the unconstrained memory bank M. The histogram of these ranks are shown up to
rank 100 for different train stages of CMSFges. Also, the median of these ranks are
shown in Figure 5. A large number of distant neighbors are included in the constrained
set in the early stages of training while there is a higher overlap between constrained
and unconstrained NN sets towards the end of training.

Method Ref. Batch Epochs Sym. Loss Multi-Crop Top-1 NN 20-NN
Size 2x FLOPS Training Linear

Supervised [1] 256 100 - - 76.2 714 748
Random-init - - - - - 51 1.5 20
SeLa-v2 [70] [11] 4096 400 v X 67.2 - -
SimCLR[13] [13] 4096 1000 v X 69.3 - -
SWAV [11] [11] 4096 400 v X 701 - -
DeepCluster-v2 [10]  [11] 4096 400 v X 70.2 - -
SimSiam [16] [16] 256 400 v X 70.8 - -
MoCo v2 [29] [15] 256 800 X X 71.1 57.3 61.0
CompRess [2] [2] 256 1K+130 X X 71.9 63.3 66.8
InvP [66] 256 800 X X 73 - -
BYOL [27] [27] 4096 1000 v X 74.3 62.8 66.9
SwAV [11] [11] 4096 800 v 4 7.3 - -
NNCLR [21] 4096 1000 X X 754 - -
SimCLR[13] [16] 4096 200 v X 68.3 - -
SWAV [11] [16] 4096 200 v X 69.1 - -
MoCo v2 [29] [16] 256 200 v X 699 - -
SimSiam [10] [16] 256 200 v X 70.0 - -
NNCLR[21] [21] 4096 200 X X 70.7 - -
BYOL [27] [16] 4096 200 v X 706 - -
SWAV [11] [16] 256 200 v v 7 - -
Truncated Triplet [67] [67] 832 200 v X 73.8 - -
OBoW [21] [24] 256 200 X v 73.8 - -
CMSFeir (128K) - 256 200 X v 74.4 62.3 66.2
MoCo v2 [29] [15] 256 200 X X 67.5 50.9 54.3
CO2 [69] [69] 256 200 X X 68.0 - -
BYOL-asym [27] [37] 256 200 X X 69.3 55.0 59.2
ISD [60] [60] 256 200 X X 69.8 59.2 62.0
MSF (1M) [37] [37] 256 200 X X 724 62.0 64.9
MSF (256K)[37] [37] 256 200 X X 722 62.1 65.1
CMSFair (128K) - 256 200 X X 73.0 63.2 66.4

3.1 Self-Supervised Learning (CMSFq)

To reduce the GPU memory footprint, we cache the previous augmentation
embedding of each sample in the dataset in the CPU. The cached features
corresponding to the current mini-batch are retrieved from CPU memory to
maintain memory bank M’ with previous augmentations. This cache is updated
using the oldest features in M that we remove from M after each iteration.

Results on ImageNet: Results of CMSF s are shown in Table 1. CMSFgq¢
outperforms MSF baseline with a larger memory bank, which we believe is due to

08 yoodg 0t yood3 0Z yood3 0l yoodz

00z yood3
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Fig. 4. Nearest neighbor selection on constrained memory bank: First row
shows top-5 NNs of target in constrained set C' and their corresponding rank in the
unconstrained memory bank M obtained using an intermediate checkpoint (epoch 100).
While they are not the closest samples to the target (higher rank index), they are
semantically similar to the target. This shows that the constraint can capture far
away samples with similar semantic as the target. The second row depicts images
from memory bank with one rank lower than the corresponding image in the first
row. These images contain incorrect category retrievals. Distant neighbors cannot be
trivially obtained by increasing the number of NNs. Examples are chosen randomly.

pulling together far yet semantically similar samples (Fig. 4). We use MSF with
2z larger memory bank for fair comparison. CMSFge¢ also achieves state-of-the-
art performance on both NN and Linear metrics when compared with approaches
with similar computational budget. We compare our method to other state-of-
the-art approaches with 200 epochs of training in Fig. 1. We observe a good
trade-off in terms of accuracy and compute for CMSFjs. Our best performance
is obtained with the multi-crop version but at the cost of increased compute.
Evaluation on ImageNet subsets: Following [31,13], we evaluate the pre-
trained models on the ImageNet classification task with limited labels. We
report results with 1% and 10% labeled subsets of ImageNet (Table 4). CMSFg¢
outperforms MSF on top-1 accuracy in both 1% and 10% settings and is comparable
to existing approaches that require significantly higher training time.

Transfer learning: We follow the procedure in [27,13] for transfer evaluation
(refer to Table 2). Hyperparameters for each dataset are tuned independently
based on the validation set accuracy and final accuracy is reported on the held-
out test set (more details in supplementary). CMSFyq¢ achieves SOTA average
performance among methods trained for 200 epochs.

Purity of constrained samples: In CMSF,j¢, we depend on information from
previous augmentations to constrain NN search in the current memory bank.
Our goal is to improve learning by using distant samples with a good purity. We
observe that the top-k samples from constrained memory bank C' have higher
rank in M, so are far neighbors of the target (see Table 1-Right and Fig. 5).
Also, as shown in Fig. 5, those samples maintain almost the same purity as the
top-k samples from unconstrained memory bank M. As a result, C' maintains
good purity while being diverse.

Effect of k': In CMSFye¢, we first calculate top-k’ samples (the first & NNs of
the target) from the secondary memory bank M’. We then use those indices to
constrain NN search space in the primary memory bank M and select top-k for
optimization. We varied the value of ¥’ in CMSFye¢ to explore its effect, keeping
k fixed to 5. We observe that increasing &’ (relaxing the constraint) will decrease
the accuracy of the model. As observed in Table 3-right, the overlap between
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Table 2. Transfer learning evaluation: Our supervised CMSF model at just
200 epochs outperforms all supervised baselines on transfer learning evaluation.
Our SSL model outperforms MSF, the comparable state-of-the-art approach, by
1.2 points on average over 10 datasets. We get the results for MoCo v2, MSF, and
BYOL-asym from [37], SimCLR and Xent (1000 epoch) from [13], and BYOL from [27].

Method Epoch|Food|CIFAR |[CIFAR|SUN|Cars| Air- |DTD| Pets|Calt. |Flwr||Mean|Linear

101 10 100 | 397 | 196 |craft 101 | 102 || Trans| IN-1k
Supervised Models

Xent 200 |67.7| 89.8 | 72.5 |57.5/43.7]39.8|67.9(91.8|91.1|88.0|| 71.0 | 77.2

Xent 90 |[72.8] 91.0 | 74.0 |59.5|56.8|48.4|70.7(92.0(90.893.0|| 74.9 | 76.2

ProtoNW 200 |73.3| 93.2 | 78.3 |61.5/65.0(57.6|73.7(92.2|94.3|93.7|| 78.3 | 76.0

SupCon 200 |72.5| 93.8 | 77.7 |61.5|64.8|58.6|74.6(92.5(93.6|94.1| 78.4 | 77.5

Xent 1000 | 72.3| 93.6 | 78.3 |61.9]66.7|61.0|74.9|91.5(94.5|94.7| 78.9 | 76.3

CMSFgup top-all| 200 |73.7| 94.2 78.7 [62.1|71.7|64.1|73.4(92.5/94.5|95.8|| 80.1 | 75.7
CMSFgup top-10| 200 [74.9| 94.4 78.7 |62.7|70.8(63.4|73.892.2(94.9|95.6( 80.1 | 76.4
Self-Supervised Models

SimCLR 1000 | 72.8| 90.5 | 74.4 |60.6]49.3]49.8|75.7|84.6|89.3]92.6| 74.0 | 69.3
MoCo v2 800 |72.5| 92.2 | 74.6 |59.6|50.5(53.2|74.4|84.6(90.0|90.5| 74.2 | 71.1
BYOL 1000 |75.3| 91.3 | 78.4 |62.2/67.8/60.6| 75.5 |90.4(/94.2|96.1|| 79.2 | 74.3
MoCo v2 200 |70.4| 91.0 | 73.5 |57.5|47.7|51.2|73.9|81.3|88.7|91.1|| 72.6 | 67.5
BYOL-asym 200 |70.2| 91.5 | 74.2 |59.0|54.0(52.1|73.4(86.2|90.4|92.1|| 74.3 | 69.3
MSF 200 |72.3| 92.7 | 76.3 |60.2|59.4|56.3|71.7(89.8|90.9|93.7|| 76.3 | T2.1
CMSFgeit 200 |73.0| 92.2 77.2 |61.0/60.6/58.4|74.1|91.1|92.0|94.5|| 77.4 | 73.0

Table 3. Effect of £’ in sampling NN from M’: In CMSFs, we constrain top-k
NN search space in M with top-k’ samples from M’. (Left) Increasing k' results in
a drop in accuracy. The k in top-k is set to 5 for all values of k’. (Right) Histogram
of the constrained sample ranks at epoch 50. The histogram shifts left, i.e., overlap
between constrained and unconstrained NN sets increases with increasing value of k’.

Topk' =5 Top-k' = 10 Top-k' = 20
Topk =5 Top-k = 5 Topk = 5

K 5 10 20 40 80

NN 63.2 62.9 62.7 62.3 61.7
20-NN 66.4 66.1 65.9 65.6 65.0

constrained and unconstrained NN set increases with increasing value of k¥’. Note
that in a case where k' = oo, CMSF.r will be identical to the MSF baseline.

3.2 Supervised Learning

Evaluation: Unlike cross-entropy (Xent [7,42,52]) baseline, SupCon [36], ProtoNW [55]
and CMSF do not train a linear classifier during the pre-training stage. Thus,

we use the pre-training dataset ImageNet-1k (IN-1k) for linear evaluation of the
frozen features as done in SSL. For Xent, we use the linear classifier trained
during pre-training. We use the same settings and datasets as self-supervised for
transfer learning evaluation.

Results: Results on IN-1k dataset are shown in Table 2. In top-all variation of

our method, k is equal to the total size of C'. SSL inspired methods like CMSF
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Fig. 5. Purity of constrained samples: During training of CMSFseis , we plot purity
of the top-5 samples in unconstrained set M (in black) and that of the top-5 samples
in constrained set C' (in red). The red curve is not significantly below the black one
suggesting that the purity is not dropped by increasing the distance of the NNs. To
show that elements in C' may be far from the target u, we choose the 5" element in C'
and find its rank in the set M. We calculate the median of this rank as m. The purity
of the top-m elements of set M (green curve) is consistently lower than that of top-5
elements of the constrained set C' (red curve). This suggests that one cannot maintain
high purity by simply considering more NNs using a larger k.

and SupCon significantly outperform Xent when trained for similar number
of epochs. We observe that improvements in ImageNet performance do not
always translate to transfer performance. Interestingly, CMSF performs the best
on transfer evaluation, particularly on fine-grained datasets like Cars196 and
Aircraft. We believe that the absence of explicit cross-entropy based optimization
using the supervised labels preserves the multi-modal distribution of categories
improving fine-grained performance. Supervised CMSF uses class labels only as
a constraint for MSF during pre-training and does not explicitly optimize on the
classification task. Superior performance of CMSFy,;, top-10 demonstrates the
importance of using distant yet semantically related neighbors as positives.
Noisy Labels: In the noisy setting, we use random i.i.d. noise to corrupt
the labels (change the label randomly) of a percentage of images. We counsider,
5%, 10%, 25%, and 50% label corruption (noise) rates. For faster experiments,
we report results on the ImageNet-100 dataset [61] (Fig. 6). We observe a
significantly higher degradation in performance of Xent baseline and CMSFgy,,
top-all compared to CMSFg,, top-10 at high noise levels. The gap between
the approaches is larger on transfer learning. These observations indicate that
NN based methods like CMSF are better suited for noisy constraint settings
compared to approaches utilizing all samples of a class as positives. This robustness
to label noise motivates our application of CMSF to self- and semi-supervised
settings where pseudo-labels or the NNs of previous augmentations may be noisy.
Coarse-grained ImageNet: CMSF groups together only top-k neighbors and
thus can help in preserving the latent structure of the data compared to top-
all. To verify this, we consider a dataset with coarse-grained labels where this
difference is pronounced. Based on the WordNet hierarchy, we merge each category
in the ImageNet dataset to its parent class. We further ensure that no two classes
are in the same path in the graph by merging the descendant into the ancestor
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BYOL [27] X 1000 55.7 68.6 80.0 88.6 robust to noisy annotation compared to
CompRess [2] X 1K+130 59.7 67.0 82.3 87.5 Xent and SupCon. Also, using top-all
MoCo v2 [15] X 200 43.6 58.4 T71.2 82.9 degrades the results since all images from
BYOL-asym X 200 47.9 61.3 74.6 84.7 a single category are not guaranteed
ISD [60] X 200 534 63.0 78.8 85.9 to be semantically related due to noisy
IéISIFSlﬂLsel]f i ;88 ;’Z‘Z gg'_z 773'5 s;:ﬁ,? labels. Mean Transfer Accuracy is the

average over 10 transfer datasets.

Table 5. Supervised learning on coarse grained ImageNet: We train on the
coarse grained version of ImageNet (93 super categories) and perform linear evaluation
on the original ImageNet-1k validation set with fine-grained labels (1000 categories).

ImageNet-1k Validation Set
Xent SupCon CMSFgyp top-all CMSFg,p top-10

ImageNet-1k 77.2 77.5 75.7 76.4
ImageNet-coarse 61.4 58.7 67.0 74.2

Train Dataset

class. The total number of classes is thus reduced from 1000 in ImageNet-1k to
93 in our ImageNet-coarse. We train CMSF and the baseline approaches in a
supervised manner using the coarse labels and then evaluate on the fine-grained
/ original labels on ImageNet-1k validation set. In Table 5 we compare the top-
all and top-k variants on the coarse grained version of ImageNet. CMSFyyp
top-k sees a minor drop in performance compared to training on ImageNet-1k.
However, methods in which all samples in a class are explicitly brought closer -
CMSFg,p top-all, cross-entropy and supervised contrastive - see a huge drop in
accuracy. More details on coarse-grained ImageNet are in the supplementary.

3.3 Semi-Supervised Learning

Implementation Details: We train a 2-layer MLP atop the cached target
features of supervised set for pseudo-labeling. The pseudo-label training is performed
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Table 6. Semi-supervised learning on ImageNet dataset with 10% labels:
FLOPs denotes the total number of FLOPS for forward and backward passes through
ResNet-50 backbone while batch size denotes the sum of labeled and unlabeled samples
in a batch. CMSFsemi-mix precision is compute and resource efficient, achieving SOTA
performance at comparable compute. PAWS requires large number of GPUs to be
compute efficient and its performance drastically drops with 4/8 GPUs. T Trained with

stronger augmentations like RandAugment [19]. * TPUs are used.
Method Epochs Batch GPUs FLOPs Top-1
Size (x10*®)

Self-supervised Pre-training

Mean Shift [37] 200 256 4 4 67.4
BYOL [27] 1000 4096 512* 40 68.8
SwAV [11] 800 4096 64 37 702
SimCLRv2 [14] 800 4096  128%* 16 68.4
Semi-supervised Pre-training

SimCLRv2 (+Self Dist) [14] 1200 4096 128* 20 705
UDAT [74] 800 15872 64* 10 68.1
FixMatch® [57] 300 6144  32% 7 715
MPL? [50] 800 2048 - 30 739
PAWS (support=6720) [1] 300 4096 64 21 755
PAWS (support=1680) [1] 100 256 8 15 70.2
PAWS (support=400) [4] 100 256 4 7 629
CMSFsemi-basic 200 256 4 4 68.6
CMSFsemi 200 256 4 4 69.9
CMSFgemi-mix precision 200 768 4 4 70.5

twice per epoch (takes 40 seconds per training) and the label assignment is done
in an online fashion for each mini-batch. The confidence threshold for pseudo-
labeling is set to 0.85. We use the same optimizer settings as in self-supervised
CMSF for the pre-training stage. Similar to S4L [78], we perform two stages
of fine-tuning with supervised and pseudo-labels. We fine-tune the backbone
network with two MLPs (as in PAWS [1]) on the 10% labeled set for 20 epochs
and pseudo-label the train set. Samples above confidence threshold (nearly 30%
of dataset) are combined with supervised set to fine-tune again for 20 epochs
(more details in suppl.). The second fine-tuning is equivalent to 5 epochs with
full data and is a small increase in our total compute. This is needed since we
do not directly optimize cross-entropy loss in pre-training as in [57,74,50].

Evaluation: The final epoch parameters are used to perform evaluation. We
report top-1 accuracy on the ImageNet validation set. We additionally report
the total number of FLOPs for forward and backward passes (backward is 2x
forward) through ResNet-50 backbone and the number of GPUs/TPUs used by
each method in the pre-training stage (more details in suppl.).

Baselines: We compare the proposed approach (CMSFsen;) with self- and semi-
supervised approaches. CMSFsq;-basic minimizes unconstrained MSF loss on
the unlabeled examples (no pseudo-labeling) and CMSF loss on the labeled
examples only. We provide comparison of PAWS method with different support
set sizes. We train PAWS on 4x 16GB GPUs with maximum possible support set
size (200 classes, 2 images/class) using code provided by the authors. We also
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report results using mixed precision training (CMSFem;-mix precision) as in
PAWS [1] with a higher batch size of 768 since it has lower memory requirement.
Results: CMSFg.ni-mix precision achieves comparable performance to most
methods with significantly less training and without the use of stronger augmentation
schemes like RandAugment [19] (Table 6, Fig. 1). PAWS with a support set size
of 6720 outperforms other approaches. However, this requires significantly higher
compute (4.8x FLOPs) and resources (64 GPUs) compared to CMSFgem;-mix
precision (4 GPUs). Since PAWS requires a large support set, it does not scale
well to lower resource (4/8 GPUs) settings even if the total compute remains the
same. When trained on only 4 GPUs, CMSF outperforms PAWS by 7.6% points.
Additional ablations and results on ImageNet-100 dataset are in supplementary.

4 Related Work

Self-supervised learning (SSL): Earlier works on SSL focused on solving
a pretext task that does not require additional labeling. Examples of pretext
tasks include colorization [30], jigsaw puzzle [17], counting [18], and rotation
prediction [25]. Another class of SSL methods is based on instance discrimination
[20]. The idea is to classify each image as its own class. Some methods adopt the
idea of contrastive learning for instance discrimination [29,13,10,11,12]. BYOL
[27] proposes a non-contrastive approach by removing the negative set and simply
regressing one view of an image from another.

Several recent works aim to find a larger positive sample set to improve
learning. In LA [32], samples are clustered using k-means and samples within a
cluster are brought closer together compared to cross-cluster samples. MSF [37]
and MYOW [5] generalize BYOL by regressing target view and its NNs. NNCLR
[21] extends SimCLR to use NNs as positives. CLD [68] integrates grouping using
instance-group discrimination. Affinity diffusion [33] uses strongly connected
nodes in a graph constructed using embeddings to find positive samples. Unlike
these methods, we focus on grouping together far away neighbors that are
semantically similar. We show quantitatively and qualitatively the diversity and
purity of retrieved neighbors and improved performance over MSF. We generalize
the idea in MSF [37] to use an additional source of knowledge to constrain the
NN search space for the target view. CoCLR [28] and Cl-InfoNCE [64] also use
additional information sources in the form of additional modality and auxiliary
labels respectively to improve performance. However, we focus on self- and semi-
supervised classification settings and design methods to obtain and use the
additional information as a constraint in NN search space.

Supervised learning: A drawback of Cross-entropy is its lack of robustness to
noisy labels [81,58]. [59,15,63,75] address the issue of hard labeling, e.g., (one-
hot labels) with label smoothing, [32,6,23] replace hard labels with prediction of
pre-trained teacher, and [79,77] propose an augmentation strategy to train on
combination of instances and their labels. Another line of work [26,53] is to learn
representations with good kNN performance. SupCon [36] and [72] improve upon
[26] by changing the distance to inner product on ¢3 normalized embeddings. We



14 Navaneet, Abbasi Koohpayegani, Tejankar et al.

include the supervised setting to better understand the effect of using constrained
NN, particularly in the noisy label setting.

Semi-supervised learning: Several methods combine self-supervised and supervised
learning to form semi-supervised methods. S4L [78] uses rotation prediction
based loss on the unlabeled set along with cross-entropy loss on the labeled
set. Similarly, SUNCE$ [3] combines SimCLR [13] and SwAV [11] methods with
supervised contrastive loss. Pseudo-labeling is frequently used in semi-supervised
learning. In Pseudo-Label [40], the network is trained with cross-entropy loss
using supervised data on the labeled examples and pseudo-labels on the unlabeled
ones. In SimCLR-v2 [14], a teacher network is pre-trained using SimCLR [13]
and fine-tuned with supervised labels. The teacher is then distilled to a student
network using pseudo-labels on the unlabeled set. FixMatch [57] uses pseudo-
labels obtained using a weakly augmented image to train a strongly augmented
version of the same image. UDA [74] leverages strong data augmentation techniques
in enforcing this consistency in pseudo-labels across augmentations. MPL [50]
optimizes a student network using pseudo-labels from a teacher network, while
the teacher is optimized to maximize the student’s performance on the labeled
set. PAWS [1] uses consistency based loss on soft pseudo-labels obtained in a non-
parametric manner. Our method too uses pseudo-labels to train the unlabeled
samples. However, we use the labels as a constraint in MSF [37] and do not
directly optimize samples using cross-entropy loss.

Metric learning: The goal of metric learning is to train a representation
that puts two instances close in the embedding space if they are semantically

close. Two important methods in metric learning are: triplet loss [17,70,54] and
contrastive loss [56,9]. Metric learning methods perform well on tasks like image
retrieval [71] and few-shot learning [65,55]. Prototypical networks [55] is similar

to a contrastive version of our method with top-all.

5 Conclusion

MSF is a recent SSL method that pulls an image towards its nearest neighbors.
We argue that the model can benefit from more diverse yet pure neighbors.
Hence, we generalize MSF method by constraining the NN search. This opens
the door to using the mean-shift idea to various settings of self-supervised,
supervised, and semi-supervised. To construct the constraint, our SSL method
uses cached augmentations from the previous epoch while the supervised and
semi-supervised settings use labels or pseudo-labels. We show that our method
outperforms SOTA approaches like MSF in SSL, PAWS in semi-supervised, and
supervised contrastive in transfer-learning evaluation of supervised settings.
Acknowledgments: This material is based upon work partially supported
by DARPA under Contract No. HR00112190135, the United States Air Force
under Contract No. FA8750-19-C-0098, funding from SAP SE, and NSF grants
1845216 and 1920079. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the United States Air Force, DARPA, or other funding agencies.
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