
CA-SSL: Class-Agnostic Semi-Supervised
Learning for Detection & Segmentation

Lu Qi1,3, Jason Kuen2, Zhe Lin2, Jiuxiang Gu2, Fengyun Rao1, Dian Li1,
Weidong Guo1⋆, Zhen Wen1, Ming-Hsuan Yang3, Jiaya Jia4

1QQ Browser Lab, Tencent
2Adobe Research

3The University of California, Merced
4The Chinese University of Hong Kong

Abstract. To improve instance-level detection/segmentation performance,
existing self-supervised and semi-supervised methods extract either task-
unrelated or task-specific training signals from unlabeled data. We show
that these two approaches, at the two extreme ends of the task-specificity
spectrum, are suboptimal for the task performance. Utilizing too little
task-specific training signals causes underfitting to the ground-truth la-
bels of downstream tasks, while the opposite causes overfitting to the
ground-truth labels. To this end, we propose a novel Class-Agnostic
Semi-Supervised Learning (CA-SSL) framework to achieve a more favor-
able task-specificity balance in extracting training signals from unlabeled
data. CA-SSL has three training stages that act on either ground-truth
labels (labeled data) or pseudo labels (unlabeled data). This decoupling
strategy avoids the complicated scheme in traditional SSL methods that
balances the contributions from both data types. Especially, we intro-
duce a warmup training stage to achieve a more optimal balance in
task specificity by ignoring class information in the pseudo labels, while
preserving localization training signals. As a result, our warmup model
can better avoid underfitting/overfitting when fine-tuned on the ground-
truth labels in detection and segmentation tasks. Using 3.6M unlabeled
data, we achieve a significant performance gain of 4.7% over ImageNet-
pretrained baseline on FCOS object detection. In addition, our warmup
model demonstrates excellent transferability to other detection and seg-
mentation frameworks.
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1 Introduction

Deep learning [20,22,23,28,48,51–53] has enabled instance-level detection (object
detection [16, 17, 45], instance segmentation [19, 35], etc.) methods to achieve
previously unattainable performance. Such success cannot be achieved without
large datasets with instance annotations such as COCO [34], Cityscapes [12]
and Open Images [27]. However, annotating instances is laboriously expensive
due to the great intricateness needed for annotating instance-level bounding
boxes, masks, and/or semantic classes. Due to such a limitation, the datasets
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Fig. 1. Schematic comparison between existing semi-supervised methods and CA-SSL.
Instead of joint training with labeled and unlabeled data, we train on unlabeled and
labeled dataset in different stages: pseudo labeler training, warmup training, and
finetuning. Furthermore, we use class-agnostic pseudo labels during warmup training.

in instance-level detection domain are relatively small in scale, compared to
other domains. As such, instance-level detection models generally have degraded
generalization performance in real-world applications [11,37,39,47].

To alleviate the heavy cost of data annotation, numerous methods have been
developed to leverage unlabeled images for instance-level detection [12,34]. Un-
like labeled data that can provide explicit and indisputable supervision signals,
the extraction of training signals from unlabeled data remains as an open is-
sue. Two widely-adopted approaches for learning from unlabeled data are self-
supervised and semi-supervised learning. Self-supervised methods [8, 14, 18, 21,
44,59,62] usually rely on training signals like the relative distances between the
augmented samples of a positive/negative pair, while semi-supervised strate-
gies [24, 30, 43, 49, 54, 57, 64, 68] directly leverage the pseudo labels generated by
a detector pretrained on ground-truth labels. In terms of task specificity, these
two approaches are at the two extreme ends of the spectrum – self-supervised
learning utilizes hardly any task-specific training signals from unlabeled data,
whilst semi-supervised learning utilizes too much of them. Consequently, the
model tends to underfit/overfit (depending on the amount of task specificity in
the training signals) the ground-truth labels of downsteam task during the fine-
tuning or final-training stage. This motivates us – is there a good middle ground
between the two extremes that has a more optimal amount of task specificity?

In instance-level detection/segmentation tasks, the datasets usually have two
types of annotations: localization-based annotations (e.g., boxes, masks) and
class labels for those annotations. While semi-supervised methods utilize the
information from both kinds of annotations to do pseudo labeling on unlabeled
data, we show that such a practice is not optimal for training and would hurt
the final performance. Given the pseudo labels that closely mimic ground-truth
labels, the model is likely to take an easier optimization path and potentially
arrive at a less-favorable local optimum at the period of training. To mitigate
the issue, we can disregard either one of the annotation types for the purpose
of pseudo labeling. A related example is the conventional practice of pretraining
the model on ImageNet [15] with just image-level class labels. Conversely, the
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approach of using localization-based annotations (while ignoring class labels) has
not been explored previously, which we believe is a promising direction given the
nature of detection/segmentation tasks.

In this work, we propose a novel Class-Agnostic Semi-Supervised Learning
(CA-SSL) framework for instance-level detection and segmentation. CA-SSL is a
framework consisting of three cascaded training stages (pseudo labeler training,
warmup training, and finetuning) with two detector types (pseudo labeler and
target detector). Each stage employs a specific type of training data and a type
of detector. Concretely, we first train a pseudo labeler on the labeled dataset
with class-agnostic annotations and then use it to generate pseudo labels on
unlabeled images. After that, we perform warmup training for the target detector
on the unlabeled data with class-agnostic pseudo labels. Finally, we finetune
the warmed-up target detector on class-specific ground-truth annotations for a
particular instance-level task. Unlike existing state-of-the-art SSL method Soft-
Teacher [64] that jointly uses labeled and unlabeled data within its single training
stage, these two data types are assigned separately to the different stages of CA-
SSL, as shown in Fig. 1. This decoupling strategy provides the warmup model
with a good initial solution (learned from unlabeled data) that guides it to
maintain a good generalization performance during finetuning.

In our experiments, we carry out evaluations by considering upper-bound
model performance on multiple large-scale unlabeled data splits that have dif-
ferent dataset scales, consisting of images from COCO unlabeled [34], Open
Images [29] and Places365 [66]. Through extensive experiments, we demonstrate
that our method can obtain consistent performance gains when using different
unlabeled splits ranging from 0.12M to 3.6M images. Owing to the superior ef-
fectiveness of our method at consuming large-scale unlabeled data, we are the
first successful attempt to improve task performance using an unlabeled dataset
with an enormous amount of 3.6M images, in the history of semi-supervised ob-
ject detection. Moreover, our class-agnostic warmup model trained with warmup
training demonstrates excellent transferability to other instance-level detection
and segmentation frameworks. The contributions for this paper are threefold:

– We propose a novel class-agnostic semi-supervised learning framework for
instance-level detection/segmentation tasks. By leveraging cascaded training
stages and class-agnostic pseudo labels, it achieves a more optimal amount
of task specificity in the training signals extracted from unlabeled data.

– We conduct extensive ablative and comparative experiments on object de-
tection, demonstrating the effectiveness of our method. To the best of our
knowledge, we are the first to use unlabeled data at an unprecedented scale
of 3.6M for semi-supervised object detection.

– We demonstrate that our class-agnostic warmup model trained with warmup
training can significantly improve the performance on other instance-level de-
tection/segmentation tasks (instance segmentation, keypoint detection, en-
tity segmentation, panoptic segmentation) and frameworks.
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2 Related work

Instance-level detection/segmentation. Instance-level detection tasks, in-
cluding object detection [13, 16, 17, 32, 33, 40, 45, 56], instance segmentation [7,
19, 35, 42, 63, 65], and key point detection [19, 50, 61, 67], require detecting ob-
jects with different instance-level representations such as bounding box, pixel-
wise mask, and keypoints. Recently, numerous class-specific panoptic segmen-
tation [3, 10, 31] and class-agnostic entity segmentation [41] methods have been
developed to perform dense image segmentation by treating all segmentation
masks as instances. Most of instance-level detection research works generally fo-
cus on designing more advanced architectures or detection methods that work
well on existing labeled datasets. Instead, we aim to design a training frame-
work that better utilizes unlabeled images, without modifying the underlying
architecture or method. This facilitates better understanding of how far current
methods can scale with the help of large-scale unlabeled data.

Semi-supervised detection. Semi-supervised learning approaches mainly fo-
cus on two directions for instance-level detection. One is concerned with the
consistency-based methods [24, 54], which are closely related to self-supervised
approaches. They usually construct a regularization loss by designing some con-
trastive pretext task [8, 18, 21, 44, 59, 62]. Another direction is on pseudo label-
ing [30,43,49,57,64,68]. As the name implies, they leverage a pretrained detector
to generate pseudo labels on unlabeled images. The pseudo labels are usually
almost identical to the ground-truth labels. Thus, both two types of labels can
be used for joint training with similar losses. Our framework is also based on
pseudo labeling, but we decouple the semi-supervised pipeline into three cas-
caded training stages, where each stage employs a specific type of training data
(labeled dataset or unlabeled data). Such a design avoids the complicated and
careful weighting strategy required to balance unlabeled and labeled data in the
joint training scheme of semi-supervised methods [64], where the common issue is
to effectively balance the contributions of noisy pseudo labels and ground-truth
annotations.

Class-Agnostic detection and segmentation. Class-Agnostic localization [25,
41,45,46,58] has been widely used in detection and segmentation. One of the most
prominent examples is the two-stage detector [45]. It mainly has a class-agnostic
region proposal network (RPN) and a detection head. RPN predicts numerous
high-quality class-agnostic proposals for further classification and localization
refinement. Inspired by this design, our method use class-agnostic pseudo labels
on unlabeled data for warming up class-specific target detector. As demonstrated
by recent works on open-world detection/segmentation [25,41,46], it can improve
the model’s generalization on unseen objects. Aside from the benefits shown by
existing works, in this paper, we present the first evidence that class-agnostic
training can significantly bridge the quality gap between pseudo labels and hu-
man (ground-truth) labels. This is important because the quality of pseudo labels
directly impacts the effectiveness of learning from unlabeled data.
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Fig. 2. Illustration of CA-SSL framework. The numbered texts indicate the three cas-
cade stages of our framework. It mainly involves two detectors, namely pseudo labeler
and target detector. The bridge between these two detectors is the unlabeled images.
We use the pseudo labeler to predict class-agnostic pseudo labels on the unlabeled
images, which are then used as training data for warmup training of target detector.

3 Methodology

Fig. 2 provides an overview of the proposed Class-agnostic Semi-Supervised
Learning (CA-SSL) framework. The framework consists of three stages, includ-
ing pseudo labeler training, warmup training, and finetuning. In the first stage,
we use the labeled data but with only class-agnostic annotations to train a
pseudo labeler. This labeling detector then predicts class-agnostic pseudo la-
bels on unlabeled images. In warmup training, these numerous unlabeled images
with their pseudo labels are used to train a target detector. This process is
akin to pretraining in self-supervised learning with unlabeled data. We refer to
it as warmup training because only localization-based pseudo labels are used as
training data, while class labels are ignored. Finally, we fine-tune the warmed-up
target detector on the labeled dataset with class-specific annotations.

In the following sections, we first introduce the entire process of our training
framework. After that, we explain in detail our proposal to adopt mask-based
annotations at Entity [41] level in pseudo labeler and warmup training, as an
alternative to the common practice of using box-based object annotations. This
annotation adoption is to enable our framework work more effectively beyond
instance-level segmentation tasks such as panoptic segmentation. Finally, we
describe the base detection framework used by CA-SSL’s training stages.

3.1 Training Stages

We design our training stages based on the finding that there is only a small
quality gap between class-agnostic ground-truth and pseudo labels. We study
the feasibility of class-agnostic detection for pseudo labeling, by contrasting it
to the conventional class-specific detection task, in terms of class-agnostic [41]
and class-specific [34] AP metrics respectively. Table 1 shows that the valida-
tion performance gap between training on either ground-truth data (COCO
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Train data Annotation Num APdet APdet-a

COCO train2017 Ground-truth 118k 41.0 41.9

COCO unlabeled Pseudo labels 123k 35.9 40.0
Table 1. COCO val2017 validation results from training on ground-truth and pseudo
labels, across class-specific (APdet) and -agnostic (APdet-a) tasks. ‘Num’ is the number
of training images. APdet and APdet-a indicate the class-specific and -agnostic object
detection mAPs respectively.

train2017) or pseudo labels (COCO unlabeled), for both class-specific and
-agnostic settings1on COCO validation set [34]. The groundtruth-unlabeled AP
gaps of class-specific and class-agnostic models are 5.1% (41.0-35.9) and 1.9%
(41.9-40.0) respectively. The much smaller gap indicates that the class-agnostic
pseudo labels have much a better quality than the class-specific ones, thus en-
abling the model to closely approach the AP of training on ground-truth labels.
In many cases, class-agnostic pseudo labels can eliminate the ambiguities caused
by confusing predefined classes such as cyclist and person, while generalizing
well to other kinds of objects unseen , which have been well studied in Dt [41].
The class-agnostic model with stronger generalization ability provides a greater
variety of proposals which help localize objects better during finetuning. We
show that such properties of class-agnostic pseudo labels are more useful for
warmup training of the class-specific model, compared to prematurely learning
classification-aware features through the class-specific ground-truth annotations
of downstream task.

Similar to other semi-supervised learning frameworks [24,30,43,49,54,57,64,
68], our CA-SSL framework is largely based on the conventional object detection
training process which we first briefly introduce here. Conventionally, given the
input images I and their ground-truth annotations Y from the human-labeled
training dataset Dt, the detection model denoted as h∗ is trained with the com-
posite detection loss: Ldet = Lcls (classification loss) + Lloc (localization loss).
The detection model h∗ is learned through a function H(∗) that determines
the neural network hypothesis spaces, depending on the task at hand. Next, we
provide the details of the three stages of CA-SSL framework.

Pseudo labeler training. The goal of this stage is to train a pseudo labeler on
Dt to generate high-quality class-agnostic pseudo labels Dp from the unlabeled
dataset split Du. To keep the training and inference consistent, we train the
pseudo labeler on the class-agnostic annotations obtained from Dt. We directly
remove class information from the annotations in Dt using the class-agnostic con-
version function α(·) and regard each label as a class-free “object”. To train the
pseudo labeler, we use a recent class-specific detection framework (see Sec. 3.3)
and replace its multi-class classifier with a binary classifier. Given the labeled

1 We use FCOS [56] with ResNet50 backbone, a widely-used one-stage detector, to
explore the performance gap between using class-specific and -agnostic labels. We
follow its 36 epoch training setting widely adopted in detectron2 [60] or mmdetec-
tion [5]
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dataset Dt, the pseudo labeler hL is trained as follows:

hL = argmin
h∈H(L)

∑
{Ii,Yi}∈Dt

La
det(h(Ii), α(Yi)), (1)

where La
det representation the class-agnostic version of Ldet and H(L) indicates

the neural network hypotheses conditioned on the labeling detection task.
Once the training is done, we apply the pseudo labeler to the unlabeled

images and then filter the prediction results using merely a single (constant)
score threshold δ. Without semantic class labels in the prediction results, class-
agnostic pseudo labels avoid the long-tail problem suffered by in class-specific
predictions. Some related ablations are in the supplementary file. As a result,
there is no need for a complicated strategy that applies class-dynamic score
thresholds as in existing works [30,43,49,57,64,68]. Given the pseudo labeler hL

and score threshold δ, our class-agnostic pseudo labeling process to obtain the
pseudo labels Y p and pseudo-label dataset Dp is represented by the following:

Y p
i = {yj ∈ hL(I

u
i )|score(yj) > δ} ∀Iui ∈ Du, (2)

Dp = {(Iui ∈ Du, Y p
i ∈ Y p)|Y p

i ̸= ∅}, (3)

where ‘p’ indicates the association with pseudo labels and score(·) returns the
objectness score of any prediction.

Warmup training. We perform warmup training of the target detector only on
the pseudo-label dataset Dp. We do not make use of any ground-truth dataset in
this stage, which is different from the state-of-the-art semi-supervised approach
Soft-Teacher [64] that carries out joint training on ground-truth and unlabeled
dataset splits. Given that, we do not require a divide-and-conquer strategy to
handle different dataset splits, such as applying different loss weights to noisy
pseudo labels and clean ground-truth labels [1, 2]. To obtain the warmed-up
target ‘T’ detection model hT, we perform warmup training as follows:

hT = argmin
h∈H(T)

∑
{Ipi ,Y

p
i }∈Dp

La
det(h(I

p
i ), ⌈Y

p
i ⌉), (4)

where ⌈·⌉ transforms Y p to binary training targets. Note that warmup training
is related to the pretraining step of self-supervised learning. The weights of the
model are well-initialized for better adaptation to downstream tasks. Compared
to self-supervised methods [6,21,44,59,62], the unlabeled data with class-agnostic
pseudo labels provides relatively more informative and task-specific supervision
signals (class-agnostic localization) that significantly facilitate instance-level de-
tection and segmentation tasks.

Finetuning. After obtaining the warmup model hT from warmup training,
we finetune it for the downstream task using the class-specific ground-truth an-
notations of Dt. Instance-level detection/segmentation tasks are typically class-
specific tasks. Thus, the output channel of target detector’s semantic classifier
should be adapted to the number of pre-defined classes for the downstream
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Fig. 3. An example showing that switching from box-based object annotations to mask-
based Entity [41] annotations results in a more substantial set of labels for pseudo
labeler and warmup training.

task at hand. There are two ways to initialize multi-class classification layer:
(1) random initialization; (2) initialize each output channel with the one from
the classification layer of hT. We empirically find these two strategies produce
similar results. The finetuning process to obtain the final ‘F’ downstream-task
model hF is represented by:

hF = argmin
h∈H(F;hT)

∑
{Ii,Yi}∈Dt

Ldet(h(Ii), Yi), (5)

where H(F;hT) indicates that the neural network hypotheses are conditioned
on both the task ‘F’ and pretrained model hT. Our approach of warming up the
target detector with only unlabeled data guarantees it less prone to overfitting
to the downstream task’s images and ground-truth labels, since they have not
been exposed to the model in the warmup training stage.

3.2 Switching From Objects to Entities

Warmup training with large-scale unlabeled data is a costly process. Thus, it is
desirable to design our CA-SSL framework such that the trained class-agnostic
model can serve a good range of tasks that expand to detection and also in-
clude segmentation. Instance segmentation and panoptic segmentation are two
widely-used instance-level segmentation tasks that require more fine-grained vi-
sual information for predicting pixelwise masks for each instance.

We draw inspiration from Entity Segmentation [41] on how to boost the ap-
plicability and usefulness of our CA-SSL framework. Instead of just focusing on
objects, we propose to perform warmup training for the target detector based
on the semantically-coherent and class-agnostic mask regions known as Entities.
Entities include not just object regions but also stuff regions such as sky and
road which come with the panoptic segmentation task in mainstream datasets
(e.g., COCO [34]). With this, even the unlabeled images with little-to-no ob-
ject regions can still provide substantial pseudo-label training signals through
the stuff regions. In Fig. 3, there is only a single object (clock), while multiple
Entities like building and sky are present. Furthermore, stuff regions have close
relationships with objects, and thus we hypothesize that the training on stuff
pseudo labels strongly benefits the downstream task even if it is an object-based
task [38].
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3.3 Base Detector

We adopt the CondInst [55], a widely-used instance segmentation framework,
as our base detector for the pseudo labeler and target detector. Different from
Mask R-CNN [19], the Condinst is in fully convolutional manner with two parts:
a dense one-stage detector FCOS for detection and a segmentation head for
mask prediction. The FCOS has a backbone, FPN neck, and a detection head.
The detection head has three output branches: the classification, regression, and
kernel branch. The first two branches perform instance-level classification and
regression to achieve object detection. Whereas, the kernel branch generates
dynamic convolution weights which are used to convolve with high-res feature
maps to generate binary instance masks within the segmentation head. Such a
network architecture keeps the detection and segmentation parts fairly indepen-
dent, making it easy to transfer its arbitrary parts to other networks and tasks
for finetuning, as proved by our ablation study in Table 9 and Table 10. E.g.,
we can easily initialize the backbone and FPN neck of Mask R-CNN with our
CondInst target detector without any modifications. Overall, the CondInst base
detector is trained with the following:

Le = L{a,c}
det + Lseg, (6)

where Lseg is usually the dice loss between predicted segmentation mask and

ground truth. We choose L{a,c}
det as class-agnostic La

det or class-specific Lc
det de-

pending on the detector and training stage described in subsection 3.1.
Also, CondInst learns to group the pixels that belong to the same seman-

tic/instance region, and otherwise push them far apart. This can be seen as a
form of implicit contrastive learning which focuses on spatial-level representation
learning, rather than global vector-based representation. This leads to segregated
features which are useful for detection and segmentation tasks.

4 Experiments

Datasets. MS-COCO [34] is used as the main evaluation dataset. In addition
to MS-COCO train2017 and val2017 splits, we curate 3.6 million unlabeled
images from COCO unlabeled [34], Places365 [66], and Open Images [29]. To
better demonstrate the data scalability of CA-SSL, we construct four unlabeled
data subsets (tiny, small, base, large) with 120K, 660K, 1.74M, and 3.66M
images respectively. Unless specified, we report the experimental results from
using tiny as the unlabeled subset, which is from COCO unlabeled and has
nearly the same scale as train2017 as shown in Table 1.

Training Setup. For fair comparisons with other methods (some may require
less training time), we train all models to reach their respectively upper-bound
performances, by increasing the number of training epochs accordingly. Unless
specified, we train with 60 and 36 epochs in warmup training and finetuning
respectively for CA-SSL to achieve the upper-bound performance. Upper-bound
performance evaluation is the preferred way to gauge the true performance of
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warmup warmed-up model finetuned model

training data APdet-a APseg-a APdet APe APdet APseg PQ
ImageNet - - - - 46.8 43.0 41.4

Objects(G,A) 41.9 35.3 - - 46.9 - -
Objects(P,S) - - 35.9 - 47.1 - -
Objects(P,A) 40.0 33.4 - - 48.1 45.0 42.5
Entities(P,A) - - - 40.2 48.2 45.2 43.7

Table 2. Effect of warmup training data choice. APdet and APseg indicate the APs
for class-specific object detection and instance segmentation tasks. Their class-agnostic
counterparts have names appended with ‘-a’. APe and PQ are the evaluation metrics
of class-agnostic Entity detection [41] and panoptic segmentation. ‘G’ and ‘P’ indicate
whether ground-truth (COCO train2017 with 118K images) or pseudo labels (COCO
unlabeled data with 123K images) are used. They are different datasets but with com-
parable numbers of images. ‘A’ and ‘S’ indicate whether class-agnostic or class-specific
labels are used. Note that all the results here are obtained via COCO val2017.

epochs APe APe
50 APe

75 APe
s APe

m APe
l

12 (1×) 38.4 59.6 40.5 14.5 35.0 52.6
24 (2×) 39.6 60.5 41.9 15.0 36.3 54.1
36 (3×) 39.9 60.8 42.4 15.1 36.9 54.6
48 (4×) 40.2 60.8 42.7 15.4 37.1 54.8
60 (5×) 40.2 60.9 42.8 15.4 37.0 54.9

Table 3. Performances of pretrained model with different number of warmup training
epochs. The APe

50 and APe
75 are APs of the Entity detection task based on 0.5 and

0.75 IoU thresholds. The APe
s , APe

m and APe
l indicate the mAP performance on small,

middle, and large entities.

different methods that may require different training costs. We apply either weak
data augmentation (conventional multi-scale training) or strong data augmenta-
tion (jittering of scale, brightness, contrast, etc. [9,64]) to the unlabeled images
before generating pseudo labels.

Implementation. We adopt the Condinst [55] framework with Swin Trans-
former Tiny (T) backbone [36] as our base model. Please refer to our supplemen-
tary file for the hyper-parameter settings in the warmup training and finetuning.

4.1 Experimental Results

Warmup Training Data. Table 2 shows the impact of the choice of warmup
training data on the downstream task performances after the finetuning stage.
From the first two rows, we observe that ImageNet supervised-pretrained model
and the warmup model trained on class-agnostic ground-truth labels suffer from
the worst downstream performances. Whereas, in the last three rows, the models
that leverage pseudo labels ‘P’ for training consistently achieve stronger down-
stream performances. It can also be clearly seen that using class-agnostic labels
‘A’ during warmup training is better than using class-specific labels ‘S’, resulting
in a downstream APdet gap of 1.0% (48.1-47.1). Class-Agnostic warmup training
helps to prevent the model from overfitting to the ground-truth labels during
finetuning. In particular, Entity-based warmup training data provides the best
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F W 1× 2× 3× 4× 5×
1× 45.3 46.3 46.4 46.8 47.1
2× 47.0 47.4 47.7 47.3 47.7
3× 47.2 47.7 47.6 47.9 48.2
4× 47.3 47.6 47.7 47.9 48.0
5× 47.5 47.7 47.9 47.9 48.0

Table 4. Exploration to the best training epoch combination in the warmup training
and finetuning stages on downstream object detection performance APdet. E× indi-
cates the E×12 training epochs. E.g., 1× and 5× represent 12 and 60 training epochs,
respectively. ‘F’ and ‘W’ represent the Finetuning and Warmup training stages.

pseudo labeler (APe) 38.0 39.1 40.6 41.4 42.1
warmed-up target detector (APe) 36.1 37.3 38.8 39.6 40.2

Table 5. Relationship between the performance of pseudo labeler and the performance
of the warmed-up target detector right after warmup training. The different columns
correspond to the various backbones3used by the pseudo labeler. The warmup target
detector is always based on Tiny backbone.

overall downstream task performance, while strongly raising the downstream PQ
performance by 1.2% (43.7-42.5) due to the inclusion of both object and stuff
elements. Note that the last two rows of Table 2 use identical COCO unlabeled

images but with different annotation types: box-based objects and mask-based
entities [41] (objects & stuffs), as illustrated in Sec. 3.2.

Upper-Bound Performance. We investigate the number of training epochs
required to achieve the upper-bound performance in both the warmup train-
ing and finetuning stages. Table 3 shows the class-agnostic performance under
different numbers of warmup training epochs. When increasing the number of
epochs from 12 to 48, the performance of trained model improves from 38.4 to
40.2 in terms of class-agnostic APe. The improvement saturates after 40 epochs.
Table 4 shows the the downstream class-specific object detection performance
under different combinations of warmup training and finetuning epochs. With 60
epochs (5×) in the warmup training and 36 epochs (3×) in finetuning stages, we
obtain the best performance of 48.2 APdet. Therefore, we adopt this particular
setting in the rest of the experiments.

Pseudo labeler.We investigate the impact of pseudo labeler in the first training
stage. Table 5 shows how the performance of pseudo labeler affects the perfor-
mance of the target detector (after warmup training is performed) on the class-
agnostic entity detection task. The results here conclude that a stronger pseudo
labeler consistently leads to a stronger target detector in warmup training.

Data Augmentation. Table 6 shows the impact of data augmentation scheme
adopted in the warmup training and finetuning stages, on the intermediate and
final detection performances. Using strong data augmentation independently for
any of the two stages brings some performance improvement, while combining
the two provides the largest APdet improvement of 0.9% (49.1-48.2).

1 ResNet-101, Swin-Tiny, Swin-Small, Swin-Base, and Swin-Large.
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F W weak strong

weak (40.2, 48.2) (40.6, 48.6)
strong (40.2, 48.6) (40.6, 49.1)

Table 6. Ablation study on data augmentation. ‘W’ and ‘F’ represent the warmup
training and finetuning stages, while ‘weak’ and ‘strong’ refer to weak and strong
data augmentation. (A, B) indicate the class-agnostic APe and class-specific APdet in
warmup training and finetuning.

Setting Num warmup model (APe) fine-tuned model (APdet)
Tiny 123K 40.2 48.2
Small 660k 40.7 48.8
Base 1.74M 41.4 49.7
Large 3.66M 42.0 50.6

Table 7. Ablation study on unlabeled splits with different dataset scales.

Type Method Unlabeled Images Model APdet

Self-supervised

MoCo-v2 [6] 1.28M R-50-FPN 39.7
+0.1−−−→ 39.8

DenseCL [59] 1.28M R-50-FPN 39.7
+0.6−−−→ 40.3

DetCo [62] 1.28M R-50-MaskRCNN 38.9
+1.2−−−→ 40.1

DetCon [21] 1.28M R-50-FPN 41.6
+1.8−−−→ 42.7

PreDet [44] 50.00M R-50-MaskRCNN 44.9
+2.2−−−→ 47.1

Semi-supervised

Proposal learning [54] 0.12M R-50-FPN 37.4
+1.0−−−→ 38.4

STAC [49] 0.12M R-50-FPN 39.5
-0.3−−−→ 39.2

Self-training [68] 2.90M R-50-FPN (SimCLR) 41.1
+0.8−−−→ 41.9

Soft Teacher [64]
1.74M† Swin-T-FCOS 46.8

+2.5−−−→ 49.3

3.66M‡ Swin-L-HTC++ 58.2
+1.7−−−→ 59.9

CA-SSL (ours)
1.74M†

Swin-T-FCOS
46.8

+4.0−−−→ 50.8

3.66M‡ 46.8
+4.7−−−→ 51.5

Swin-L-HTC++ 58.2
+2.7−−−→ 60.9

Table 8. Comparison with the state-of-the-arts under the setting of train2017 set with
118k images. The ‘unlabeled images’ means the number of unlabeled images we use. In
the column of ‘APdet’, the left part is the baseline performance of using only train2017,
and the right part is the performance of using both train2017 and unlabeled dataset.→
indicates the performance gain. The symbols §(ImageNet), ∗(COCO), † ‡(our curated
sets described in Sec. 4) refer to the same respective sets of unlabeled images.

Scale of Unlabeled Dataset. Table 7 shows how the performance varies by
training the model on different unlabeled dataset splits. With the increase of un-
labeled dataset scale, the performances of the models from the warmup training
and finetuning stages improve consistently. We also notice that the class-agnostic
performance of the warmup model correlates well with the performance of the
finetuning model. This is expected as the substantial task similarity between
those two training stages.

State-of-the-art Comparison. In Table 8, we compare the performance of
CA-SSL on the downstream object detection task with those of state-of-the-art
methods in strong data augmentation. Our method achieves the most significant
performance gains even though our model is based on an already strong baseline



Class-Agnostic Semi-Supervised Learning for Detection & Segmentation 13

backbone neck head classifier APdet APdet
50 APdet

75

◦ ◦ ◦ ◦ 46.8 66.2 50.8

✓ ◦ ◦ ◦ 50.6 69.2 55.2

✓ ✓ ◦ ◦ 50.8 69.4 55.5

✓ ✓ ✓ ◦ 51.5 69.5 55.3

✓ ✓ ✓ ✓ 51.5 69.6 55.4
Table 9. Ablation study on the initialization strategy. The pretrained model is divided
into four parts here. ◦ indicates the particular part’s pretrained weights are not being
used, while ✓ indicates otherwise.

with the powerful Swin-Tiny backbone. With 1.74M unlabeled images, we obtain
50.8 APdet with 4.0% improvement over the ImageNet-pretrained baseline. Fur-
thermore, by increasing the number of unlabeled images to 3.66M, we observe
an even bigger performance gain of 4.7% that leads to 51.5 APdet. Since there
is no obvious sign of performance saturation, we believe that using a super-scale
unlabeled dataset (larger than our 3.66M one) can potentially improve model
performance significantly.

Moreover, using a stronger detector Swin-Large-HTC++ [4] with CA-SSL
still provides a meaningful 2.7% improvement (58.2 → 60.9 APdet), suggesting
that CA-SSL is compatible with advanced detectors. With the same detector and
similar unlabeled images, Soft Teacher [64] merely achieves a 2.5 % (Swin-Tiny-
FCOS) and 1.7 % (Swin-Large-HTC++) gain, despite its relatively significant
3.6% gain with R-50-FPN backbone and 120K unlabeled images. The reasons
are twofold. Unlike CA-SSL that decouples the usage of different source data
into three stages, Soft Teacher performs joint training and that requires it to be
particular about the scale of unlabeled data, in order to achieve a good balance
between the contributions from labeled and unlabeled data. Using an unlabeled
dataset larger than expected can spoil such a balance. On the other hand, Self-
training [68] performs much worse than ours, even with a large amount of 2.9M
unlabeled images. This is due to the premature use of class/downstream-specific
labels in the pseudo-labeling stage, potentially causing the model overfit easily
to ground-truth labels during finetuning. Whereas, CA-SSL mitigates such a
problem by not allowing the model to train on labeled images and class-specific
labels during warmup training.

Note that the performance improvements of our proposed semi-supervised
learning do not come from Transformer architecture. With R-50-FPN detector
and similar 0.12M unlabeled images, CA-SSL improves the performance at a
much larger margin than other semi-supervised methods.

Initialization Strategy. We study the effects of including/excluding the mul-
tiple parts (backbone, neck, head, and classifier) of the pretrained model from
the warmup training stage for initializing the finetuning model. Table 9 shows
that the main source of improvement (+3.8%) comes from backbone initializa-
tion, while the other parts make smaller improvements. This ablation study
motivates us to transfer our pretrained model to other instance-level detec-
tion/segmentation tasks that may not use the downstream frameworks as ours.
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Task Type Framework Pretrained w/ Task Perf.

DET

E FCOS [56]
ImageNet 46.8

Ours 51.5 (+4.7)

P
RetinaNet [33]

ImageNet 42.8
Ours 47.9 (+5.1)

FPN [32]
ImageNet 44.0

Ours 46.5 (+2.5)

INS
E CondInst [55]

ImageNet 41.9
Ours 44.9 (+3.0)

P Mask R-CNN [19]
ImageNet 42.8

Ours 45.5 (+2.7)

Entity E CondInst [55]
ImageNet 35.1

Ours 38.2 (+3.1)

Point P Mask R-CNN [19]
ImageNet 66.8

Ours 67.8 (+1.0)

Panop P PanopticFPN [26]
ImageNet 39.5

Ours 41.5 (+2.0)

Table 10. Evaluation on representative instance-level detection/segmentation tasks
with Swin-Tiny backbone. “E” and “P” indicate initializing the framework with entire
or part(s) of our pretrained model. “ImageNet” and “Ours” refer to ImageNet and our
weights trained in the warmup stage. “Task Perf” refers to the task-specific evaluation
metrics, including AP for object detection, instance segmentation and key-point detet-
cion, APe for entity segmentation, and PQ for panoptic segmentation.

Generalization to Other Frameworks/Tasks. Table 10 shows the strong
performance improvements resulted from initializing the downstream models
with a single model hT pretrained with CA-SSL, on various instance-level detec-
tion and segmentation tasks. Some frameworks like Mask R-CNN have heads
that are incompatible with those of our Condinst base detector. Using just
our FPN backbone pretrained weights to initialize Mask R-CNN, we achieve
2.7 APseg and 1.0 APpoint improvements on instance segmentation and key-
point detection. This demonstrates the strong generalization ability of our semi-
supervised learning method.

5 Conclusion

In this work, we propose a class-agnostic semi-supervised learning framework to
improve instance-level detection/segmentation performance with unlabeled data.
To extract the training signals with a more optimal amount of task specificity, the
framework adopts class-agnostic pseudo labels and includes three cascaded train-
ing stages, where each stage uses a specific type of data. By performing warmup
training on a large amount of class-agnostic pseudo labels on unlabeled data,
the class-agnostic model has strong generalization ability and is equipped with
the right amount task-specific knowledge. When finetuned on different down-
stream tasks, the model can better avoid overfitting to the ground-truth labels
and thus can achieve better downstream performance. Our extensive experi-
ments show the effectiveness of our framework on object detection with different
unlabeled splits. Moreover, the pretrained class-agnostic model demonstrates
excellent transferability to other instance-level detection frameworks and tasks.
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