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Abstract. We present Self-Classifier – a novel self-supervised end-to-
end classification learning approach. Self-Classifier learns labels and rep-
resentations simultaneously in a single-stage end-to-end manner by op-
timizing for same-class prediction of two augmented views of the same
sample. To guarantee non-degenerate solutions (i.e., solutions where all
labels are assigned to the same class) we propose a mathematically moti-
vated variant of the cross-entropy loss that has a uniform prior asserted
on the predicted labels. In our theoretical analysis, we prove that degen-
erate solutions are not in the set of optimal solutions of our approach.
Self-Classifier is simple to implement and scalable. Unlike other pop-
ular unsupervised classification and contrastive representation learning
approaches, it does not require any form of pre-training, expectation-
maximization, pseudo-labeling, external clustering, a second network,
stop-gradient operation, or negative pairs. Despite its simplicity, our ap-
proach sets a new state of the art for unsupervised classification of Ima-
geNet; and even achieves comparable to state-of-the-art results for unsu-
pervised representation learning. Code is available at https://github.
com/elad-amrani/self-classifier.
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1 Introduction

Self-supervised visual representation learning has gained increasing interest over
the past few years [29,10,5,6,18,7,2,23]. The main idea is to define and solve a pre-
text task such that semantically meaningful representations can be learned with-
out any human-annotated labels. The learned representations are later trans-
ferred to downstream tasks, e.g., by fine-tuning on a smaller dataset. Cur-
rent state-of-the-art self-supervised models are based on contrastive learning
(Sec. 2.1). These models maximize the similarity between two different aug-
mentations of the same image while simultaneously minimizing the similarity
between different images, subject to different conditions. Although they attain
impressive overall performance, for some downstream tasks, such as unsuper-
vised classification (Sec. 6.1), the objective of the various proposed pretext tasks

https://github.com/elad-amrani/self-classifier
https://github.com/elad-amrani/self-classifier
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Fig. 1: Self-Classifier architecture. Two augmented views of the same image
are processed by a shared network comprised of a backbone (e.g. CNN) and a
classifier (e.g. projection MLP + linear classification head). The cross-entropy
of the two views is minimized to promote same class prediction while avoiding
degenerate solutions by asserting a uniform prior on class predictions. The re-
sulting model learns representations and discovers the underlying classes in a
single-stage end-to-end unsupervised manner.

might not be sufficiently well aligned. For example, instance discrimination meth-
ods, such as [18,7] used for pre-training in the current state-of-the-art unsuper-
vised classification method [28], decrease similarity between all instances, even
between those that belong to the same (unknown during training) class, thus
potentially working against the set task. In contrast, in this paper we propose
a classification-based pretext task whose objective is directly aligned with the
end goal in this case. Knowing only the number of classes C we learn an unsu-
pervised classifier (Self-Classifier) such that two different augmentations of the
same image are classified similarly. In practice, such a task is prone to degener-
ate solutions, where all samples are assigned to the same class. To avoid them,
we assert a uniform prior on the standard cross-entropy loss function, such that
a solution with an equipartition of the data is an optimal solution. In fact, we
show that the set of optimal solutions no longer includes degenerate ones.

Our approach can also be viewed as a form of deep unsupervised clustering
(Section 2.2) [30,31,4,1,17,20,28,32] combined with contrastive learning. Simi-
larly to deep clustering methods, we learn the parameters of a neural network
and cluster (class) assignments simultaneously. Recently, clustering has been
combined with contrastive learning in [32,2] with great success, yet in both
studies clustering was employed as a separate step used for pseudo-labeling. In
contrast, in this work we learn representations and cluster labels in a single-stage
end-to-end manner, using only minibatch SGD.

The key contributions of this paper are:

1. A simple yet effective self-supervised single-stage end-to-end classification
and representation learning approach. Unlike previous unsupervised clas-
sification works, our approach does not require any form of pre-training,
expectation-maximization algorithm, pseudo-labeling, or external clustering.
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Unlike previous unsupervised representation learning works, our approach
does not require a memory bank, a second network (momentum), external
clustering, stop-gradient operation, or negative pairs.

2. Although simple, our approach sets a new state of the art for unsupervised
classification on ImageNet with 41.1% top-1 accuracy, achieves results com-
parable to state of the art for unsupervised representation learning, and
attains a significant (∼ 2% AP) improvement in transfer to COCO det/seg
compared to other self. sup. methods.

3. We are the first to provide quantitative analysis of self-supervised classifica-
tion predictions alignment to a set of different class hierarchies (defined on
ImageNet and its subpopulations), and show significant (up to 3.4% AMI)
improvement over previous state of the art in this new metric.

2 Related Work

2.1 Self-Supervised Learning

Self-supervised learning methods learn compact semantic data representations
by defining and solving a pretext task. In such tasks, naturally existing supervi-
sion signals are utilized for training. Many pretext tasks were proposed in recent
years in the domain of computer vision, including colorization [35], jigsaw puzzle
[24], image inpainting [25], context prediction [9], rotation prediction [14], and
contrastive learning [29,10,5,6,18,7,2,23] just to mention a few.

Contrastive learning has shown great promise and has become a de facto
standard for self-supervised learning. Two of the earliest studies of contrastive
learning are Exemplar CNN [10], and Non-Parametric Instance Discrimination
(NPID) [29]. Exemplar CNN [10], learns to discriminate between instances us-
ing a convolutional neural network classifier, where each class represents a single
instance and its augmentations. While highly simple and effective, it does not
scale to arbitrarily large amounts of unlabeled data since it requires a classifi-
cation layer (softmax) the size of the dataset. NPID [29] tackles this problem
by approximating the full softmax distribution with noise-contrastive estimation
(NCE) [16] and utilizing a memory bank to store the recent representation of
each instance to avoid computing the representations of the entire dataset at
each time step of the learning process. Such approximation is effective since,
unlike Exemplar CNN, it allows training with large amounts of unlabeled data.
However, the proposed memory bank by NPID introduces a new problem - lack
of consistency across representations stored in the memory bank, i.e., the rep-
resentations of different samples in the memory bank are computed at multiple
different time steps. Nonetheless, Exemplar CNN and NPID have inspired a line
of studies of contrastive learning [18,7,5,6,21,2].

One such recent study is SwAV [2] which resembles the present work the
most. SwAV takes advantage of contrastive methods without requiring to com-
pute pairwise comparisons. More specifically, it simultaneously clusters the data
while enforcing consistency between cluster assignments produced for different
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augmentations (or “views”) of the same image, instead of comparing features di-
rectly. To avoid a trivial solution where all samples collapse into a single cluster,
SwAV alternates between representation learning using back propagation, and
a separate clustering step using the Sinkhorn-Knopp algorithm. In contrast to
SwAV, in this work we propose a model that allows learning both representations
and cluster assignments in a single-stage end-to-end manner.

2.2 Deep Unsupervised Clustering

Deep unsupervised clustering methods simultaneously learn the parameters of
a neural network and the cluster assignments of the resulting features using
unlabeled data [30,31,4,1,17,20,28,32]. Such a task is understandably vulnera-
ble to degenerate solutions, where all samples are assigned to a single cluster.
Many different solutions that were proposed to avoid the trivial outcome are
based on one or few of the following: a) pre-training mechanism; b) Expectation-
Maximization (EM) algorithm (i.e., alternating between representation learning
and cluster assignment); c) pseudo-labeling; and d) external clustering algorithm
such as k-means.

Two of the earliest studies of deep clustering are DEC [30] and JULE [31].
DEC [30] initializes the parameters of its network using a deep autoencoder,
and its cluster centroids using standard k-means clustering in the feature space.
It then uses a form of EM algorithm, where it iterates between pseudo-labeling
and learning from its own high confidence predictions. JULE [30], similarly to
DEC, alternates between pseudo-labeling and learning from its own predictions.
However, unlike DEC, JULE avoids a pre-training step and instead utilizes the
prior on the input signal given by a randomly initialized ConvNet together with
agglomerative clustering.

More recent approaches are SeLa [32] and IIC [20]. SeLa [32] uses a form of
EM algorithm, where it iterates between minimization of the cross entropy loss
and pseudo-labeling by solving efficiently an instance of the optimal transport
problem using the Sinkhorn-Knopp algorithm. IIC [20] is a single-stage end-to-
end deep clustering model conceptually similar to the approach presented in
this paper. IIC maximizes the mutual information between predictions of two
augmented views of the same sample. The two entropy terms constituting mutual
information – the entropy of a sample and its negative conditional entropy given
the other sample compete with each other, with the entropy being maximal
when the labels are uniformly distributed over the clusters, and the negative
conditional entropy being maximal for sharp one-hot instance assignments.

In this work, we follow a similar rationale for single-stage end-to-end classi-
fication without the use of any pseudo-labeling. Unlike IIC, our proposed loss is
equivalent to the cross-entropy classification loss under a uniform label prior that
guarantees non-degenerate, uniformly distributed optimal solution as explained
in Sec. 3. Although many deep clustering approaches were proposed over the
years, only two of them (SCAN [28] and SeLa [32]) have demonstrated scalabil-
ity to large-scale datasets such as ImageNet. In fact, the task of unsupervised
classification of large-scale datasets remains an open challenge.



Self-Supervised Classification Network 5

3 Self-Classifier

Let x1, x2 denote two different augmented views of the same image sample x.
Our goal is to learn a classifier y ≜ f(xi) ∈ [C], where C is the given number
of classes, such that two augmented views of the same sample are classified
similarly, while avoiding degenerate solutions. A naive approach to this would
be minimizing the following cross-entropy loss:

ℓ̃(x1, x2) = −
∑
y∈[C]

p(y|x2) log p(y|x1), (1)

where p(y|x) is a row softmax with temperature τrow [29] of the matrix of logits
S produced by our model (backbone + classifier) for all classes (columns) and
batch samples (rows). However, without additional regularization, an attempt to
minimize (1) will quickly converge to a degenerate solution in which the network
predicts a constant y regardless of the x. In order to remedy this, we propose to
invoke Bayes and total probability laws, obtaining:

p(y|x2) =
p(y)p(x2|y)

p(x2)
=

p(y)p(x2|y)∑
ỹ∈[C] p(x2|ỹ)p(ỹ)

, (2)

p(y|x1) =
p(y)p(y|x1)

p(y)
=

p(y)p(y|x1)∑
x̃1∈B1

p(y|x̃1)p(x̃1)
, (3)

where B is a batch of N samples (B1 are the first augmentations of samples
of B), and p(x|y) is a column softmax of the aforementioned matrix of logits
S with the temperature τcol. Now, assuming that p(x1) is uniform (under the
reasonable assumption that the training samples are equi-probable), and, since
we would like all classes to be used, assuming (an intuitive) uniform prior for
p(y), we obtain:

ℓ(x1, x2) = −
∑
y∈[C]

p(x2|y)∑
ỹ p(x2|ỹ)

log

(
N

C

p(y|x1)∑
x̃1

p(y|x̃1)

)
, (4)

where p(y) and p(ỹ) cancel out in (2), and p(y)/p(x̃1) becomes N/C in (3). In
practice, we use a symmetric variant of this loss (that we empirically noticed to
be better):

L =
1

2

(
ℓ(x1, x2) + ℓ(x2, x1)

)
. (5)

Note that the naive cross entropy in (1) is in fact mathematically equivalent
to our proposed loss function in (4), under the assumption that p(y) and p(x)
are uniform. Finally, despite being very simple (only few lines of PyTorch-like
pseudocode in Algorithm 1) our method sets a new state of the art in self-
supervised classification (Sec. 6.1).
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Algorithm 1 Self-Classifier PyTorch-like Pseudocode

# N: number of samples in batch
# C: number of classes
# t_r / t_c: row / column softmax temperatures
# aug(): random augmentations
# softmaxX (): softmax over dimension X
# normX (): L1 normalization over dimension X
for x in loader:

s1 , s2 = model(aug(x)), model(aug(x))

log_y_x1 = log(N/C * norm0(softmax1(s1/t_r)))
log_y_x2 = log(N/C * norm0(softmax1(s2/t_r)))

y_x1 = norm1(softmax0(s1/t_c))
y_x2 = norm1(softmax0(s2/t_c))

l1 = - sum(y_x2 * log_y_x1) / N
l2 = - sum(y_x1 * log_y_x2) / N
L = (l1 + l2) / 2
L.backward ()
optimizer.step()

4 Theoretical Analysis

In this section, we show mathematically how Self-Classifier avoids trivial solu-
tions by design, i.e., a collapsing solution is not in the set of optimal solutions
of our proposed loss function (4). Proofs are provided in Supplementary.

Theorem 1 (Non-Zero Posterior Probability). Let B be a batch of N
samples with two views per sample, (x1, x2) ∈ B. Let p(y) and p(x) be the class
and sample distributions, respectively, where y ∈ [C]. Let (5) be the loss function.
Then, each class y ∈ [C] will have at least one sample y ∈ [C] with non-zero
posterior probability p(x|y) > 0 assigned into it, and each sample x ∈ [N ] will
have at least one class y ∈ [C] with p(x|y) > 0.

Theorem 2 (Optimal Solution With Uniform Prior). Let B be a batch
of N samples with two views per sample, (x1, x2) ∈ B. Let p(y) and p(x) be the
class and sample distribution, respectively, where y ∈ [C]. Then, the uniform
probabilities p(y) = 1

C , p(x) = 1
N constitute a global minimizer of the loss (4).

5 Implementation Details

5.1 Architecture

In all our experiments, we used ResNet-50 [19] backbone (as customary for all
compared SSL works) initialized randomly. Following previous work, for our pro-
jection heads we used an MLP with 2 layers (of sizes 4096 and 128) with BN,
leaky-ReLU activations, and ℓ2 normalization after the last layer. On top of the
projection head MLP we had 4 classification heads into 1K, 2K, 4K and 8K
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classes respectively. Each classification head was a simple linear layer without
additive bias term. Row-softmax temperature τrow was set to 0.1, while column-
softmax temperature τcol – to 0.05. Unless mentioned otherwise, evaluation for
unsupervised classification (Sec. 6.1) was done strictly using the 1K-classes clas-
sification head. For linear evaluation (Sec. 6.2) the MLP was dropped and re-
placed with a single linear layer of 1K classes.

5.2 Image Augmentations

We followed the data augmentations of BYOL [15] (color jittering, Gaussian blur
and solarization), multi-crop [2] (two global views of 224×224 and six local views
of 96× 96) and nearest neighbor augmentation [11] (queue for nearest neighbor
augmentation was set to 256K). We refer to Tab. 8 in Sec. 7 for performance
results without multi-crop and nearest neighbor.

5.3 Optimization

Unsupervised pre-training/classification. Most of our training hyper-parameters
are directly taken from SwAV [2]. We used a LARS optimizer [33] with a learning
rate of 4.8 and weight decay of 10−6. The learning rate was linearly ramped up
(starting from 0.3) over the first 10 epochs, and then decreased using a cosine
scheduler for 790 epochs with a final value of 0.0048 (for a total of 800 epochs).
We used a batch size of 4096 distributed across 64 NVIDIA V100 GPUs.

Linear evaluation. Similarly to [8] we used a LARS optimizer [33] with a learning
rate of 0.8 and no weight decay. The learning rate was decreased using a cosine
scheduler for 100 epochs. We used a batch size of 4096 distributed across 16
NVIDIA V100 GPUs. We have also tried the SGD optimizer in [18] with a batch
size of 256, which gives similar results.

6 Results

6.1 Unsupervised Image Classification

We evaluate our approach on the task of unsupervised image classification us-
ing the large-scale ImageNet dataset (Tabs. 1 to 3). We report the standard
clustering metrics: Normalized Mutual Information (NMI), Adjusted Normal-
ized Mutual Information (AMI), Adjusted Rand-Index (ARI), and Clustering
Accuracy (ACC).

Our approach sets a new state-of-the-art performance for unsupervised image
classification using ImageNet, on all four metrics (NMI, AMI, ARI and ACC),
even when trained for a substantial lower number of epochs (Tab. 1). We com-
pare our approach to the latest large-scale deep clustering methods [32,28] that
have been explicitly evaluated on ImageNet. Additionally, we also compare our
approach to the latest self-supervised representation learning methods (using
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Table 1: ImageNet unsupervised image classification using ResNet-50.
NMI: Normalized Mutual Information, AMI: Adjusted Normalized Mutual In-
formation, ARI: Adjusted Rand-Index, ACC: Clustering accuracy. †: produced
by fitting a k-means classifier on the learned representations of the training set
(models from official repositories were used), and then running inference on the
validation set (results for SimCLRv2 and InfoMin are taken from [36]). SimSiam
provide only 100-epoch model in their official repository. ∗: best result taken
from the paper’s official repository. Top-3 best methods per-metric are under-
lined. Best in bold

Method Epochs NMI AMI ARI ACC

representation learning methods
SimCLRv2† [6] 1000 61.5 34.9 11.0 22.4
SimSiam† [8] 100 62.2 34.9 11.6 24.9
SwAV† [2] 800 64.1 38.8 13.4 28.1
MoCoV2† [7] 800 66.6 45.3 12.0 30.6
DINO† [3] 800 66.2 42.3 15.6 30.7
OBoW† [13] 200 66.5 42.0 16.9 31.1
InfoMin† [27] 800 68.8 48.3 14.7 33.2
BarlowT† [34] 1000 67.1 43.6 17.6 34.2

clustering based methods
SeLa∗ [32] 280 65.7 42.0 16.2 30.5
SCAN [28] 800+125 72.0 51.2 27.5 39.9

Self-Classifier 100 71.2 49.2 26.1 37.3
Self-Classifier 200 72.5 51.6 28.1 39.4
Self-Classifier 400 72.9 52.3 28.8 40.2
Self-Classifier 800 73.3 53.1 29.5 41.1

ImageNet-pretrained models provided in their respective official repositories) af-
ter fitting a k-means classifier to the learned representations computed on the
training set. For all methods we run inference on the validation set (unseen
during training).

The current state-of-the-art approach, SCAN [28], is a multi-stage algorithm
that involves: 1) pre-training (800 epochs); 2) offline k-nearest neighbor min-
ing; 3) clustering (100 epochs); and 4) self-labeling and fine-tuning (25 epochs).
In contrast, Self-Classifier is a single-stage simple-to-implement model (Algo-
rithm 1) that is trained only with minibatch SGD. At only 200 epochs Self-
Classifier already outperforms SCAN with 925 epochs.

SCAN provided an interesting qualitative analysis of alignment of its unsu-
pervised class predictions to a certain (single) level of the default (WordNet)
ImageNet semantic hierarchy. In contrast, here we propose a more diverse set of
quantitative metrics to evaluate the performance of self-supervised classification
methods on various levels of the default ImageNet hierarchy, as well as on sev-
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Table 2: ImageNet-superclasses unsupervised image classification ac-
curacy using ResNet-50. We define new datasets that contain broad classes
which each subsume several of the original ImageNet classes. See Supplementary
for details of each superclass. †: produced by fitting a k-means classifier on the
learned representations of the training set (models from official repositories were
used), and then running inference on the validation set. Results for SCAN and
SeLa were produced using ImageNet-pretrained models provided in their respec-
tive official repositories

Number of ImageNet Superclasses
Method 10 29 128 466 591 1000

representation learning methods
SwAV† [2] 79.1 69.4 58.0 46.3 34.5 28.1
MoCoV2† [7] 80.0 72.8 63.8 51.4 36.8 30.6
DINO† [3] 79.7 71.3 60.7 49.2 37.8 30.7
OBoW† [13] 83.9 76.5 67.4 53.5 35.7 31.1
BarlowT† [34] 80.2 72.1 62.7 52.7 40.9 34.2

clustering based methods
SeLa [32] 55.2 44.9 40.6 36.6 37.8 30.5
SCAN [28] 85.3 79.3 71.2 59.6 44.7 39.9

Self-Classifier 85.7 79.7 71.8 60.0 46.7 41.1

eral hierarchies of carefully curated ImageNet subpopulations (BREEDS [26]).
We believe that this new set of hierarchical alignment metrics expanding on the
leaf-only metric used so far, will allow deeper investigation of how self-supervised
classification approaches perceive the internal taxonomy of classes of unlabeled
data they are applied to, exposing their strength and weaknesses in a new and
interesting light. We use these new metrics to compare our proposed approach
to previous unsupervised clustering work [28,32], as well as state-of-the-art rep-
resentation learning work [6,8,2,7,3,13,27,34].

In Tab. 2 we report results for different numbers of ImageNet superclasses (10,
29, 128, 466 and 591) resulting from cutting the default (WordNet) ImageNet
hierarchy on different levels. See Supplementary for details of each superclass.
The results in this table, that are significantly higher then the result for leaf
(1000) classes for any hierarchy level, indicate that examples misclassified on the
leaf level tend to be assigned to other clusters from within the same superclass.
Furthermore, we see that Self-Classifier consistently outperforms previous work
on all hierarchy levels.

In Tab. 3 we report the results on four ImageNet subpopulation datasets of
BREEDS [26]. These datasets are accompanied by class hierarchies re-calibrated
by [26] such that classes on same hierarchy level are of the same visual granu-
larity. Each dataset contains a specific subpopulation of ImageNet, such as ‘En-
tities’, ‘Living’ things and ‘Non-living’ things, allowing for a more fine-grained
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Table 3: ImageNet-subsets (BREEDS) unsupervised image classifica-
tion using ResNet-50. The four BREEDS datasets are: Entity13, Entity30,
Living17 and Nonliving26. NMI: Normalized Mutual Information, AMI: Ad-
justed Normalized Mutual Information, ARI: Adjusted Rand-Index, ACC: Clus-
tering accuracy. †: produced by fitting a k-means classifier on the learned repre-
sentations of the training set (models from official repositories were used), and
then running inference on the validation set. Results for SCAN and SeLa were
produced using ImageNet-pretrained models provided in their respective official
repositories

Entity13 Entity30 Living17 Nonliving26

Method NMI AMI ARI ACC NMI AMI ARI ACC NMI AMI ARI ACC NMI AMI ARI ACC

representation learning methods

SwAV† [2] 64.8 39.9 15.2 75.6 64.6 39.4 15.1 70.5 61.0 40.3 15.7 85.2 62.0 41.1 19.2 63.1

MoCoV2† [7] 67.3 46.6 14.7 79.0 66.4 45.8 15.1 74.6 61.2 45.7 16.3 89.7 63.3 46.2 19.3 66.2

DINO† [3] 67.2 43.7 18.0 78.2 66.8 43.2 18.1 73.7 63.8 45.1 19.6 88.2 63.8 43.9 21.8 66.7

OBoW† [13] 66.4 42.3 17.5 82.2 64.9 40.7 16.4 77.6 53.8 34.0 12.0 91.1 64.8 45.4 22.9 67.9

BarlowT† [34] 68.2 45.5 20.5 77.7 67.7 45.1 20.7 73.0 64.7 47.2 22.2 88.0 64.8 45.7 24.9 66.7

clustering based methods
SeLa [32] 67.6 44.8 19.4 50.7 68.2 45.7 21.2 52.6 71.8 53.9 29.7 80.8 68.9 46.6 24.6 67.1
SCAN [28] 72.4 52.3 29.2 83.7 71.3 50.8 27.8 80.0 65.2 49.4 25.3 92.5 70.0 53.6 33.4 74.4

Self-Classifier 73.6 54.1 30.7 84.4 72.9 53.4 29.8 81.0 67.2 51.8 26.4 90.8 72.2 57.0 36.8 76.7

evaluation of hierarchical alignment of self-supervised classification predictions.
Again, we see consistent improvement of Self-Classifier over previous work and
self-supervised representation baselines.

6.2 Image Classification with Linear Models

We evaluate the quality of our unsupervised features using the standard linear
classification protocol. Following the self-supervised pre-training stage, we freeze
the features and train on top of it a supervised linear classifier (a single fully-
connected layer). This classifier operates on the global average pooling features of
a ResNet. Tab. 4 summarizes the results and comparison to the state-of-the-art
methods for various number of training budgets (100 to 800 epochs).

In addition to good results for unsupervised classification (Sec. 6.1), Self-
Classifier additionally achieves results comparable to state of the art for linear
classification evaluation using ImageNet. Specifically, as detailed in Tab. 4, it is
one of the top-3 result for 3 out of 4 of the training budgets reported, and top-1
in the 100 epochs category.

6.3 Transfer Learning

We further evaluate the quality of our unsupervised features by transferring them
to other tasks - object detection and instance segmentation. Tab. 5 reports results
for VOC07+12 [12] and COCO [22] datasets. We fine-tune our pre-trained model
end-to-end in the target datasets using the public codebase from MoCo [18]. We
obtain significant (∼ 2%) improvements in the more challenging COCO det/seg
over all the self-supervised baselines.
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Table 4: ImageNet linear classification using ResNet-50. Top-1 accuracy
vs. number of training epochs. Top-3 best methods per-category are underlined

Number of Training Epochs
Method 100 200 400 800

Supervised 76.5 – – –

SimCLR [5] 66.5 68.3 69.8 70.4
MoCoV2 [7] 67.4 67.5 71.0 71.1
SimSiam [8] 68.1 70.0 70.8 71.3
SimCLRv2 [6] – – – 71.7
InfoMin [27] – – – 73.0
BarlowT [34] – – – 73.2
OBoW [13] – 73.8 – –
BYOL [15] 66.5 70.6 73.2 74.3
NNCLR [11] 69.4 70.7 74.2 74.9
DINO [3] – – – 75.3
SwAV [2] 72.1 73.9 74.6 75.3

Self-Classifier 72.4 73.5 74.2 74.1

Table 5: Transfer learning: object detection and instance segmentation.
Results for other methods are taken from [34]

Method VOC07+12 det COCO det COCO seg

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Supervised 53.5 81.3 58.8 38.2 58.2 41.2 33.3 54.7 35.2

MoCo-v2[7] 57.4 82.5 64.0 39.3 58.9 42.5 34.4 55.8 36.5
SwAV[2] 56.1 82.6 62.7 38.4 58.6 41.3 33.8 55.2 35.9
SimSiam[8] 57.0 82.4 63.7 39.2 59.3 42.1 34.4 56.0 36.7
BarlowT[34] 56.8 82.6 63.4 39.2 59.0 42.5 34.3 56.0 36.5

Self-Classifier 56.6 82.4 62.6 41.5 61.3 45.0 36.1 58.1 38.7

6.4 Qualitative Results

In Supplementary, we visualize and analyse a subset of high/low accuracy classes
predicted by Self-Classifier on unseen data (ImageNet validation).

7 Ablation Study

In this section, we evaluate the impact of the design choices of Self-Classifier.
Namely, the loss function, the number of classes (C), number of classification
heads, fixed vs learnable classifier, MLP architecture, Softmax temperatures (row
and column), batch-size, some of the augmentations choices, and NN queue
length. We evaluate the different models after 100 self-supervised epochs and
report results on ImageNet validation set. We report both the K-NN (K=20)
classifier accuracy (evaluating the learned representations) and the unsupervised
clustering accuracy (evaluating unsupervised classification performance).
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Table 6: Ablation: loss function generality. For column definitions see
Tab. 1. SCAN + Eq. (5) is SCAN with clustering step loss replaced with ours.

Method NMI AMI ARI ACC

SCAN [28] 72.0 51.2 27.5 39.9
SCAN + our loss (Eq. (5)) 72.7 52.2 29.0 40.4

Loss function. For both illustrating the generality of our proposed loss
function and making more direct comparison with the unsupervised classifica-
tion state-of-the-art (SCAN [28]), in Tab. 6 we report the results of running
SCAN official code, while replacing their loss function (in the clustering step)
with ours (Eq. (5)) and keeping everything else (e.g. classification heads and
augmentations) same as in SCAN. As we can see, our proposed loss generalizes
well and improves SCAN result (e.g. by 1.5% ARI and 0.5% ACC). Further
results improvements are obtained using our full method (as shown in Tab. 1).

Number of classes and classification heads. Tab. 7a reports the results
for various number of classes and classification heads. Very interestingly, and
somewhat contrary to the intuition of previous unsupervised classification works
[28,32] who used the same number of classes for all heads, we found that using
a different number of classes for each head while still keeping the total number
of parameters constant (e.g. 15x1k vs. 1k+2k+4k+8k) improves results on both
metrics. We believe that such a learning objective forces the model to learn a
representation that is more invariant to the number of classes, thus improving
its generalization performance.

Fixed/Learnable classifier. As expected, we found that a learnable clas-
sifier performs better than a fixed one (Tab. 7d).

MLP architecture. Tab. 7c reports the results for various sizes of hid-
den/output layers. Surprisingly, we found that decreasing the number of hidden
layers and their size improves both metrics. As a result, our best model (4096/128
MLP) has 30% less parameters than the model used in SCAN [28] (that used
2048 sized input to its cls. heads). In addition, we verified there is no peak
performance difference between ReLU and leaky-ReLU activation in the MLP.

Softmax Temperature. Table 7b reports the results for a range of Row/-
Column softmax temperatures. We found that the ratio between the two tem-
peratures is important for performance (specifically clustering accuracy). The
model is robust to ratios (row over column) in the range of 2.0 - 3.5.

Batch Size. Table 7f reports the results for a range of batch size values (256
to 4096). Similarly to previous self-supervised work (and specifically clustering-
based), performance improves as we increase batch size.

Multi-crop and nearest neighbor augmentations. Tab. 8 reports the
impact of removing multi-crop [2] and nearest neighbor augmentations [11] on
linear classification accuracy and compares to other state-of-the-art methods.

Nearest neighbor queue length. The model is somewhat robust to a
queue length in the range of 128K - 512K (Tab. 7e), while increasing it further
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Table 7:Ablation study. After 100 epochs, reporting performance for ImageNet
as accuracy of <’k-NN’ | ’unsupervised clustering’> in each experiment.

(a) Classification heads. (2k) (4k) (8k): 2k, 4k and 8k over-clustering accuracy.

1×1k 5×1k 10×1k 15×1k 1×2k 1×4k 1k+2k+4k+8k

Acc. (%) 59.6|34.1 58.7|34.0 58.6|33.5 58.8|33.9 59.3|38.8(2k) 57.0|42.9(4k) 61.7|37.3,40.6(2k),44.2(4k),48.0(8k)

(b) Softmax Temperature

τrow
τcolumn 0.07 0.1

0.03 59.9|36.9 59.2|36.9
0.05 58.9|29.2 61.7|37.3

(c) MLP architecture

MLP output layer
MLP hidden layer(s) 128 256

1x4096 61.7|37.3 61.3|33.5
2x4096 60.9|36.4 60.4|33.6
2x8192 60.0|36.9 59.6|36.7

(d) Fixed / Learnable classifier

Fixed Learnable

Acc. (%) 57.6|32.2 61.7|37.3

(e) Nearest neighbor queue length

Queue len. 128K 256K 512K 1M

Acc. (%) 59.2|36.8 61.7|37.3 60.3|36.9 56.8|35.5

(f) Batch size

Batch Size 256 512 1024 2048 4096

Acc. (%) 49.0|20.9 52.2|23.1 54.5|26.8 57.0|35.1 61.7|37.3

decreases performance. Most likely due to stale embeddings (as noted by [11] as
well).

8 Comparative Analysis

A common and critical element of all self-supervised learning methods is collapse
prevention. In this section, we discuss the various approaches of state-of-the-
art models for preventing collapse. The approaches can be categorized into two
categories: 1) negative samples; and 2) stop-grad operation. Where in practice,
stop-grad operation includes two more sub-categories: 2.a) external clustering;
and 2.b) momentum encoder. In this paper, we propose a third and completely
new approach for collapse prevention - a non-collapsing loss function, i.e., a loss
function without degenerate optimal solutions.

Negative samples. SimCLR [5] and Moco [18] prevent collapse by utilizing
negative pairs to explicitly force dissimilarity.

External clustering. SwAV [2], SeLa [32] and SCAN [28] prevent collapse
by utilizing external clustering algorithm such as K-Means (SCAN) or Sinkhorn-
Knopp (SwAV/SeLa) for generating pseudo-labels.
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Table 8: Performance without multi-crop and without nearest neighbor augmen-
tations. ImageNet Top-1 linear classification accuracy after 100 epochs. [5,15,2,7]
are taken from [8]

SimCLR [5] BYOL [15] SwAV [2] MoCoV2 [7] SimSiam [8] Ours

Acc. (%) 66.5 66.5 66.5 67.4 68.1 68.1

Momentum encoder.MoCo [18], BYOL [15] and DINO [3] prevent collapse
by utilizing the momentum encoder proposed by MoCo. The momentum encoder
generates a different yet fixed pseudo target in every iteration.

Stop-grad operation. SimSiam [8] prevent collapse by applying a stop-grad
operation on one of the views, which acts as a fixed pseudo label. In fact, except
for SimCLR, all of the above methods can be simply differentiated by where
exactly a stop-grad operation is used. SwAV/SeLa/SCAN apply a stop-grad
operation on the clustering phase, while MoCo/BYOL/DINO apply a stop-grad
operation on a second network that is used for generating assignments.

Non-collapsing loss function. In contrast, we show mathematically (Sec. 4)
and empirically (Sec. 6) that Self-Classifier prevents collapse with a novel loss
function (4) and without the use of external clustering, pseudo-labels, momen-
tum encoder, stop-grad nor negative pairs. More specifically, a collapsing solution
is simply not in the set of optimal solutions of our proposed loss, which makes
it possible to train Self-Classifier using just a single network and a simple SGD.

9 Conclusions and Limitations

We introduced Self-Classifier, a new approach for unsupervised end-to-end clas-
sification and self-supervised representation learning. Our approach is mathe-
matically justified and simple to implement. It sets a new state-of-the-art per-
formance for unsupervised classification on ImageNet and achieves comparable
to state of the art results for unsupervised representation learning. We provide a
thorough investigation of our method in a series of ablation studies. Furthermore,
we propose a new hierarchical alignment quantitative metric for self-supervised
classification establishing baseline performance for a wide range of methods and
showing advantages of our proposed approach in this new task. Limitations of
this paper include: (i) our method relies on knowledge of the number of classes,
but in some cases it might not be optimal as the true number of classes should
really be dictated by the data itself. In this paper we relax this potential weak-
ness by introducing the notion of multiple classification heads, but we believe
further investigation would be an interesting future work direction; (ii) one of
the most common sources of error we observed is merging of nearby classes (e.g.
different breeds of cat), introducing additional regularization for reducing this
artifact is also an interesting direction of future work.
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