
Data Invariants to Understand Unsupervised
Out-of-Distribution Detection

Supplementary Material

Lars Doorenbos , Raphael Sznitman , and Pablo Márquez-Neila

University of Bern, Bern, Switzerland
{lars.doorenbos,raphael.sznitman,pablo.marquez}@unibe.ch

1 Supplementary Material

1.1 Dataset Details

We briefly describe all datasets used in our experiments. An overview of our
experimental set-up is given in Table S1.

CIFAR10 [28]. (In) Small, natural images divided into 10 classes. For uni-
class, one class forms the in-distribution, with its test set used in the evalu-
ation. For shift-low-res, all 50000 training images are used for training when
considered in-distribution, and all 10000 test images are used for testing.
(Out) The remaining 9 classes are used as OOD for uni-class, subsampled
to 1000 images.

CIFAR100 [28]. (In) 20 experiments with the training set of one of the seman-
tic superclasses as the in-distribution, with its test set used during evaluation.
(Out) Images from the remaining superclasses, subsampled to 500 images.

MVTec [4]. (In) Between 60 and 391 aligned images of 15 different objects and
textures. 12-60 images are used as the in-distribution at test time. (Out) 30-
141 images of defect objects are used as OOD.

OCT. (In) A collection of 58849 retinal Optical Coherence Tomography images
used for training, and 300 for testing. (Out) Corrupted OCT scans built as
described in [31].

Chest [59]. (In) The NIH Clinical Center ChestX-ray dataset containing 85524
training images. We use 300 images from the test set during evaluation.
(Out) Corrupted X-ray scans as described in [31].

NIH [55]. (In) A collection of 4261 healthy X-ray scans of the NIH Clinical Cen-
ter ChestX-ray dataset. The healthy test scans are used as the in-distribution
during evaluation. (Out) Pathological scans from the same dataset.

DRD [17]. (In) 25809 healthy high-resolution retinal fundus photographs. Healthy
test scans are again used during evaluation.
(Out) Retinal fundus photographs depicting 4 different levels of diabetic
retinopathy (DR). The level of DR is indicated by a digit next to the
method’s name (DRD1–DRD4).

SVHN [35]. A dataset consisting of images of house numbers. We only use it
as an OOD dataset, where the test set is reduced to 10000 samples.
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DomainNet [37]. (In) The train and test images from the first 173 classes are
used for training and evaluation respectively (as in [23]). We perform 10
experiments with the real images, and 10 with infographs. (Out) 10 domain-
class combinations are used as OOD datasets. We avoid using Real-B and
Infograph-B as OOD in the first and the second group of experiments re-
spectively. All test sets are downsampled to 5000 images.

Table S1: Experimental set-up.

Category # Tasks Tasks # train # in # out

uni-class

10
{airplane,automobile,bird,cat,deer,

5000 1000 1000
dog,frog,horse,ship,truck}:rest

20

{aquatic mammals,fish,flowers,food containers,fruit and vegetables,

2500 500 500

household electrical devices,household furniture,insects,
large carnivores,large man-made outdoor things,

large natural outdoor scenes,large omnivores and herbivores,
medium-sized mammals,non-insect invertebrates,

people,reptiles,small mammals,trees,vehicles 1,vehicles 2}:rest

uni-ano 15
{bottle,cable,capsule,carpet,grid,hazelnut,

60-391 12-60 30-141leather,metal nut,pill,screw,tile,
toothbrush,transistor,wood,zipper}:defect

uni-med

1 OCT:corruptions 58849 300 300
1 Chest:corruptions 85524 300 300
1 NIH:pathology 4261 677 667
4 DRD:DRD1-4 25809 500 500

shift-low-res 1 CIFAR10:SVHN 50000 10000 10000

shift-high-res

10
Real A:{Quickdraw A,Quickdraw B,Infograph A,

61817 5000 5000Infograph B,Sketch A,Sketch B,
Clipart A,Clipart B,Painting A,Painting B}

10
Infograph A:{Quickdraw A,Quickdraw B,

14069 5000 5000Sketch A,Sketch B,Real A,Real B,
Clipart A,Clipart B,Painting A,Painting B}

1.2 Implementation Details

We provide a short description of all models compared and their implementa-
tions. All modes make use of a ResNet-101 and rescale input images to 224×224
unless stated otherwise.

Glow [26] is a generative flow-based model, that allows for the exact computa-
tion of the likelihood, which we use as the anomaly score at test time. We use
the implementation of 1, and an architecture with three blocks of 32 layers
each. Images are resized to 32× 32.

IC [51] aims to correct the high likelihood that generative models tend to assign
to simple inputs, such as constant color images. To this end, IC computes
the ratio between the likelihood of the generative model and a complexity

1 https://github.com/y0ast/Glow-PyTorch
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score of the input image. We used the Glow described above as our generative
model and the length of the PNG image encoding as the complexity estimate.

HierAD [47] computes the ratio between the Glow generative model likelihood
and a general background likelihood consisting of a Glow model trained on
the 80 Million Tiny Images dataset [56], provided at 2. To make the method
fully unsupervised, we do not use their proposed outlier loss during training.

MHRot [20] trains a multi-headed classifier to predict the correct transfor-
mation applied to an image. At test time, the classifier’s softmax scores are
combined for a final OOD score. Models are trained with the default settings
until convergence of the validation loss.

DDV [31] aims to build an efficient latent representation by iteratively maxi-
mizing the log-likelihood of the low-dimensional latent vectors of the training
images. Anomaly scores are given by the negative log-likelihood. We use our
own implementation of DDV, following the settings described in its paper,
i.e., a latent space of dimensionality 16 and a bandwidth of 10−2 [31].

MSCL [40] uses a novel contrastive loss function to fine-tune the final two
blocks of a pretrained network, and combines this with an angular center
loss for a final score. We used the official implementation with the learning
rate set to 5 ·10−5, as described in the paper, and trained until convergence.

CFlow [18] fits a normalizing flow network to features extracted from a pre-
trained network at multiple scales, conditioned on spatial information from a
positional encoder. Anomaly scores are computed by aggregating the multi-
scale likelihoods, upsampled to the original resolution. We again use the
default hyperparameters.

DN2 [2] scores outliers by computing the mean distance to its 2 nearest neigh-
bour on features extracted from the penultimate layer of a network pre-
trained on ImageNet.

SSD [50] uses contrastive learning for self-supervised representation learning.
Then, it scores samples by the Mahalanobis distance computed at the last
layer. All images were resized to 32×32. We use the default settings described
in the official implementation.

MahaAD [41] is the Mahalanobis anomaly detector. Besides the ResNet-101,
we also show results with an EfficientNet-b4 as described in [41]. With the
ResNets, we resize images to 224× 224, while for the EfficientNet-b4 this is
380× 380.

1.3 Extended results

In Table S2 to Table S8 we dissect the per-task results from Table 1, reporting
the AUC scores for each individual experiment and including some additional
methods that were omitted from the main text for clarity.

2 https://github.com/boschresearch/hierarchical_anomaly_detection
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Table S2: AUC scores for CIFAR10 experiments of uni-class. First pub-
lished (FP) column contains the dates of first online appearance.
* Our results

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Average FP

OCSVM [49] 63.0 44.0 64.9 48.7 73.5 50.0 72.5 53.3 64.9 50.8 58.5 Dec 1999
AnoGAN [48] 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.8 Mar 2017
RCAE [8] 72.0 63.1 71.7 60.6 72.8 64.0 64.9 63.6 74.7 74.5 68.2 Feb 2018
GT [15] 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0 May 2018
Glow* [26] 76.1 44.5 60.3 57.3 43.9 55.1 36.2 46.4 71.0 46.4 53.7 Jul 2018
LSA [1] 73.5 58.0 69.0 54.2 76.1 54.6 75.1 53.5 71.7 54.8 64.1 Jul 2018
DSVDD [42] 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.8 Jul 2018
IIC [25] 68.4 89.4 49.8 65.3 60.5 59.1 49.3 74.8 81.8 75.7 67.4 Jul 2018
DIM [21] 72.6 52.3 60.5 53.9 66.7 51.0 62.7 59.2 52.8 47.6 57.9 Aug 2018
OCGAN [38] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.6 Mar 2019
MHRot [20] 77.5 96.9 87.3 80.9 92.7 90.2 90.9 96.5 95.2 93.3 90.1 Jun 2019
CapsNet [29] 62.2 45.5 67.1 67.5 68.3 63.5 72.7 67.3 71.0 46.6 61.2 Jul 2019
IC* [51] 38.3 62.0 45.5 61.5 48.7 63.9 62.6 63.7 48.4 58.8 55.3 Jul 2019
E3Outlier [58] 79.4 95.3 75.4 73.9 84.1 87.9 85.0 93.4 92.3 89.7 85.6 Sep 2019
DDV* [31] 83.2 58.5 55.4 56.9 61.2 57.9 63.3 57.5 88 71.2 65.3 Oct 2019
DeepIF [36] - - - - - - - - - - 88.2 Oct 2019
CAVGA-DU [57] 65.3 78.4 76.1 74.7 77.5 55.2 81.3 74.5 80.1 74.1 73.7 Nov 2019
U-Std [5] 78.9 84.9 73.4 74.8 85.1 79.3 89.2 83.0 86.2 84.8 82.0 Nov 2019
InvAE [24] 78.5 89.8 86.1 77.4 90.5 84.5 89.2 92.9 92.0 85.5 86.6 Nov 2019
DROCC [16] 81.7 76.7 66.7 67.1 73.6 74.4 74.4 71.4 80.0 76.2 74.2 Feb 2020
DN2 [2] 92.8 97.8 85.3 85 94.4 92.7 93.1 94.4 95.9 97.3 92.9 Feb 2020
ARAE [44] 72.2 43.1 69.0 55.0 75.2 54.7 70.1 51.0 72.2 40.0 60.2 Mar 2020
GOAD [3] 77.2 96.7 83.3 77.7 87.8 87.8 90.0 96.1 93.8 92.0 88.2 May 2020
MahaAD*RN101 [41] 92.9 96.4 85.8 85 93.8 91.1 94.1 94.8 95.4 96.8 92.6 May 2020
MahaAD*ENB4 [41] 95.1 97.8 92.3 91.6 96.5 96.8 97.6 96.9 97.4 98.3 96.0 May 2020

HierAD* [47] 47.6 63.4 63.2 59.0 79.2 64.3 77.5 66.4 61.6 59.8 64.2 Jun 2020
CSI [53] 89.9 99.9 93.1 86.4 93.9 93.2 95.1 98.7 97.9 95.5 94.3 Jul 2020
Puzzle-AE [45] 78.9 78.1 70.0 54.9 75.5 66.0 74.8 73.3 83.3 70.0 72.5 Aug 2020
PANDA [39] 97.4 98.4 93.9 90.6 97.5 94.4 97.5 97.5 97.6 97.4 96.2 Oct 2020
ConDA [52] 90.9 98.9 88.1 83.1 89.9 90.3 93.5 98.2 96.5 95.2 92.5 Nov 2020
MKD [46] 90.5 90.4 79.7 77.0 86.7 91.4 89.0 86.8 91.5 88.9 87.2 Nov 2020
SSD [50] 82.7 98.5 84.2 84.5 84.8 90.9 91.7 95.2 92.9 94.4 90.0 Mar 2021
SSL [62] 94.8 96.4 88.3 87.6 92.7 94.2 96.4 94.3 96.1 97.0 93.8 May 2021
MTL [32] 84.3 96.0 87.7 82.3 91.0 91.5 91.1 96.3 96.3 92.3 90.9 Jun 2021
MSCL* [40] 97 98.6 94.6 92.2 97.1 96.4 96.5 97.9 98.4 98.6 96.7 Jun 2021
OODformer [27] 92.3 99.4 95.6 93.1 94.1 92.9 96.2 99.1 98.6 95.8 95.7 Jul 2021
DaA [22] - - - - - - - - - - 75.3 Jul 2021
CFlow* [18] 69.4 83.5 68 73.9 84.7 77.9 84.4 78.6 80.3 84.2 78.5 Jul 2021
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Table S3: AUC scores for CIFAR100 experiments ofuni-class.
* Our results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Mean

Glow* [26] 60.7 59.4 25.4 65.7 45.5 66.9 66.1 46.0 46.0 64.8 75.5 51.1 54.0 48.8 50.6 50.2 52.8 50.1 44.1 53.3 53.8
IC* [51] 61.2 53.9 44.4 44.4 48.3 46.4 41.9 51.2 72.0 58.0 48.7 68.3 69.8 51.6 56.1 62.0 62.4 68.8 59.5 48.8 55.9
OC-SVM [49] 68.4 63.6 52 64.7 58.2 54.9 57.2 62.9 65.6 74.1 84.1 58 68.5 64.6 51.2 62.8 66.6 73.7 52.8 58.4 63.1
DAGMM [65] 43.4 49.5 66.1 52.6 56.9 52.4 55 52.8 53.2 42.5 52.7 46.4 42.7 45.4 57.2 48.8 54.4 36.4 52.4 50.3 50.6
DSEBM [64] 64 47.9 53.7 48.4 59.7 46.6 51.7 54.8 66.7 71.2 78.3 62.7 66.8 52.6 44 56.8 63.1 73 57.7 55.5 58.8
DDV* [31] 58.3 58 70.6 75.3 72.2 60.3 65.4 61.4 63.8 72 77 55.5 82.8 53.4 61.4 58.6 51.9 87.5 64.5 72.3 66.1
HierAD* [47] 68.7 59.5 76.5 35.9 59.7 31.6 48.5 59.6 78.4 65.1 76.9 67.6 77.1 55.1 59.1 63.2 69.6 80.1 58.4 57.7 62.4
DVSDD [42] 66 60.1 59.2 58.7 60.9 54.2 63.7 66.1 74.8 78.3 80.4 68.3 75.6 61 64.3 66.3 72 75.9 67.4 65.8 67.0
GOAD [3] 73.9 69.2 67.6 71.8 72.7 67 80 59.1 79.5 83.7 84 68.7 75.1 56.6 83.8 66.9 67.5 91.6 88 82.6 74.5
MHRot [20] 77.6 72.8 71.9 81 81.1 66.7 87.9 69.4 86.8 91.7 87.3 85.4 85.1 60.3 92.7 70.4 78.3 93.5 89.6 88.1 80.1
SSD* [50] 76.5 79.6 88.7 73.4 91.1 72.4 73.9 79.8 80.7 86.0 72.3 79.4 83.1 74.5 87.3 74.4 79.9 90.9 83.3 80.7 80.4
ConDA [52] 82.9 84.3 88.6 86.4 92.6 84.5 73.4 84.2 87.7 94.1 85.2 87.8 82 82.7 93.4 75.8 80.3 97.5 94.4 92.4 86.5
CSI [53] 86.3 84.8 88.9 85.7 93.7 81.9 91.8 83.9 91.6 95 94 90.1 90.3 81.5 94.4 85.6 83 97.5 95.9 95.2 89.6
MKD* [46] 90.3 89.7 90.1 89.9 89.8 90.2 89.7 90.3 90.0 89.5 88.5 90.2 91.0 89.6 89.0 89.8 90.4 88.9 90.1 90.7 89.9
DN2* [2] 88.3 85.6 95.1 95.1 94.4 93.8 94.4 87.3 92.7 91.4 95.8 87.4 88.1 79.3 95.8 78.6 84.1 96.6 91.1 90.4 90.3
PANDA [39] 91.5 92.6 98.3 96.6 96.3 94.1 96.4 91.2 94.7 94 96.4 92.6 93.1 89.4 98 89.7 92.1 97.7 94.7 92.7 94.1
MSCL* [40] 95.8 95.2 97.6 98.3 97.1 96.9 98.3 94.7 97.6 97.9 97.4 96.3 94.9 91.7 98.3 92.7 93.1 98.3 97.9 97.4 96.4
CFlow* [18] 75.3 67.2 76 76 76.6 71.7 76.5 57.9 79.8 83.7 91.5 70.4 74.3 63.1 71.5 64.8 70.3 90.6 64.9 62 73.2

MahaAD*RN101 [41] 91.9 89.5 96 95.3 94.7 91.1 95.2 89.5 93.6 93.7 95.4 90.6 91.4 84.3 96.7 84.5 87.7 97.1 94.4 92.8 92.3
MahaAD*ENB4 [41] 93.2 92.8 96.7 97.8 97.2 95.4 98.0 92.6 95.9 94.9 95.8 93.0 93.0 89.2 97.8 89.1 91.7 97.5 96.2 94.8 94.6
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Table S4: AUC scores for shift-low-res.
* Our results

CIFAR10:SVHN

CFlow* [18] 6.6
Glow [47] 8.8
DSVDD [42] 14.5
MKD* [46] 26.8
DDV* [31] 47.9
EBM [14] 63.0
DN2* [2] 57.4
VAEBM [60] 83.0
MSCL* [40] 88.3
TT [34] 87.0
LLRe [61] 87.5
BIVA [19] 89.1
NAE [63] 92.0
HierAD [47] 93.9
IC [51] 95.0
GOAD [3] 96.3
SVD-RND [10] 96.4
MHRot [20] 97.8
DoSE [33] 97.3
CSI [53] 99.8
SSD [50] 99.6
MTL [32] 99.9
WAIC [33] 14.3
WAIC [9] 100

MahaAD*RN101 [41] 94.3
MahaAD*ENB4 [41] 96.2
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Table S5: AUC scores for shift-high-res using Real-A as the in-distribution.
QD: quickdraw, IG: infograph, SK: sketch, CA: Clipart, PN: Painting. A is the
set without semantic shift, and B with semantic shift.
* Our results

QDa QDb IGa IGb SKa SKb CAa CAb PNa PNb Mean

MSCL* [40] 33.8 32.9 68.6 67.1 54.7 58.9 58.3 61.3 72.4 75.5 58.3
SSD* [50] 40.3 40.4 69.0 69.6 68.9 73.9 53.1 58.8 77.6 83.3 64.0
MKD* [46] 24.2 23.1 56.6 52.7 47.2 47.3 49.4 47.3 68.6 70.4 48.9
DDV* [31] 87.9 90.9 56 54.6 62.6 64.6 62.1 64.8 52 59.4 64.0
DN2* [2] 50.4 50.8 76.2 74 69.1 73.7 70.7 74.7 79.7 85.0 70.4
MHRot* [20] 71.6 71.6 48.7 50.1 63.8 64.4 60.2 61.5 55.4 57.0 59.7
Glow* [26] 3.2 3.0 54.8 51.0 19.5 20.9 37.1 33.4 66.6 67.0 36.9
IC* [51] 89.9 90.4 66.4 68.8 69.5 68.8 64.4 66.3 55.9 55.7 68.0
HierAD* [47] 95.5 95.7 36.6 40.6 84.9 82.7 51.5 58.3 41.6 41.6 61.8
CFlow* [18] 46.6 47 52.2 49.6 48.9 51.1 62.3 62.9 58 57.6 53.6

MahaAD*RN101 [41] 72.9 71.3 81.6 80.8 64.2 65.5 70.3 70 66 69.2 71.2
MahaAD*ENB4 [41] 79.7 80.4 76.3 76.9 73.8 76.3 71.0 73.5 70.5 77.5 75.6

Table S6: AUC scores for shift-high-res using Infograph-A as the in-distribution.
* Our results

QDa QDb SKa SKb REa REb CAa CAb PNa PNb Mean

MSCL* [40] 91.9 91.9 83.9 84.3 92.7 92.8 87.3 86.5 96.3 96.2 90.4
SSD* [50] 35.1 33.5 67.9 69.1 56.7 57.7 69.4 69.3 57.3 58.5 57.3
MKD* [46] 83.0 82.4 81.7 80.4 88.9 91.0 84.5 82.5 95.6 95.2 83.0
DDV* [31] 59.5 72.3 56.3 63.4 69.7 75.4 46.6 54.3 70.3 69.9 63.8
DN2* [2] 75.1 75.7 75.1 76.8 82.7 88.1 80.1 79.5 91.2 92.1 81.6
MHRot* [20] 94.9 95.2 88.5 88.7 87.6 87.9 89.3 89.7 88.6 89.4 86.7
Glow* [26] 0.7 0.6 12.3 14.0 50.7 49.9 35.3 30.6 69.2 69.5 34.4
IC* [51] 94.1 94.4 64.8 63.5 42.9 44.8 60.3 62.4 46.7 46.8 61.3
HierAD* [47] 99.8 99.8 93.8 92.7 83.1 83.3 80.8 83.1 77.6 77.6 84.1
CFlow* [18] 68.8 69 64.9 65.2 74.7 74.9 75.7 75.9 74.5 73.6 71.7

MahaAD*RN101 [41] 92.3 92.1 78.1 77.6 88.1 88.4 81.5 80.3 90.9 91.2 86.1
MahaAD*ENB4 [41] 94.5 94.8 89.5 89.0 93.6 94.7 87.4 87.1 94.9 95.4 92.1
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Table S7: AUC scores for uni-ano. HN is hazelnut, MN is metal nut, TB is
toothbrush and TS is transistor.
* Our results

Carpet Grid Leather Tile Wood Bottle Cable Capsule HN MN Pill Screw TB TS Zipper Mean

AVID [43] 70 59 58 66 83 88 64 85 86 63 86 66 73 58 84 73
AESSIM [6] 67 69 46 52 83 88 61 61 54 54 60 51 74 52 80 63
AEL2 [6] 50 78 44 77 74 80 56 62 88 73 62 69 98 71 80 71
AnoGAN [48] 49 51 52 51 68 69 53 58 50 50 62 35 57 67 59 55
LSA [1] 74 54 70 70 75 86 61 71 80 67 85 75 89 50 88 73
CAVGA-DU [57] 73 75 71 70 85 89 63 83 84 67 88 77 91 73 87 78
DSVDD [42] 54 59 73 81 87 86 71 69 71 75 77 64 70 65 74 72
VAE-grad [13] 67 83 71 81 89 86 56 86 74 78 80 71 89 70 67 77
GT [15] 46 61.9 82.5 53.9 48.2 74.3 84.8 67.8 33.3 82.4 65.2 44.6 94 79.8 87.4 67.1
Puzzle-AE [45] 65.7 75.4 72.9 65.5 89.5 94.2 87.9 66.9 91.2 66.3 71.6 57.8 97.8 86 75.7 77.6
MKD [46] 79.3 78 95.1 91.6 94.3 99.4 89.2 80.5 98.4 73.6 82.7 83.3 92.2 85.6 93.2 87.7
MSCL* [40] 92.6 53.8 98 97.2 91.2 98.7 88.8 87.4 94.1 85 68.8 63.7 87.5 93.2 96.4 86.4
SSD* [50] 53.4 33.5 61.4 61.9 44.9 78.3 62.7 60.2 62.2 69.4 76.6 59.5 99.8 88.5 74.8 65.8
DDV* [31] 80.3 42 55.1 47.4 46.4 99.7 66.1 77.2 64.2 81 71.9 53.6 64.1 77.8 56 65.5
DN2* [2] 90.3 56.4 98.9 99.2 96.8 99.2 82 84.4 92.9 83.6 69.5 66.4 88.1 91.3 93.8 86.2
MHRot* [20] 47.8 58.9 75 51.2 90.2 82 79.9 59 73.6 75.7 64.9 36.6 86.9 86.5 93.4 70.8
Glow* [26] 72.9 98.3 94.1 83.7 96.9 96.6 83.3 67.1 90.5 62.4 84.8 31.8 87.6 88.4 91.3 82.0
IC* [51] 69.7 75.6 94.3 71.2 78.1 96.0 85.8 63.3 64.9 77.0 67.9 29.7 85.8 89.5 54.9 73.6
HierAD* [47] 73.4 95.3 95.5 84.5 97.5 97.3 86.5 70.0 75.0 73.6 74.2 26.2 98.6 92.5 84.1 81.6
SPADE [11] - - - - - - - - - - - - - - - 85.5
FAVAE [13] 67.1 97 67.5 80.5 94.8 99.9 95 80.4 99.3 85.2 82.1 83.7 95.8 93.2 97.2 87.9
AEsc [12] 89 97 89 99 95 98 89 74 94 73 84 74 100 91 94 89
DaA [22] 86.6 95.7 86.2 88.2 98.2 97.6 84.4 76.7 92.1 75.8 90 98.7 99.2 87.6 85.9 89.5
CFlow* [18] 99.3 93.3 100 99.2 98.4 99.9 95.5 90.9 99.7 99.5 92.3 83 92.2 93.9 98.7 95.7

MahaAD*RN101 [41] 79.5 59.6 99.3 100 98.2 99.3 91.6 93.8 99.4 93.4 90.6 72.1 98.6 96.1 97.9 91.3
MahaAD*ENB4 [41] 98.6 78.8 99.7 100 96.1 99.8 93.5 97.0 99.0 93.9 90.3 78.6 96.7 96.5 97.7 94.4
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Table S8: AUC scores for uni-med.
* Our results

OCT Chest NIH DRD1 DRD2 DRD3 DRD4

IF [30] 44.0
AnoGAN [48] 44.2
DSEBM [64] 43.1
DAGMM [65] 52.0
Glow [26] 44.8 54.6
GT [3] 79.2
DSVDD [42] 77.4 66.6 81.8 46.4
DeepIF [36] 74.5
DDV [31] 86.7 79.9 57.7 45.3 48.9 50.2 53.4
GAOCC [54] 83.4
MemDAE [7] 87.8
MSCL* [40] 94.1 93.3 81.9 52 55.8 68.2 81.1
SSD* [50] 59.4 94.5 74.2 47.5 50.6 54.8 71.4
MKD* [46] 94.9 95.8 88.0 53.7 54.6 60.7 75.5
DN2* [2] 94.1 96.9 81.2 54.4 55.6 69.4 85.4
MHRot* [20] 87.7 96.2 81.8 49.0 50.2 52.7 65.3
Glow* [26] 62.3 49.8 65.0 52.2 47.5 54.7 59.5
IC* [51] 83.4 91.6 56.7 47.5 52.1 58.2 66.2
HierAD* [47] 94.3 99.0 79.8 52.1 51.7 57.5 73.5
CFlow* [18] 76.4 81.7 78.7 53.2 55.1 61.3 75.1

MahaAD*RN101 [41] 98 99.8 84.6 52.1 52 63.6 79.9
MahaAD*ENB4 [41] 98.7 99.8 84.2 49.9 55.0 66.3 81.3
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6. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsuper-
vised defect segmentation by applying structural similarity to autoencoders. arXiv
preprint arXiv:1807.02011 (2018)

7. Bozorgtabar, B., Mahapatra, D., Vray, G., Thiran, J.P.: Salad: Self-supervised
aggregation learning for anomaly detection on x-rays. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 468–478.
Springer (2020)

8. Chalapathy, R., Menon, A.K., Chawla, S.: Anomaly detection using one-class neu-
ral networks. arXiv preprint arXiv:1802.06360 (2018)

9. Choi, H., Jang, E., Alemi, A.A.: Waic, but why? generative ensembles for robust
anomaly detection. arXiv preprint arXiv:1810.01392 (2018)

10. Choi, S., Chung, S.Y.: Novelty detection via blurring. International Conference on
Learning Representations (2020)

11. Cohen, N., Hoshen, Y.: Sub-image anomaly detection with deep pyramid corre-
spondences. arXiv preprint arXiv:2005.02357 (2020)

12. Collin, A.S., De Vleeschouwer, C.: Improved anomaly detection by training an
autoencoder with skip connections on images corrupted with stain-shaped noise.
In: 2020 25th International Conference on Pattern Recognition (ICPR). pp. 7915–
7922. IEEE (2021)

13. Dehaene, D., Frigo, O., Combrexelle, S., Eline, P.: Iterative energy-based pro-
jection on a normal data manifold for anomaly localization. arXiv preprint
arXiv:2002.03734 (2020)

14. Du, Y., Mordatch, I.: Implicit generation and generalization in energy-based mod-
els. arXiv preprint arXiv:1903.08689 (2019)

15. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations.
In: Advances in Neural Information Processing Systems. pp. 9758–9769 (2018)

16. Goyal, S., Raghunathan, A., Jain, M., Simhadri, H.V., Jain, P.: Drocc: Deep ro-
bust one-class classification. In: International Conference on Machine Learning. pp.
3711–3721. PMLR (2020)

17. Graham, B.: Kaggle diabetic retinopathy detection competition report. University
of Warwick (2015)

18. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly
detection with localization via conditional normalizing flows. In: Proceedings of the



Data Invariants to Understand Unsupervised Out-of-Distribution Detection 11

IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 98–107
(2022)

19. Havtorn, J.D.D., Frellsen, J., Hauberg, S., Maaløe, L.: Hierarchical vaes know what
they don’t know. In: International Conference on Machine Learning. pp. 4117–4128.
PMLR (2021)

20. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning
can improve model robustness and uncertainty. Advances in Neural Information
Processing Systems 32 (2019)

21. Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P.,
Trischler, A., Bengio, Y.: Learning deep representations by mutual information
estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

22. Hou, J., Zhang, Y., Zhong, Q., Xie, D., Pu, S., Zhou, H.: Divide-and-assemble:
Learning block-wise memory for unsupervised anomaly detection. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 8791–8800
(2021)

23. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
10951–10960 (2020)

24. Huang, C., Ye, F., Cao, J., Li, M., Zhang, Y., Lu, C.: Attribute restoration frame-
work for anomaly detection. arXiv preprint arXiv:1911.10676 (2019)

25. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information distillation for unsuper-
vised image segmentation and clustering. arXiv preprint arXiv:1807.06653 2(3), 8
(2018)

26. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolu-
tions. Advances in neural information processing systems 31 (2018)

27. Koner, R., Sinhamahapatra, P., Roscher, K., Günnemann, S., Tresp, V.: Ood-
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