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Abstract. Generalizing learned representations across significantly dif-
ferent visual domains is a fundamental yet crucial ability of the hu-
man visual system. While recent self-supervised learning methods have
achieved good performances with evaluation set on the same domain
as the training set, they will have an undesirable performance decrease
when tested on a different domain. Therefore, the self-supervised learn-
ing from multiple domains task is proposed to learn domain-invariant
features that are not only suitable for evaluation on the same domain
as the training set, but also can be generalized to unseen domains. In
this paper, we propose a Domain-invariant Masked AutoEncoder (Di-
MAE) for self-supervised learning from multi-domains, which designs a
new pretext task, i.e., the cross-domain reconstruction task, to learn
domain-invariant features. The core idea is to augment the input image
with style noise from different domains and then reconstruct the image
from the embedding of the augmented image, regularizing the encoder
to learn domain-invariant features. To accomplish the idea, DiMAE con-
tains two critical designs, 1) content-preserved style mix, which adds style
information from other domains to input while persevering the content
in a parameter-free manner, and 2) multiple domain-specific decoders,
which recovers the corresponding domain style of input to the encoded
domain-invariant features for reconstruction. Experiments on PACS and
DomainNet illustrate that DiMAE achieves considerable gains compared
with recent state-of-the-art methods.

1 Introduction

Recent advances on self-supervised learning (SSL) with the contrastive loss [19,
7, 9, 36] have shown to be effective in easing the burden of manual annotation,
and achieved comparable performance with supervised learning methods. When
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trained on large-scale datasets, e.g. ImageNet [12], self-supervised learning meth-
ods are capable of learning high-level semantic image representations [43, 14, 46]
that are transferable to various downstream tasks without using expensive an-
notated labels. However, the great success of existing self-supervised learning
methods implicitly relies on the assumption that training and testing sets are
identically distributed, and thus these methods will suffer an undesirable perfor-
mance drop when the trained model is tested on other domains [50, 35, 38] that
do not exist in the training set.

Self-supervised learning from multi-domain data aims at learning domain in-
variant representations that are not only suitable for domains in the training set,
but also can generalize well to other domains missing in the training set. Existing
methods can be generally divided into two categories, i.e, self-prediction meth-
ods and contrastive-based methods. Early methods for self-supervised learning
from multi-domain data append self-prediction tasks to learn domain-invariant
features. For example, [15] randomly rotates the input image and regularizes the
model to predict the rotation angle [16] to increase the model generalization abil-
ity. These self-prediction tasks are sub-optimal solutions, because they are not
specifically designed to eliminate the domain bias in the dataset. Contrastive-
based methods [23, 45] explicitly eliminate the domain bias by pulling the sample
and its nearest neighbor from a different domain close. However, the positive pair
retrieved by the nearest neighbor across the domains is much more noisy than
that in a single domain, because semantically similar images from different do-
mains may have a large visual difference.

In this paper, we tackle the self-supervised learning from multi-domain data
from a different perspective, i.e., generative self-supervised learning, and pro-
pose a new Domain invariant Masked AutoEncoders (DiMAE) for learning
domain-invariant features from multi-domain data, which is motivated by the
recent generative-based self-supervised learning method Masked Auto-Encoders
(MAE) [18]. Specifically, MAE eliminates the low-level information by masking
large portion of image patches and drives the encoder to extract semantic in-
formation by reconstructing pixels from very few neighboring patches [3] with a
light-weighted decoder. However, this design does not take the domain gaps into
consideration and thus can not generalize well for the self-supervised learning
from multi-domain tasks. To close the gap, our proposed DiMAE constructs a
cross-domain reconstruction task, which uses the image with the mixed style from
different domains as input for one content encoder to extract domain invariant
features and multiple domain-specific decoders to recover the specific domain style
for regressing the raw pixel values of masked patches before style mix under an
MSE loss, as shown in Fig. 1. The critical designs and insights behind DiMAE
for self-supervised learning from multi-domain data involve:

(1) The cross-domain reconstruction task aims at reconstructing the
image from the image with other domain styles. DiMAE disentangles the recon-
struction into two processes: a content1 encoder to remove the domain style by

1 “content” and “style” are terms widely used in style mix. “content” means domain-
invariant information, while “style” means domain-specific information.
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extracting domain-invariant features, and a domain-specific decoder to recover
the style of the reconstruction target domain. By forcing the decoder to learn
specific style information, we regularize the encoder to learn domain-invariant
features.

(2) The content preserved style mixing aims to add style noise of the
other domains to one image while preserving the content information. While
there exist some popular mixing methods (e.g, mixup [44] and cutmix [42]) able
to mix domain styles, they also add content noise to the image. Our experiments
find that the content noise will lead to a significant performance decrease in our
cross-domain reconstruction task. Therefore, we propose a new non-parametric
content preserved style mixing method to take advantage of the cross-domain
reconstruction and avoid the undesirable performance decrease by content noise.

(3) The multiple domain-specific decoders aim to recover the corre-
sponding domain style of the target image for reconstruction from the encoded
domain-irrelevant features. Although the decoder network design, e.g., such as
the number of layers, can determine the semantic level of the learned latent rep-
resentations as pointed out in MAE [18], we find that a single decoder as used
in MAE can not help to regularize the encoder to learn domain-invariant fea-
tures. To reconstruct the image from a specific domain, the encoder will leak the
domain information to guide the decoder to reconstruct the image with the in-
put image’s style. This prevents the encoder from learning the domain-invariant
features. Therefore, multiple domain-specific decoders are proposed to recover
different domain styles by domain-corresponding decoders, which regularizes the
encoder to only learn domain-invariant features.

To demonstrate the effectiveness of DiMAE, we conduct experiments on the
multi-domain dataset PACS [26] and DomainNet [33], observing consistent per-
formance improvements on both in-domain and cross-domain settings. For the
in-domain evaluation, DiMAE outperforms state-of-the-art methods by +0.8%
on the PACS. On cross-domain testing, we achieve considerable gains over the
recent state-of-the-art methods in both linear evaluation and full network fine-
tuning. Specifically, in linear evaluation, our method improves the recent state-
of-the-art by +8.07% on PACS with 1% data fine-tuning fraction. In full net-
work fine-tuning with 100% data, we get an averaged +13.24% and +9.87%
performance gains on PACS and DomainNet, respectively.

The contributions of our work are summarized as three-folds: (1) We propose
a new generative framework which leverages the cross-domain reconstruction as
the pretext to learn domain-invariant features from multi-domain data. (2) We
propose a new non-parametric style-mix method that can preserve the content in-
formation to exploit the cross-domain reconstruction task and avoid performance
drop by content noise. (3) We modify the single decoder in MAE to multiple
domain-specific decoders to regularize the encoder to learn domain-invariant
features. We show that our DiMAE outperforms state-of-the-art self-supervised
learning baselines on learning representation from multi-domain data.
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2 Related Work

2.1 Self-supervised Learning

Self-supervised Learning (SSL) introduces various pretext tasks to learn seman-
tic representations from unlabeled data for a better generalization in downstream
tasks. Generally, SSL can be categorized into discriminative [31, 16, 7, 17, 19, 9,
10, 43, 5, 48] and generative methods [32, 24, 25, 18]. Among the former, some
early works try to design auxiliary handcrafted prediction tasks to learn se-
mantic representation, such as jigsaw puzzle [31] and rotation prediction [16].
Recently, contrastive approaches [7, 17, 19, 9, 10, 43, 5] emerge as a promising di-
rection for SSL. They consider each instance a different class and promote the
instance discrimination by forcing representation of different views of the same
image closer and spreading representation of views from different images apart.
Although remarkable progress has been achieved, contrastive methods heavily
rely on data augmentation [7, 36] and negative sampling [40, 19].

Another recent resurgent line of SSL is generative approaches, many of which
train an encoder and decoder for pixel reconstruction. Various pretext tasks
have been proposed, such as image inpainting [32] and colorization [24, 25]. Very
recently, since the introduction of ViT [13], masked image modeling (MIM) has
re-attracted the attention of the community. iGPT [6] proposes to predict the
next pixels of a sequence, and BEiT [2] leverages a variational autoencoder
(VAE) to encode masked patches. A very relevant work, MAE [18] proposes
to train the autoencoder to capture the semantic representation by recovering
the input image from very few neighboring patches. Our proposed method, a
novel generative approach for SSL, is devoted into a more common scenario,
pretraining from multiple domains. As far as we know, we are the first to propose
the generative pretraining method for training from multi domain data.

2.2 Domain Generalization

Domain Generalization (DG) considers the transferability to unseen target do-
mains using labeled data from a single or multiple source domains. A common ap-
proach is to minimize the distance between source domains for learning domain-
invariant representations, among which are minimizing the KL Divergence [39],
minimizing maximum mean discrepancy [28] and adversarial learning [30, 34, 1].
Several approaches propose to exploit meta-learning [27] or augmentation [4, 47,
11, 29] to promote the transferability for DG.

Despite the promising advances in recent DG methods, they assume that
source domains are annotated. To address this issue, Unsupervised DG (UDG)
is proposed as a more general task of training with unlabeled source domains. [15]
introduces rotation prediction and mutual information maximization for multi-
domain generalization. Derived from contrastive learning, DIUL [45] incorporates
domain information into the contrastive loss by a reweighting mechanism con-
sidering domain labels. Despite the promising results, these two works carefully
design domain-related discriminative pretext tasks and try to strike a compro-
mise between instance and domain discrimination. Our proposed method, in
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Fig. 1: The pipeline of DiMAE. First, CP-StyleMix transforms the original image
x to its style-mixed view v by adding style information from other domains
without introducing content noise. Second, the style-mixed view v is divided into
visible patches vv and masked patches vm, and the content encoder learns the
content representation z from visible patches. Third, domain-specific decoders
learn to reconstruct x̂ by the corresponding decoder.

contrast, is a brand new generative approach for self-supervised learning from
multi-domain data, showing strong advantages for UDG setting.

3 Domain-Invariant Masked AutoEncoder

3.1 Cross-domain Reconstruction Framework

Different from MAE which learns high-level semantic representations by recon-
struction from a highly masked image, our DiMAE learns domain invariant
representation by a cross-domain reconstruction task, which aims at recover-
ing images from an image mixed with other domain styles. Specifically, DiMAE
consists three modules, including a Content Preserved Style-Mix (CP-StyleMix),
a content encoder, and multiple domain-specific decoders. The CP-StyleMix is
used to mix the style information from different domains while preserving the
domain-irrelevant object content, which generates the input of the cross-domain
reconstruction task. The content encoder F(∗, θF ) are shared by images from
all domains, where θF is the parameter of F , and is expected to encode the
content and domain-invariant information by denoising the style information.
The domain-specific decoders G in DiMAE are designed to incorporate the style
information to the domain-invariant representation for image reconstruction,
where G = {G1(∗, ϕ1),G2(∗, ϕ2), ...,GNd

(∗, ϕNd
)}, ϕi is the parameter for the i-th

domain-specific decoder and Nd is the number of domains in the training set.
As shown in Fig. 1, our DiMAE has the following steps:

Step1 : Transform an image x to its style-mixed view v by Content Preserved
Style-Mix (Sec. 3.2). Given an image x, with Content Preserved Style-Mix, we
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Fig. 2: The pipeline of CP-StyleMix. We mix the Fourier Amplitude of the orig-
inal image x and two images from other domains to generate content preserved
and style-transferred images, and mix them to generate the style-mixed view v.

mix the style from other domains to the image x while preserving the content
in x to generate its style-mixed view v.

Step2 : Transform the style-mixed view v to content representation z (Sec. 3.3).
We randomly divides v into visible patches vv and masked patches vm, and ex-
tract content representation z by encoding the visible patches vv by F(∗, θF ).

Step3 : Reconstruct the image x̂ by content representation z with the domain-
specific decoders (Sec. 3.4). Given content representation z and multiple domain-
specific decoders G = {G1(∗, ϕ1),G2(∗, ϕ2), ...,GNd

(∗, ϕNd
)}, we reconstruct the

image x̂ by Gi, where Gi is the decoder of the i-th domain.
Step4 : Backward propagation using the MSE loss (Sec. 3.5). Given the re-

constructed image x̂ and the original image x, the parameter θF in F(∗, θF ) and
the parameters ϕ1, · · · , ϕNd

in G(∗, ϕ1), ..., G(∗, ϕNd
) are learned by MSE loss.

3.2 Content Preserved Style-Mix

Content Preserved Style-Mix (CP-StyleMix) aims at mixing styles into an image
while preserving the content information. This is a critical part for the cross-
domain reconstruction tasks. Inspired by [41], the style information and the
content information can be disentangled in the Fourier space. The content infor-
mation is encoded in the phase of the Fourier signals, and the style information is
encoded in the amplitude of the Fourier signals. We propose to first mix the style
of the i-th domain to the image x, generating its style views {v1,v2, ...,vNd

},
where Nd is the number of domains. Then we mix these style views by the typical
Mixup method [42], generating the final style-mixed view v.

Specifically, for mixing in the Fourier space, given an image x from j-th
domain and a randomly selected image xaux from the i-th domain (i ̸= j), the
view vi of image x can be formulated as

vi = K−1(KA
mix,KP (x)), (1)
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Table 1: Comparison between existing augmentation methods and CP-StyleMix.

Method Venue
Content
preserved

No extra
training

CutMix [42] ICCV’2019 ✓
MixUp [44] ICLR’2018 ✓
StyleMix [21] CVPR’2021 ✓
CycleGan+Mix [49] ICCV’2017 ✓
CP-StyleMix(ours) - ✓ ✓

where KA
mix = λKA(xaux)+(1−λ)KA(x), K−1 is Fourier inversion, and KA, KP

returns the amplitude and phase of Fourier transformation, respectively. Then
we implement the second step of mix on the image space by Mixup [44] process.
Mathematically, the Mixup process can be formulated as

v =

Nd∑
i=1

µivi, (2)

where µi is the weight of different views,
∑Nd

i=1 µi = 1, µj = 0. Different from
the Fourier style transfer proposed by [41], which do not have style mix, we mix
different styles in both Fourier space and image space, leading to more diverse
style information.
Discussion. Theoretically, as summarized in Tab. 1, there are various methods
to mix the style information from other domains to the input image, including
CutMix [42], MixUp [44], StyleMix [21], and CycleGan+Mix[49]. Our content
preserved style mix is better than these methods in two critical aspects. First,
our CP-StyleMix can preserve content information compared to CutMix and
Mixup, which also mix contents. Detailed experiments and analysis in Sec. 4.3
illustrates that compared with content-pereserved methods, the mixture of con-
tent with Mixup and CutMix would significantly decrease the performance in
reconstruction tasks by −10.47% and −9.71%, respectively. Second, our CP-
StyleMix is non-parametric and does not need extra data. StyleMix [21] and
CycleGan+Mix[49] can preserve the content information, but they require to
train the transfer module by extra data, which will lead to unfair comparison
with existing methods [15, 45].

3.3 Content Encoder

The content Encoder, i.e., F(∗, θF ), is designed to extract the domain-invariant
content representations from the style-mixed view v. Similar to MAE [18], our
content encoder also follows the vision transformer design, which extracts con-
tent representations only by visible patches. Specifically, given a style-mixed
view v, we randomly divide the image patches into visible patches vv with the
probability p, leaving the remaining patches as the masked patches vm. The
content representation z is then extracted by vv using the content encoder, i.e,

z = F(vv, θF ). (3)
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3.4 Domain Specific Decoders

Domain specific decoders are the critical designs in our proposed DiMAE. Be-
sides the target of the decoder in MAE that is to reconstruct the semantic mean-
ing of the masked patches, Domain specific decoders are expected to additionally
reconstruct the domain style of the masked patches. To achieve this, we design a
domain-specific decoder to each domain in the training set. Specifically, the do-
main specific decoders are defined as G = {G1(∗, ϕ1),G2(∗, ϕ2), ...,GNd

(∗, ϕNd
)},

where Nd is the number domains in the training set, G1,G2, ...,GNd
share the

same architectural design, and ϕi is the parameter of the i-th domain-specific
decoder Gi. Given content representation z, to reconstruct the patches in the i-
th domain, we feed both the content representation z and the learnable masked
tokens [18] into the i-th domain specific decoder Gi, i.e.,

v̂i
m = Gi(z,q

i
m), (4)

where i ∈ [1, Nd] denotes the domain index, and the qi
m denotes the masked

tokens in the i-th domain-specific decoder.
Discussion. As pointed in MAE [18], the decoder design plays a key role in
determining the semantic level of the learnt latent features. However, we ar-
gue that the domain-invariant features can not be learnt by changing the single
decoder designs probably because of the style conflict in different domains. In-
stead, we propose to use multiple domain-specific decoders to learn the domain-
invariant features. Specifically, we use a shared content encoder to learn the
domain-invariant features, and expect the domain-specific decoder to recover
the specific style information for the cross-domain reconstruction.

3.5 Objective Function

The objective function constrains the error between predicted patches and target
patches, which drives the model to recover the original image x using very few
mixed-styled neighboring patches. Specifically, given the image x from the j-th
domain, the objective function can be formulated as

L = (v̂j − x)2, (5)

where v̂j is the reconstructed image by Gj , x is the original image.

4 Experiment

4.1 Experimental Setup

Dataset. To validate our approach, we conduct extensive experiments with
two generalization settings, namely in-domain and cross-domain, which detailed
in Sec. 4.2. Two benchmark datasets are adopted to carry through these two
settings. PACS [26] is a widely used benchmark for domain generalization. It
consists of four domains, including Photo (1,670 images), Art Painting (2,048
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Table 2: Results of In-domain top-1 linear evaluation accuracies on PACS
dataset. Results style: best, second best.

Training Domain (Photo, Art, Cartoon, Sketch)

Method Photo Art Cartoon Sketch Avg.

MoCo V3 70.6 39.4 64.8 54.4 57.3
MAE 83.5 53.4 74.2 73.8 71.2

DeepAll+MI,RotNet 81.6 55.5 68.5 63.4 67.3
DeepAll+MI,AET 80.9 56.9 69.6 67.9 68.8

DiMAE (ours) 84.7 57.2 76.3 69.8 72.0

images), Cartoon (2,344 images), Sketch (3,929 images) and each domain con-
tains seven categories. DomainNet [33] is the largest, most diverse and recent
cross-domain benchmark. Six domains are included: Real, Painting, Sketch, Cli-
part, Infograph and Quickdraw, with 345 object classes and 586, 575 examples.

For In-domain evaluations, we use all training subset in all domains for self-
supervised learning, and then use the validation subset of each domain for evalu-
ation. For cross-domain generalization, following DIUL [45], we select Painting,
Real, Sketch as source domains and Clipart, Infograph, Quickdraw as target do-
mains for DomainNet [33]. We select 20 classes out of 345 categories for both
training and testing, exactly following the setting in [45]. For PACS, we follow
the common setting in domain generalization [30, 34, 1] where three domains are
selected as source domains, and the remaining domain is target domain.
Implementation details. In our implementation, we use ViT-small 2 as the
backbone unless otherwise specified. The learning rate for pretraining is 0.5 ×
10−4 and then decays with a cosine decay schedule. The weight decay is set to
0.05 and the batch size is set to 256×Nd, where Nd is the number of domains in
the training set. All methods are pretrained for 1000 epochs, which is consistent
with the implementations in [45]. For finetuning, we follow the exact training
schedule as that in [45]. Following [23], we use an ImageNet pretraining.

4.2 Experimental Results

In-Domain Evaluation. In-Domain Evaluation is proposed by [15], and aims
to evaluate the performance of the self-supervised learning methods in the do-
mains that appear in the training set. We exactly follow the protocol of [15].
Specifically, we learn the backbone on the training subset of all domains on
PACS in a self-supervised manner, and then linearly train a classifier for each
domain using the training subset of each domain with the backbone fixed, re-
spectively. We evaluate our model on the validation subset in each domain, and
report the averaged results by 10 runs. The experimental results are summarized

2 We do not use the widely-used ResNet18 [20] as the backbone, because DiMAE is
exactly a generative method, in which Convolutaional networks are not applicable.
We choose the ViT-small model for comparison because the number of their model
parameters is similar.
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Table 3: Results of the cross-domain generalization on DomainNet. All of the
models are trained on Painting, Real, Sketch domains of DomainNet and tested
on the other three domains. The title of each column indicates the name of the
domain used as target. All the models are pretrained for 1000 epoches before
finetuned on the labeled data. Results style: best, second best.

Label Fraction 1% Label Fraction 5%

method Clipart Infograph Quickdraw Overall Avg. Clipart Infograph Quickdraw Overall Avg.

ERM 6.54 2.96 5.00 4.75 4.83 10.21 7.08 5.34 6.81 7.54
MoCo V2 [9] 18.85 10.57 6.32 10.05 11.92 28.13 13.79 9.67 14.56 17.20

SimCLR V2 [8] 23.51 15.42 5.29 11.80 14.74 34.03 17.17 10.88 17.32 20.69
BYOL [17] 6.21 3.48 4.27 4.45 4.65 9.60 5.09 6.02 6.49 6.90
AdCo [22] 16.16 12.26 5.65 9.57 11.36 30.77 18.65 7.75 15.44 19.06

MAE 22.38 12.62 10.50 13.51 15.17 32.60 15.28 13.43 17.85 20.44
DIUL 18.53 10.62 12.65 13.29 13.93 39.32 19.09 10.50 18.73 22.97

DiMAE (ours) 26.52 15.47 15.47 17.72 19.15 42.31 18.87 15.00 21.68 25.39

Label Fraction 10% Label Fraction 100%

method Clipart Infograph Quickdraw Overall Avg. Clipart Infograph Quickdraw Overall Avg.

ERM 15.10 9.39 7.11 9.36 10.53 52.79 23.72 19.05 27.19 31.85
MoCo V2 32.46 18.54 8.05 15.92 19.69 64.18 27.44 25.26 33.76 38.96

SimCLR V2 37.11 19.87 12.33 19.45 23.10 68.72 27.60 30.56 37.47 42.29
BYOL 14.55 8.71 5.95 8.46 9.74 54.44 23.70 20.42 28.23 32.86
AdCo 32.25 17.96 11.56 17.53 20.59 62.84 26.69 26.26 33.80 38.60
MAE 51.86 24.81 23.94 29.87 33.54 59.21 28.53 23.27 32.06 37.00
DIUL 35.15 20.88 15.69 21.08 23.91 72.79 32.01 33.75 41.19 46.18

DiMAE (ours) 70.78 38.06 27.39 39.20 45.41 83.87 44.99 39.30 49.96 56.05

in Tab. 2. DiMAE outperforms MoCo V3 and MAE by +14.7% and +0.8%,
respectively, showing the superior of in-domain instance discrimination ability
against the previous methods. Furthermore, when we compare the baseline gen-
erative method, i.e., MAE, with contrastive learning methods, i.e., MoCoV3, we
infer that the reconstruction task can learn better representations of the domains
that appear in the training set.

Cross-Domain Generalization. Cross-Domain Generalization is firstly pro-
posed by DIUL [45], which evaluates the generalization ability of the self-supervised
learning methods to the domains that are missing in the training set. We exactly
follow the cross-domain generalization evaluation process in DIUL [45], which is
divided into three steps. First, we train our model on source domains in the unsu-
pervised manner. Then, we will use a small number of labeled training examples
of the validation subset in the source domains to finetune the classifier or the
whole backbone. In detail, when the fraction of labeled finetuning data is lower
than 10% of the whole validation subset in the source domains, we only finetune
the linear classifier for all the methods. When the fraction of labeled finetuning
data is larger than 10% of the whole validation subset in the source domains,
we finetune the whole network, including the backbone and the classifier. Last,
we can evaluate the model on the target domains.

The results are presented in Tab. 3 (DomainNet) and Tab. 4 (PACS). In this
setting, our DiMAE achieves a better performance than previous works on most
tasks and gets significant gains over DIUL and other SSL methods on overall and
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Table 4: Results of the cross-domain generalization setting on PACS. Given the
experiment for each target domain is run respectively, there is no overall accuracy
across domains. Thus we report the average accuracy and the accuracy for each
domain. The title of each column indicates the name of the domain used as
target. All the models are pretrained for 1000 epochs before finetuned on the
labeled data. Results style: best, second best.

Label Fraction 1% Label Fraction 5%

method Photo Art. Cartoon Sketch Avg. Photo Art. Cartoon Sketch Avg.

MoCo V2 22.97 15.58 23.65 25.27 21.87 37.39 25.57 28.11 31.16 30.56
SimCLR V2 30.94 17.43 30.16 25.20 25.93 54.67 35.92 35.31 36.84 40.68

BYOL 11.20 14.53 16.21 10.01 12.99 26.55 17.79 21.87 19.65 21.47
AdCo 26.13 17.11 22.96 23.37 22.39 37.65 28.21 28.52 30.35 31.18
MAE 30.72 23.54 20.78 24.52 24.89 32.69 24.61 27.35 30.44 28.77
DIUL 27.78 19.82 27.51 29.54 26.16 44.61 39.25 36.41 36.53 39.20

DiMAE (ours) 48.86 31.73 25.83 32.50 34.23 50.00 41.25 34.40 38.00 40.91

Label Fraction 10% Label Fraction 100%

method Photo Art. Cartoon Sketch Avg. Photo Art. Cartoon Sketch Avg.

MoCo V2 44.19 25.85 33.53 24.97 32.14 59.86 28.58 48.89 34.79 43.03
SimCLR V2 54.65 37.65 46.00 28.25 41.64 67.45 43.60 54.48 34.73 50.06

BYOL 27.01 25.94 20.98 19.69 23.40 41.42 23.73 30.02 18.78 28.49
AdCo 46.51 30.21 31.45 22.96 32.78 58.59 29.81 50.19 30.45 42.26
MAE 35.89 25.59 33.28 32.39 31.79 36.84 25.24 32.25 34.45 32.20
DIUL 53.37 39.91 46.41 30.17 42.47 68.66 41.53 56.89 37.51 51.15

DiMAE (ours) 77.87 59.77 57.72 39.25 58.65 78.99 63.23 59.44 55.89 64.39

average accuracy3. Compared with contrastive learning based methods, such as
MoCo V2, SimCLR V2, BYOL, AdCo, our generative based methods improves
the cross-domain generalization tasks by +3.98% and +2.42% for DomainNet
and +8.07% and +0.23% for PACS on 1% and 5% fraction setting respec-
tively, which is tested by linear evaluation. Our DiMAE also improves other
states-of-the-art methods by +11.87% and +9.87% for DomainNet, +16.18%
and +13.24% for PACS on 10% and 100% fraction setting, respectively, when
the whole backbone are finetuned. The significant improvement to contrastive
learning based methods illustrate our proposed DiMAE can learn more domain-
invariant features in the self-supervised learning from multiple domain data.

4.3 Ablation Study

To investigate the effectiveness of each component of our proposed DiMAE,
We ablate our DiMAE on the Cross-Domain Generalization task. Specifically,
we train Vit-Tiny [37] for 100 epoches on the combination of Painting, Real,
and Sketch training set in DomainNet, and evaluate the model using the linear
evaluation protocol on Clipart.

3 Overall and Avg. indicate the overall accuracy of all the test data and the arithmetic
mean of the accuracy of 3 domains, respectively. Note that they are different because
the capacities of different domains are not equal.
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Table 5: Comparison of using content-preserved methods, content-mix methods,
and no augmentation. Aug. is short for augmentation.

Content-preserved Content-mix No aug.
CP-StyleMix CP-StyleCut Mixup CutMix

48.56 47.21 38.09 37.50 36.85

Table 6: Comparison of style transfer [41], CP-StyleMix and CP-StyleCut. Aug.
is short for augmentation.

Content-preserved Augmentation Top-1

Style transfer [41] 46.11
CP-StyleMix 48.56
CP-StyleCut 47.21

Effectiveness of Preserving Contents in Style Mix. To demonstrate the
importance of preserving contents in style mix, we ablate the content-preserved
and content-mix augmentation methods for DiMAE, which is presented in Tab. 5.
Specifically, we choose CP-StyleMix for content-preserved methods and Mixup
and CutMix for content-mixed methods. Additionally, to fairly compare with
CutMix, we replace the Mixup step in CP-StyleMix with CutMix, creating a
competing method called Content Preserved StyleCut (CP-StyleCut). We con-
clude that preserving the content information is critical for reconstruction tasks.
Specifically, we observe that content-mix methods, i.e., Mixup and CutMix,
bring at most +1.24% performance improvement compared with no augmen-
tation. However, content preserved style mix methods, i.e, CP-StyleMixp and
CP-StyleCut, can further improve the content-mix style-mix augmentations, i.e.,
Mixup and CutMix, by +10.47% and +9.71%. The large performance gap be-
tween content-preserved and content-mix augmentations methods indicates the
importance of preserving contents in the reconstruction tasks.
Effectiveness of Mixing Style Information. To illustrate the importance of
mixing style information in our proposed DiMAE (Eq. 2), we ablate the mixing
step by comparing the experiments where we use the mixed-style view v in Eq. 2,
and the view vi before mixing. Here, vi is the i-th style view after style transfer
(Eq. 1) before Mixup (Eq. 2). As shown in Tab. 6, after applying Mixup and
CutMix on the views after style transfer, the performance further increases by
+2.45% and +1.10%. The consistent improvement indicates that adding more
style noise can effectively help the encoder to learn domain-invariant features.
Effectiveness of Multiple Domain-specific Decoders. A novel design of
our proposed DiMAE is the domain-specific decoders, which reconstruct corre-
sponding domain-specific images using the encoded latent representation. We
ablate this design with all other factors fixed. Experimental results are illus-
trated in Tab. 7, showing the linear evaluation performance when the single de-
coder and Domain Specific Decoders are applied. We observe that the methods
using domain-specific decoders improve the methods using the single decoder
by +10.47% and +9.71% when images are augmented by CP-StyleMix and
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Table 7: Comparison of single decoder and Domain Specific Decoders. Do-
main Specific Decoders achieve significant performance improvement with CP-
StyelMix and CP-StyleCut.

Augmentations Single Decoder Domain Specific Decoders

CP-StyleMix 38.09 48.56
CP-StyleCut 37.50 47.21

Table 8: Comparison of different depth of Domain Specific Decoders.

Depth Single Decoder Multi Decoders

1 37.46 44.93
2 37.81 45.35
4 38.01 46.62
8 38.09 48.56
12 37.96 46.11

CP-StyleCut. The significant performance gap verifies the importance of using
domain-specific decodoers in our proposed DiMAE. To explain the performance
gap, we argue that this is because domain-specific decoders help to decouple the
different style information from different domains to the corresponding decoders,
regularizing the encoder to only learn domain-invariant features.

Designs in the single decoder and multiple domain-specific decoders.
Tab. 8 varies the decoder depth, from which we have two findings. First, we find
the depth of the decoder is also important in our task, because a sufficiently deep
decoder can improves the performance by 0.63% and 3.63% in single and multiple
decoders design, respectively. Second, the performance gain in multi-decoders de-
sign (+3.63%) is much larger than in single-decoder design (+0.63%), because
the depth of decoders can influence the semantic level of the learned feature, but
can not help to regularize the encoder to learn domain-invariant features, which
is crucial in our self-supervised learning from multi-domain data task.

4.4 Visualization

Feature Distribution Visualization. Qualitatively, Fig. 3 visualizes the fea-
ture distribution of MoCo V3, MAE and DiMAE by t-SNE, on the combination
of Painting, Real, and Sketch training set in DomainNet. We observe that the
features of DiMAE between three domains are significantly better mixed than
the others. This suggests that compared with MoCo V3 and MAE, DiMAE is
able to capture better domain-invariant representations.

Reconstruction Visualization. We visualize reconstruction results of DiMAE
using ViT-base in Fig. 4. The results demonstrate that, in our DiMAE, the
encoder removes the domain style and multiple decoders learn specific style
information. Specifically, DiMAE eliminates the style noise on visible patches as
no messy style information appears in reconstructions. Second, DiMAE provides
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MAEMoCo V3 DiMAE

Fig. 3: Visualization of the feature distribution of MoCo V3, MAE and DiMAE.

Source Image Style-Mixed 
View

Masked Style-
Mixed View

Source Domain
Reconstruction

Different Domain
Reconstruction

Different Domain
Sample

Sketch  Real

Painting  Real

Real  Sketch

Real  Sketch

Fig. 4: Reconstruction visualization of different decoders. Sketch→Real denotes
using Sketch as source domain and Real as the a different domain to reconstruct.

complete reconstructions with specific domain styles. Third, we also observe that
it is quite hard for DiMAE to recover colors perfectly from sketch inputs.

5 Conclusions

In this paper, we propose a novel Domain invariant Masked AutoEncoder (Di-
MAE) to tackle the self-supervised learning from multi-domain data. Our Di-
MAE constructs a new cross-domain reconstruction task with a proposed con-
tent preserved style mix and multiple decoder designs to learn domain-invariant
features. The content preserved style mix aims to mix style information from
different domains, while preserving the image content. The multiple decoders
are proposed to regularize the encoder to extract domain-invariant features. Ex-
tensive experiments validate the effectiveness of DiMAE.
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