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Abstract. Dense crowd counting is a challenging task that demands
millions of head annotations for training models. Though existing self-
supervised approaches could learn good representations, they require
some labeled data to map these features to the end task of density esti-
mation. We mitigate this issue with the proposed paradigm of complete
self-supervision, which does not need even a single labeled image. The
only input required to train, apart from a large set of unlabeled crowd
images, is the approximate upper limit of the crowd count for the given
dataset. Our method dwells on the idea that natural crowds follow a
power law distribution, which could be leveraged to yield error signals
for backpropagation. A density regressor is first pretrained with self-
supervision and then the distribution of predictions is matched to the
prior. Experiments show that this results in effective learning of crowd
features and delivers significant counting performance.
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1 Introduction

The ability to estimate head counts of dense crowds effectively and efficiently
serves several practical applications. This has motivated deeper research in the
field and resulted in a plethora of crowd density regressors. These CNN based
models deliver excellent counting performance almost entirely on the support of
fully supervised training. Such a data hungry paradigm is limiting the further
development of the field as it is practically infeasible to annotate thousands
of people in dense crowds for every kind of setting under consideration. The
fact that current datasets are relatively small and cover only limited scenarios,
accentuates the necessity of a better training regime. Hence, developing methods
to leverage the easily available unlabeled data has gained attention recently.

The classic way of performing unsupervised learning revolves around autoen-
coders [18, 26, 40, 57]. Autoencoders or its variants are optimized to predict back
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Fig. 1. Though self-supervision methods learn features in an unsupervised manner (in
orange), they require labeled training to map these features to the end task (in blue).
But complete self-supervision is devoid of any such instance-level supervision, instead
relies on matching the statistics of the predictions to a prior distribution (in green).

their inputs, usually through a representational bottleneck. By doing so, the ac-
quired features are generic enough that they could be employed for solving other
tasks of interest. These methods have graduated to the more recent framework
of self-supervision, where useful representations are learned by performing some
alternate task for which pseudo labels can be easily obtained. For example, in
self-supervision with colorization approach [28, 29, 70], a model is trained to pre-
dict the color image given its grayscale version. One can easily generate grayscale
inputs from RGB images. Similarly, there are lots of tasks for which labels are
freely available like predicting angle of rotation from an image [14, 15], solving
jumbled scenes [44], inpainting [47] etc. Though self-supervision is effective in
learning useful representations, they require a final mapping from the features to
the end task of interest. This is thought to be essentially unavoidable as some su-
pervisory signal is necessary to aid the final task. For this, typically a linear layer
or a classifier is trained on top of the learned features using supervision from
labeled data, defeating the true purpose of self-supervision. In the case of crowd
counting, one requires training with annotated data for converting the features
to a density map. To reiterate, the current unsupervised approaches could cap-
ture the majority of its features from unlabeled data, but demand supervision
at the end for them to be made useful for any practical applications.

Our work emerges precisely from the above limitation of the standard self-
supervision methods, but narrowed down to the case of crowd density estimation.
The objective is to eliminate the mandatory final labeled supervision needed for
mapping the learned self-supervised features to a density map output. In other
words, we mandate developing a model that can be trained without using any
labeled data. Such a problem statement is not only challenging, but also ill-
posed. Without providing a supervisory signal, the model cannot recognize the
task of interest and how to properly guide the training stands as the prime issue.
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We solve this in a novel manner by carefully aiding the model to regress crowd
density on the back of making some crucial assumptions. The idea relies on
the observation that natural crowds tend to follow certain long tailed statistics
and could be approximated to an appropriate parametric prior distribution. If
a network trained with a self-supervised task is available, its features can be
faithfully mapped to crowd density by enforcing the predictions to match the
prior distribution. The matching is measured in terms of Sinkhorn distance [12],
which is differentiated to derive error signals for supervision. This proposed
framework is contrasted against the normal self-supervision regime in Figure 1,
with the central difference being the replacement of the essential labeled training
at the end by supervision through distribution matching. We show that the
proposed approach results in effective learning of crowd features and delivers
good performance in terms of counting metrics.

2 Related Work

Though there are earlier works like [9] on counting people in sparse crowds,
the paradigm of dense crowd counting via density regression plausibly begins
with [19]. The initial methods generally employ hand-crafted features and fre-
quency analysis for counting. With the advent of deep learning, many CNN
based density regressors have emerged. It ranges from the initial simple models
[67] to multi-network/multi-scale architectures designed specifically to address
the drastic diversity in crowd images [5, 7, 8, 45, 71]. Regressors with better,
deeper and recurrent based deep models [24, 30, 32] are shown to improve count-
ing performance. An alternate line of works enhance density regression by pro-
viding auxiliary information through crowd classification [51, 52], scene context
[2, 10, 36], perspective data [49, 64], attention [35, 65, 66] and even semantic
priors [59]. Models designed to progressively predict density maps and perform
refinement is explored in [20, 48, 54]. Works like [34, 53] effectively fuse multi-
scale information. Some approaches try to bring flavors of detection to crowd
counting [3, 4, 31, 33, 38]. Interestingly, all these works, including more recent
ones [39, 58, 60, 61], are fully supervised and leverage annotated data to achieve
good performance. The issue of annotation has drawn attention of a few works
in the field and is mitigated via multiple means. A count ranking loss on unla-
beled images is employed in a multi-task formulation along with labeled data by
[37]. Wang et al. [62] train using labeled synthetic data and adapt to real crowd
scenario. The autoencoder method proposed in [6] optimizes almost 99% of the
model parameters with unlabeled data. However, all of these models require some
annotated data (either given by humans or obtained through synthetic means)
for training.

Our approach is not only new to crowd counting, but also kindles alter-
nate avenues in the area of unsupervised learning as well. Though initial works
on the subject employ autoencoders or its variants [18, 26, 40, 57] for learn-
ing useful features, the paradigm of self-supervision with pseudo labels stands
out to be superior in many aspects. Works like [28, 29, 70], learn representa-
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Fig. 2. Computing the distribution of natural crowds: crops from dense crowd images
are framed to a spatial grid of cells and crowd counts of all the cells are aggregated
to a histogram (obtained on Shanghaitech Part A dataset [71]). The distribution is
certainly long tailed and could be approximated to a power law.

tions through colorizing a grayscale image. Apart from these, pseudo labels for
supervision are computed from motion cues [1, 22, 46], temporal information
in videos [41, 63], learning to inpaint [47], co-occurrence [21], spatial context
[13, 43, 44], cross-channel prediction [69], spotting artifacts [23], predicting ob-
ject rotation [14, 15] etc. The recent work of Zhang et al. [68] introduce the idea of
auto-encoding transformations rather than data. Furthermore, self-supervision
is shown effective for unsupervised domain adaptation in [56]. An extensive and
rigorous comparison of all major self-supervised methods is available in [27]. All
these approaches focus on learning generic features and not the final task. But
we extend self-supervision paradigm directly to the downstream task of interest.

3 Our Approach

3.1 Natural Crowds and Density Distribution

As mentioned in Section 1, our objective of training a density regressor with-
out using any annotated data is somewhat ill-posed. The main reason being
the absence of any supervisory signal to guide the model towards the task of
interest, which is the density estimation of crowd images. But this issue could
be circumvented by effectively exploiting certain structure or pattern specific
to the problem. In the case of crowd images, restricting to only dense ones, we
deduce an interesting pattern on the density distribution. They seem to spread
out following a power law. To see this, we sample fixed size crops from lots of
dense crowd images and divide each crop into a grid of cells as shown in Fig-
ure 2. Then the number people in every cell is computed and accumulated to a
histogram. The distribution of these cell counts is quite clearly seen to be long
tailed, with regions having low counts forming the head and high counts joining
the tail. The number of cell regions with no people has the highest frequency,
which then rapidly decays as the crowd density increases. This resembles the
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way natural crowds are arranged with sparse regions occurring more often than
rarely forming highly dense neighborhoods. Coincidentally, it has been shown
that many natural phenomena obey a similar power law and is being studied
heavily [11]. The dense crowds also appear conforming to this pattern as ev-
ident from multiple works [16, 17, 25, 42] etc. on the dynamics of pedestrian
gatherings.

Moving to a more formal description, if D represents the density map for
the input image I, then the crowd count is given by C =

∑
xy Dxy (please refer

[7, 19, 71] regarding creation of density maps). D is framed into a grid of M×N
(typically set as M = N = 3) cells, with Cmn denoting the crowd count in the
cell indexed by (m,n). Now letHGT be the histogram computed by collecting the
cell counts (Cmns) from all the images. We try to find a parametric distribution
that approximately follows HGT with special focus to the long tailed region.
The power law with exponential cut-off seems to be better suited (see Figure 2).
Consequently, the crowd counts in cells Cmn could be thought as being generated
by the following relation,

Cmn ∼ Pprior(c) ∝ cα exp(−λc), (1)

where Pprior is the substitute power law distribution. There are two parameters
to Pprior with α controlling the shape and λ setting the tail length.

Our approach is to fix a prior distribution so that it can be enforced on the
model predictions. Studies like [16, 42] simulate crowd behaviour dynamics and
estimate the exponent of the power law to be around 2. Empirically, we also
find that α = 2 works in most cases of dense crowds, with the only remaining
parameter to fix is the λ. Observe that λ affects the length of the tail and directly
determines the maximum number of people in any given cell. If the maximum
count Cmax is specified for the given set of crowd images, then λ could be fixed
such that the cumulative probability density (the value of CDF) of Pprior at
Cmax is very close to 1. We assume 1/S as the probability of finding a cell with
count Cmax out of S images in the given set. Now the CDF value at Cmax could
be set to 1−1/S, simply the probability for getting values less than the maximum.
Note that Cmax need not be exact as small variations do not change Pprior

significantly. This makes it practical as the accurate maximum count might not
be available in real-world scenarios. Since Cmax is for the cells, the maximum
crowd count of the full image Cfmax is related as Cmax = Cfmax/(MNScrop),
where Scrop denotes the average number of crops that make up a full image (and
is typically set as 4). Thus, for a given a set of highly dense images, only one
parameter, the Cfmax is required to fix an appropriate prior distribution.

We make a small modification to the prior distribution Pprior as its value
range starts from 1. HGT has values from zero with large probability mass con-
centrated near the low count region. Roughly 30% of the mass is seen to be
distributed for counts less than or around 1. So, that much probability mass
near the head region of Pprior is redistributed to [0, 1] range in a uniform man-
ner. This is found to be better for both training stability and performance.

In short, now we have a prior distribution representing how the crowd density
is being allocated among the given set of images. Suppose there exists a CNN
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Fig. 3. The architecture of CSS-CCNN is shown. CSS-CCNN has two stages of training:
the first trains the base feature extraction network in a self-supervised manner with
rotation task and the second stage optimizes the model for matching the statistics of
the density predictions to that of the prior distribution using optimal transport.

model that can output density maps, then one could try to generate error signals
for updating the parameters of the model by matching the statistics of the pre-
dictions with that of the prior. But that could be a very weak signal for proper
training of the model. It would be helpful if the model has a good initialization
to start the supervision by distribution matching, which is precisely what we do
by self-supervision in the next section.

3.2 Stage 1: Learning Features with Self-Supervision

We rely on training the model with self-supervision to learn effective and generic
features that could be useful for the end task of density estimation. That means
the model has to be trained in stages, with the first stage acquiring patterns
frequently occurring in the input images. Since only dense crowd images are fed,
we hope to learn mostly features relevant to crowds. These could be peculiar
edges discriminating head-shoulder patterns formed by people to fairly high-
level semantics pertaining to crowds. Note that the model is not signaled to
pick up representations explicitly pertinent to density estimation, but implicitly
culminate in learning crowd patterns as those are the most prominent part of the
input data distribution. Hence, the features acquired by self-supervision could
serve as a faithful initialization for the second stage of distribution matching.
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Regarding self-supervision, there are numerous ways to generate pseudo la-
bels for training models. The task of predicting image rotations is a simple,
but highly effective for learning good representations [27]. The basic idea is to
randomly rotate an image and train the model to predict the angle of rotation.
By doing so, the network learns to detect characteristic edges or even fairly
high-level patterns of the objects relevant for determining the orientation. These
features are observed to be generic enough for diverse downstream tasks [27] and
hence we choose self-supervision through rotation as our method.

Figure 3 shows the architecture of our density regressor, named the CSS-
CCNN (for Completely Self-Supervised Counting CNN ). It has a base Feature
Extraction Network (FEN), which is composed of three VGG [50] style convolu-
tional blocks with max poolings in-between. This is followed by two task heads:
C1 for the first training stage of self-supervision, and C2 for regressing crowd
density at second stage. The first stage branch has two more convolutions and
a fully connected layer to finally classify the input image to one of the rotation
classes. We take 112 × 112 crops from crowd images and randomly rotate the
crop by one of the four predefined angles (0, 90, 180, 270 degrees). The model
is trained with cross-entropy loss between the predicted and the actual rotation
labels. The optimization runs till saturation as evaluated on a validation set.

Once the training is complete, the FEN has learned useful features for density
estimation and the rotation classification head is removed. Now the parameters
of FEN are frozen and is ready to be used in the second stage of training.

3.3 Stage 2: Sinkhorn Training

After the self-supervised training stage, FEN is extended to a density regres-
sor by adding two convolutional layers as shown in Figure 3. We take features
from both second and third convolution blocks for effectively mapping to crowd
density. This aggregates features from slightly different receptive fields and is
seen to deliver better performance. The layers of FEN are frozen and only a
few parameters in the freshly added layers are open for training in the second
stage of distribution matching. This particularly helps to prevent over-fitting
as the training signal generated could be weak for updating large number of
parameters. Now we describe the details of the exact matching process.

The core idea is to compute the distribution of crowd density predicted by
CSS-CCNN and optimize the network to match that closely with the prior Pprior.
For this, a suitable distance metric between the two distributions should be de-
fined with differentiability as a key necessity. Note that the predicted distribu-
tion is in the form of an empirical measure (an array of cell count values) and
hence it is difficult to formulate an easy analytical expression for the comput-
ing similarity. The classic Earth Mover’s Distance (EMD) measures the amount
of probability mass that needs to be moved if one tries to transform between
the distributions (also described as the optimal transport cost). But this is not
a differentiable operation and cannot be used directly in our case. Hence, we
choose the Sinkhorn distance formulation proposed in [12]. Sinkhorn distance
between two empirical measures is proven to be an upper bound for EMD and
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has a differentiable implementation. Moreover, this method performs favorable
in terms of efficiency and speed as well.

Let DCS represent the density map output by CSS-CCNN and CCS hold
the cells extracted from the predictions. To make the distribution matching
statistically significant, a batch of images are evaluated to get the cell counts
(CCS

mns), which are then formed into an array HCS . We also sample the prior
Pprior and create another empirical measure HGT to act as the ground truth.
Now the Sinkhorn loss Lsink is computed between HGT and HCS . It is basically
a regularized version of optimal transport (OT) distance for the two sample sets.
Designate hGT and hCS as the probability vectors (summing to 1) associated
with the empirical measures HGT and HCS respectively. Now a transport plan
P could be conceived as the joint likelihood of shifting the probability mass from
hGT to hCS . Define U to be the set of all such valid candidate plans as,

U = {P ∈ Rd×d
+ | P1 = hGT ,P T1 = hCS}. (2)

There is a cost M associated with any given transport plan, where Mij is the
squared difference between the counts of ith sample of HGT and jth of HCS .
Closer the two distribution, lower would be the cost for transport. Hence, the
Sinkhorn loss Lsink is defined as the cost pertinent to the optimal transportation
plan with an additional regularization term. Mathematically,

Lsink(H
GT , HCS) = argmin

P∈U
⟨P ,M⟩F − 1

β
E(P ), (3)

where <>F stands for the Frobenius inner product, E(P ) is the entropy of the
joint distribution P and β is a regularization constant (see [12] for more details).
It is evident that minimizing Lsink brings the two distributions closer in terms
of how counts are allotted.

The network parameters are updated to optimize Lsink, thereby bringing the
distribution of predictions close to that of the prior. At every iteration of the
training, a batch of crowd images are sampled from the dataset and empirical
measures for the predictions as well as prior are constructed to backpropagate
the Sinkhorn loss. The value of Lsink on a validation set of images is monitored
for convergence and the training is stopped if the average loss does not improve
over a certain number of epochs. Note that we do not use any annotated data
even for validation. The counting performance is evaluated at the end with the
model chosen based on the best mean validation Sinkhorn loss.

Thus, our Sinkhorn training procedure does not rely on instance-level su-
pervision, but exploits matching the statistics computed from a set of inputs to
that of the prior. One criticism regarding this method could be that the model
need not learn the task of crowd density estimation by optimizing the Sinkhorn
loss. It could learn any other arbitrary task that follows a similar distribution.
The counter-argument stems from the semantics of the features learned by the
base network. Since the initial training mostly captures features related to dense
crowds, the Sinkhorn optimization has only limited flexibility in what it can do
other than map them through a fairly simple function to crowd density. This
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Fig. 4. Density maps estimated by CSS-CCNN along with that of baseline methods.
Despite being trained without a single annotated image, CSS-CCNN is seen to be quite
good at discriminating the crowd regions as well as regressing the density values.

is especially true as there is only a small set of parameters being trained with
Sinkhorn. It is highly likely and straightforward to map the frequent crowd
features to its density values, whose distribution is signaled through the prior.
Moreover, we show through extensive experiments that CSS-CCNN ends up
learning crowd density estimation.

4 Experiments and Analysis

Any crowd density regressor is evaluated mainly for the standard counting met-
rics. There are two metrics widely being followed by the community. The first is
the MAE or Mean Absolute Error, which directly measures the counting perfor-
mance. It is the absolute difference of the predicted and actual counts averaged
over the test set or simply expressed as MAE = (1/Stest)

∑N
i=1 |Ci − CGT

i |,
where Ci is the count predicted by the model for ith image and CGT

i de-
notes the actual count. Note that Stest is the number of images in the test
set. Coming to the second metric, the Mean Squared Error or MSE is defined as
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Table 1. Performance comparison of CSS-CCNN with other methods. Our model
outperforms all the baselines.

ST PartA UCF-QNRF UCF-CC-50 JHU-CRWD
Method MAE MSE MAE MSE MAE MSE MAE MSE

WTA-CCNN [6] 154.7 229.4 - - 433.7 583.3 - -

CCNN Self-Super 121.2 197.5 196.8 309.3 348.8 484.3 147.5 436.2

CCNN Random 431.1 559.0 718.7 1036.3 1279.3 1567.9 320.3 793.5

CCNN Mean 282.8 359.9 567.1 752.8 771.2 898.4 316.3 732.3

CCNN Pprior 272.2 372.5 535.6 765.9 760.0 949.9 302.3 707.6

CSS-CCNN (0 labels) 197.3 295.9 437.0 722.3 564.9 959.4 217.6 651.3

MSE = SQRT((1/Stest)
∑N

i=1(Ci − CGT
i )2), a measure of the variance of count

estimation and it represents the robustness of the model.
Our completely self-supervised framework is unique in many ways that the

baseline comparisons should be different from the typical supervised methods.
It is not fair to compare CSS-CCNN with other approaches as they use the
full annotated data for training. Hence, we take a set of solid baselines for our
model to demonstrate its performance. The CCNN Random experiment refers
to the results one would get if only Stage 1 self-supervision is done without the
subsequent Sinkhorn training. This is the random accuracy for our setting and
helpful in showing whether the proposed complete self-supervision works. Since
our approach takes one parameter, the maximum count value of the dataset
(Cfmax) as input, CCNN Mean baseline indicates the counting performance
if the regressor blindly predicts the given value for all the images. We choose
mean value as it makes for sense in this setting than the maximum (which
anyway has worse performance than mean). Another important validation for
our proposed paradigm is the CCNN Pprior experiment, where the model gives
out a value randomly drawn from the prior distribution as its prediction for a
given image. The counting performance of this baseline tells us with certainty
whether the Stage 2 training does anything more than that by chance. Note
that we do not initialize CCNN with any pretrained weights as is typically done
for supervised counting models. CCNN Self-Super runs the Stage 1 training to
learn the FEN parameters and is followed by labeled optimization for updating
the regressor layers. These self-supervised or fully supervised methods are not
directly comparable to our approach as we do not use any annotated data for
training, but are shown for completeness. Also note that only the train/validation
set images are used for optimizing CSS-CCNN and the ground truth annotations
are never used. The counting metrics are computed on the labeled test set.

4.1 Crowd Datasets

The Shanghaitech Part A [71] is a popular dense crowd counting dataset, con-
taining 482 images randomly crawled from the Internet. It has images with crowd
counts as low as 33 to as high as 3139, with an average of 501. The train set has
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ST_PartA UCF-QNRF

Fig. 5. Comparing our completely self-supervised method to fully supervised and self-
supervised approaches under a limited amount of labeled training data. The x-axis
denotes the number of training images along with the count (in thousands) of head
annotations available for training, while the y-axis represents the MAE thus obtained.
At low data scenarios, CSS-CCNN has significantly superior performance.

300 images, out of which 10% is held out for validation. There are 182 images
testing. The hyper-parameter used for this is Cfmax = 3000. We compare the
performance of CSS-CCNN with the baselines listed earlier and other competing
methods in Table 1. It is clear that CSS-CCNN outperforms all the baselines by
a significant margin. This shows that the proposed method works better than
any naive strategies that do not consider the input images. Figure 4 visually
compares density predictions made by CSS-CCNN and other models. The pre-
dictions of our approach are mostly on crowd regions and closely follows the
ground truth, emphasizing its ability to discriminate crowds well.

UCF-QNRF dataset [20] is a large and diverse collection of crowd images with
1.2 million annotations. There are 1535 images with crowd count varying from
49 to 12865, resulting in an average of 815 individuals per image. The dataset
offers very high-resolution images with an average resolution of 2013 × 2902.
The max count hyper-parameter is set to Cfmax = 12000. We achieve similar
performance trends on UCF-QNRF dataset as well. CSS-CCNN outperforms all
the unsupervised baselines in terms of MAE and MSE as evident from Table 1.

UCF CC 50 dataset [19] has just 50 images with extreme variation in crowd
density ranging from 94 to 4543. The small size and diversity together makes
this dataset the most challenging. We follow the standard 5-fold cross-validation
scheme suggested by the creators of the dataset to report the performance met-
rics. Since the number of images is quite small, the assumption taken for setting
the prior distribution gets invalid to certain extent. But a slightly different pa-
rameter to the prior distribution works. We set α = 1 and Cfmax = 4000.
Despite being a small and highly diverse dataset, CSS-CCNN is able to beat
all the baselines. The self-supervised MAE is also better than [6]. These results
evidence the effectiveness of our method.
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Table 2. Evaluating CSS-CCNN in a true practical setting: the model is trained on
images crawled from the web, but evaluated on crowd datasets.

Train on web images MAE MSE

Test on ST PartA 208.8 309.5

Test on UCF-QNRF 450.7 755.9

Test on JHU-CROWD++ 241.2 706.8

JHU-CROWD++ [54, 55] is a comprehensive dataset with 1.51 million head
annotations spanning 4372 images. The crowd scenes are obtained under vari-
ous scenarios and weather conditions, making it one of the challenging dataset
in terms of diversity. Furthermore, JHU-CROWD++ has a richer set of anno-
tations at head level as well as image level. The maximum count is fixed to
Cfmax = 8000. The performance trends are quite similar to other datasets, with
our approach delivering better MAE than the baselines as evident from Table 1.
This indicates the generalization ability of CSS-CCNN across different datasets.

4.2 Performance with Limited Data

Here we explore the proposed algorithm along with fully supervised and self-
supervised approaches when few annotated images are available for training.
The analysis is performed by varying the number of labeled samples and the re-
sultant counting metrics are presented in Figure 5. For training CSS-CCNN with
data, we utilise the available annotated data to compute the optimal Sinkhorn
assignments P ∗ and then optimize the Lsink loss. This way both the labeled as
well as unlabeled data can be leveraged for training by alternating respective
batches (in a 5:1 ratio). It is clear that, at very low data, scenarios CSS-CCNN
beats the supervised as well as self-supervised baselines by a significant margin.
The Sinkhorn training shows 13% boost in MAE (for Shanghaitech Part A) by
using just one labeled sample as opposed to no samples. This indicates that CSS-
CCNN can perform well in extremely low data regimes. It takes about 20K head
annotations for the supervised model to perform as well as CSS-CCNN. Also,
CSS-CCNN has significantly less number of parameters to learn using the la-
beled samples as compared to a fully supervised network. These results suggests
that our complete self-supervision is the right paradigm to employ for crowd
counting when the amount of available annotated data is less.

4.3 CSS-CCNN in True Practical Setting

The complete self-supervised setting is motivated for scenarios where no labeled
images are available for training. But till now we have been using images from
crowd datasets with the annotations being intentionally ignored. Now consider
crawling lots of crowd images from the Internet and employing these unlabeled
data for training CSS-CCNN. For this, we use textual tags related to dense
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ST_PartA UCF-QNRF

Fig. 6. Double logarithmic representation of maximum likelihood fit for the crowd
counts from different datasets.

crowds and similarity matching with dataset images to collect approximately
5000 dense crowd images. No manual pruning of undesirable images with motion
blur, perspective distortion or other artifacts is done. CSS-CCNN is trained on
these images with the same hyper-parameters as that of Shanghaitech Part A
and the performance metrics are computed on the datasets with annotations.
From Table 2, it is evident that our model achieves very competitive MAE on
the crowd datasets (compared to Table 1), despite not using images from those
datasets for training. This further demonstrates the generalization ability of
CSS-CCNN to learn from less curated data, emphasizing the practical utility.

4.4 Analysis of the Prior Distribution

The proposed Sinkhorn training requires a prior distribution of crowd counts
to be defined and the choice of an appropriate prior is essential for the best
model performance as seen from Table 3. Here we analyze the crowd data more
carefully to see why the truncated power law is the right choice of prior. For this,
the counts from crowd images are extracted as described in Section 3.1 and a
maximum likelihood fit over various parametric distributions is performed. The
double logarithmic visualization of the probability distribution of both the data
and the priors are available in Figure 6. Note that the data curve is almost a
straight line in the logarithmic plot, a clear marker for power law characteristic.
Both truncated power law and lognormal tightly follow the distribution. But on
close inspection of the tail regions, we find truncated power law to best represent
the prior. This further validates our choice of the prior distribution.

4.5 Sensitivity Analysis for the Crowd Parameter

As described in Section 3.1, CSS-CCNN requires the maximum crowd count
(Cfmax) for the given set of images as an input. This is necessary to fix the
prior distribution parameter λ. One might not have the exact max value for
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Table 3. Ablating the effect of hyper-parameters on CSS-CCNN. Our model is robust
to fairly large change in the maximum count parameter.

Param MAE MSE

Uniform Prior 261.8 406.0

Pareto Prior 248.3 386.2

Lognormal Prior 239.5 345.8

Truncated Power Law Prior 197.3 295.9

Cfmax = 2000 204.2 316.4

Cfmax = 2500 197.9 304.6

Cfmax = 3000 197.3 295.9

Cfmax = 3500 191.9 288.5

α = 1.9 202.9 303.3

α = 2.0 197.3 295.9

α = 2.1 200.7 305.6

the crowds in a true practical setting; an approximate estimate is a more rea-
sonable assumption. Hence, we vary Cfmax around the actual value and train
CSS-CCNN on Shanghaitech PartA [71] and UCF-QNRF[20]. The performance
metrics in Table 3 show that changing Cfmax to certain extent does not alter the
performance significantly. The MAE remained roughly within the same range,
even though the max parameter is being changed in the order of 500. These
findings indicate that the our approach is insensitive to the exact crowd hyper-
parameter value, increasing its practical utility. We also check the sensitivity of
our approach on the power law exponent α. Varying α around 2 results in similar
performances, in agreement with our design choices (see Section 3.1).

5 Conclusions

We show for the first time that a density regressor can be fully trained from
scratch without using a single annotated image. This new paradigm of complete
self-supervision relies on optimizing the model by matching the statistics of the
distribution of predictions to that of a predefined prior. Though the counting
performance of the model stands better than other baselines, there is a perfor-
mance gap compared to fully supervised methods. Addressing this issue could be
the prime focus of future works. For now, our work can be considered as a proof
of concept that models could be trained directly for solving the downstream task
of interest, without providing any instance-level labeled data.
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