Coarse-To-Fine Incremental Few-Shot Learning
- Appendix

Xiang Xiang!, Yuwen Tan', Qian Wan', Jing Ma!, Alan L. Yuille?, and
Gregory D. Hager?

! MoE Key Lab of Image Processing and Intelligent Control,
School of AT and Automation, Huazhong Univ. of Science and Tech., China
2 Department of Computer Science, Johns Hopkins University, USA
xex@hust.edu.cn

1 Full Proof of Proposition 1

Proposition 1 (Normalizing or freezing weights improves stability; doing both
improves the most). Given @, if we only normalize weights of a linear FC
classifier, we obtain Oy; if we only freeze them, we obtain O.; if we do both, we
obtain ®4. Then, Dy < Dy, < D, and Dy < D. < D,.
Proof. (1) Stability Degree of model ©,.

It is assumed that the training for all sessions will reach the minimum loss.
For the training sample m in the 0-th session, the probability that m belongs
to superclass is one, i.e., p{f‘cwwr =1 and p{'; = 0(i # Csuper). According to

exp(0;")

Pt = ST, exp(o)’ the following conditions are satisfied,

8l = aa € R)76§t)(i # Csuper) = —00. (1)

Csuper

After training of T-th session has reached the minimum loss, 6@, =b(b e
]R),()Z(.T)(i # Cgup) = —00, then,

Do =S = (R

(2) Stability Degree of model @j.
Under the same conditions above, the following conditions are satisfied ac-
exp(cos 0]")

Zjl.zl exp(cos 07")’

80 =1,8"(i # Couper) = —1. (3)
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cording to p;* =

After training of T-th session has reached minimum loss, 6&?31, =1, 6§T)(i #
Csub) = —1, then the following holds:
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(3) Stability Degree of model ©..
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Compared with ©,, model ©,. freezes weights of neurons corresponding to
previously-seen classes. After training of T-th session has reached its minimum
T ~(T ~(T) . .
SSJW = a,oéw)b = oo+70§ )(2 # Csuper V1 # Csup) = —00, where oo™ > 00

() then,

Csuper?
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loss, ©

in order to offset the influence of 6
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(4) Stability Degree of model @,.
Compared with ®;, model ®, freezes weights of neurons corresponding to
previously-seen classes. After training of T-th session has reached its minimum

loss, 84, = 1,6\, = 1,6\ (i # Couper Vi # coup) = —1, then,

Csuper

(T) _ 50

_ 0, ' —0; o 1-(=1),

Dd_Z(T) = () =4 (6)
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Comparing the stability degree of different models, we have Do = Do,
Dpin = Dg and O is the most stable.

2 Full Analysis of Conjecture 2

Conjecture 2 (Sufficient & necessary condition of no impact of freezing embedding-
weights). p V ¢ < —r where p: classifier-weights are normalized, q: classifier-
weights are frozen, r: freezing embedding-weights improves the performance.
The ’only if’ part: -pA—-q=r
Analysis. We have 4 propositions that are all true according to our observations:
D -pA-g—T
@ pAg—
B pA-g— -
@ -pAg— .
They share a similar composition pattern. We summarize them as Table 1.

P|Q|PAQ|R|PAQ—R

—p|mg|~Pp A g| T |mpAmg =
pla| pAg |or|pAg— -
p|mq| pA =g |or|p Amg — -
“p|q| pAg|r|mpAg—

Table 1: Compound propositions.

Let us make p, ¢, 7 an realization of general propositions
P: classifier-weights are normalized,
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Q: classifier-weights are frozen,

R: freezing embedding-weights improves the performance, respectively. We want
to construct a common proposition for all the four cases all to be true. Namely,
we need to solve for a comopsitive proposition C(P,Q) — R that satisfies the
truth table with (D), @), 3), @ ordered top-down.

P|Q|C(P,Q)|R|C(P,Q) - R
0o 1 1
1)1 0 1
1|0 0 1
0|1 0 1

Table 2: A truth table that is not completed.

Note that A — B is 0 4ff A is 1 and B is 0. Therefore, we want C(P,Q)’s
truth value of the 2, 3,4 line never to be 1. Given the value pairs of P and @,
the only way to make that happen is to let C(P, Q) be =P A =Q — R, which is
a solution that satisfies all four cases, and thus is always true.

P|Q|-P A=Q|R|-PAN-Q — R

0(0 1 1 1
1|1 0 0 1
10 0 0 1
01 0 0 1

Table 3: The truth table is realized.

Namely, we have =P A =@ = R, which is exactly Conjecture 2, -p A —q = 7,
with a change of notations.
The ’if’ part: pV g = —r.
Analysis. Given propositions 2), 3), 4), we will combine them and derive a
logically-equivalent premise.
(PAQ V(A V(—pAq)
(pV (p/\_'CI)\/ (=pA@))) AV (PA=q) V(=P AQ))
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Similarly, we can derive @) V @) V @) as
(pAg— 1)V (pA=g— 1)V (=pAg— )
S @A)V PA-QV (NG — .
With the premise replaced, we have
QOVBRAV@ epVvg— -,
Given (2), 3), @ are all always true. it holds that pV ¢ — —r is always true,
Namely, we have pV ¢ = —r.

3 Insights from Fine-tuning

3.1 Embeddings need to be contrastively learned

As shown in Fig. 1, straightforward training on coarse labels does not help much
the subsequent FSL on fine labels (now_acc at ~ 25%), while contrastive learning
self-supervised by the fine cues does help (now_acc at ~ 35%). Thus, coarsely-
trained embedding can be generalizable.

Fig. 2-left shows that freezing embedding-weight outperforms not freezing
them. It implies the embedding space without any update is generalizable, and
that, if classifier-weights are not frozen, freezing embedding-weights helps.

3.2 Freezing weights helps, surely for classifiers

Fig. 2-right implies that, if classifiers weights are frozen, then freezing embedding-
weights does not help. Comparing left with right of Fig. 2, we find that freezing
classifier-weights (right) outperforms not doing so (left), either freezing embedding-
weights (circle) or not (triangle).

—e— total_acc

Accuracy
Accuracy

Sessions Sessions

Fig. 1: Ablation study of contrastive learning when fine-tuning ResNet12 w/o
IL. Left: w/o; right: w/. (CIFAR-100)
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Fig. 2: Ablation study of freezing embedding-weights for fine-tuning a contrastive
model. Left: when not freezing classifier-weights. Right: when freezing them.

4 Rethinking C2FSCIL and Knowe with More Results

Given a tree-like product catalog at Amazon.com, there is a class hierarchy per
tree, as shown in Fig. 3. Furthermore, Fig. 4 presents the basic idea of Knowe.
To learn over time (i.e., sequential learning), it is suggested in [4,5] that neural
networks can be limited by catastrophic forgetting (CF) just like Perceptron
is unable to solve X-OR. Knowledge forgetting, or called catastrophic forget-
ting/interference is about a learner’s memory (e.g., LSTM) and is a result of the
stability—plasticity dilemma regarding how to design a model that is sensitive
to, but not radically disrupted by, new input [4,5]. Often, maintaining plasticity
results in forgetting old classes while maintaining stability prevents the model
from learning new classes, which may be caused by a single set of shared weights.
Our setting requires a balance between coarse and fine performance unexplored
by existing works, as shown in Fig. 5.
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Fig. 3: Two examples of Amazon item catalog. Best seen on computer.
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Fig. 4: Basic idea of Knowe. In base session we train ® on D to get ©(®). Per
incremental session, @) is trained on C-way K-shot support set S() based on
©¢=1 ¢ > 1 and then tested on any class seen in either D or SM, ..., S®).

Method Class hierarchy Few-shot Learning Incremental Learning
LwF [3] v

CEC [0] v v

ANCOR [2] v v

IIRC [1] v v
C2FSCIL (Ours) v v v

Table 4: Comparison of settings with related works.
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Fig.5: The stability-plasticity trade-off. Top-right is FT w/o IL; bottom-left
represents most IFSL methods; bottom-right is our approach. (CIFAR-100)
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Fig. 6: Knowe reaches a balance on BREEDS.
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Fig.7: The visualization of all confusion matrices of Knowe tested on the
BREEDS livingl7 dataset.
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