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Abstract. Different from fine-tuning models pre-trained on a large-scale
dataset of preset classes, class-incremental learning (CIL) aims to recog-
nize novel classes over time without forgetting pre-trained classes. How-
ever, a given model will be challenged by test images with finer-grained
classes, e.g., a basenji is at most recognized as a dog. Such images form
a new training set (i.e., support set) so that the incremental model is
hoped to recognize a basenji (i.e., query) as a basenji next time. This pa-
per formulates such a hybrid natural problem of coarse-to-fine few-shot
(C2FS) recognition as a CIL problem named C2FSCIL, and proposes
a simple, effective, and theoretically-sound strategy Knowe: to learn,
freeze, and normalize a classifier’s weights from fine labels, once learning
an embedding space contrastively from coarse labels. Besides, as CIL
aims at a stability-plasticity balance, new overall performance metrics
are proposed. In that sense, on CIFAR-100, BREEDS, and tieredIma-
geNet, Knowe outperforms all recent relevant CIL or FSCIL methods.

Keywords: theory, class-incremental learning, coarse-to-fine, few shots

1 Introduction

Product visual search is normally driven by a deep model pre-trained on a large-
scale private image-set, while at inference it needs to recognize consumer images
at a finer granularity. For example, given a tree-like product catalog at Ama-
zon.com, there is a class hierarchy per tree. However, it is rare to add the root-like
categories, such as breads, fruits, meat, etc. in the Fresh department and break-
fast, snacks, beverages, etc. in the Gourmet Food department. That is because
such catalogs have set the routine by semantic abstraction and approximate
summarization. It is standard to pre-train models at a relatively static scale in
such ’super-categories’ or coarse levels. Such a model is expected to evolve on-
the-fly [30] over time as being used, because fine-tuning (FT) it for specific novel
classes induces an increasing number of separate models retrained, and thus is
inefficient. In practice, it is common to add leaf-like categories along the use of
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Fig. 1: Catastrophic forgetting when FT-ing a coarsely-trained model on fine
samples presently available w/o freezing any weight. We pre-set 10 sessions from
CIFAR-100 [21]. There is a fine-class accuracy from the 1st session and yet no
coarse-class accuracy as all samples are with fine labels.

Amazon, e.g., under Fruits/Snacks, there is a long list that changes daily. Like
humans, new labels of an item can be perceived later and then refine models’
knowledge. However, it is rare to pre-train models at such dynamic scale. Such
expectations of coarse-to-fine knowledge expansion is also valid for vision-driven
autonomous systems. Model developers have a lot of coarsely-labeled samples for
training but cannot predict what will be input after deploying it. For example,
a self-driving car needs to gradually grow its perception capabilities as it runs.

In this paper, we are interested in a coarse-to-fine recognition problem that
fits the class-incremental learning (CIL) setting. Moreover, fine classes appear
asynchronously, which again fits CIL. It is also a few-shot learning problem, as
there is no time to collect abundant samples per new class. We name such an in-
cremental few-shot learning problem Coarse-to-Fine Few-Shot Class-Incremental
Learning (C2FSCIL), and aim to propose a method that can evolve a generic
model to both avoid catastrophic forgetting of source-blind coarse classes and
prevent over-fitting the new few-shot fine-grained classes. However, what ex-
actly is the knowledge? Incremental learning (IL) is aimed for the learning
model to adapt to new data without forgetting its existing knowledge. Catas-
trophic forgetting is a concept in connectionist networks [35,20] and occurs when
the new weight vector is completely inappropriate as a solution for the origi-
nally learned pattern. In deep learning (DL), knowledge distillation (KD) is one
of the most effective approaches to IL, while there lacks a consensus about what
exactly the knowledge is in deep networks. Will it be the weight vectors?

Is a coarsely-learned embedding space generalizable? We aim to
achieve a superior performance at both the coarse and fine granularity. Con-
sidering the diversity of fine labels, it is infeasible to train a comprehensive
fine-grained model beforehand. Instead, can a model be trained, using coarsely-
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labeled samples, to classify finely-labeled samples with accuracy comparable to
that of a model trained with fine labels [11]? Our hypothesis is yes; then, the
next question is how to pre-train a generalizable base model? How to explore a
finer embedding space from coarse labels? Namely, what type of knowledge is
useful for fine classes and how can we learn and preserve them [7]?

Can we balance old knowledge and current learning? (a.k.a., the
stability–plasticity dilemma [34,52]). We aim to remember cues of both the pre-
trained base classes and fine classes in the previous few-shot sessions. Our hy-
pothesis is yes and our preference is a linear classifier as it is flexible, data
in-demanding, and efficient to train as well as simple for derivation. The next
question is how a linear classifier evolves the model effectively with a few shots
and yet a balanced performance. As presumed, if the knowledge is weights, then
freezing weights retains knowledge while updating weights evolves it.

To answer the questions, we propose a new problem for incrementally learning
coarse-to-fine with a few shots and a way to measure balanced performance. We
theoretically analyze why learning, freezing, and normalizing weights effectively
solves the problem with a base model contrastively learned from coarse labels.

2 Related Work

Weak supervision. Judging from the fine-class stage (Fig. 1 middle to right),
if we combine a pre-training set and the support set as a holistic training set,
then the few-shot fine-grained recognition using a model pre-trained on coarse
samples are similar to the weakly-supervised learning and learning from coarse
labels [6,11,54,55], e.g., C2FS [6]. Ristel et. al. investigates how coarse labels can
be used to recognize sub-categories using random forests [42] (say, NCM [43]).

Open-Set Learning. Judging from the coarse-class stage [5] (see the left
side of Fig. 1), CIL [38] can be dated back to the SVM [23] and random forest
[43,42], where a new class can be added as a new node, and now seen as a
progressive case of continual/lifelong learning [8,30], where CF is a challenge as
data are hidden. The topology structure is also favored in DL [49,48]. Few-shot
learning (FSL) measures models’ ability to quickly adapt to new tasks [50] and
has a flavor of CIL considering novel classes in the support set [13,39,49,10,56].

Incremental Learning (IL). IL allows a model to be continually updated
on new data without forgetting, instead of training a model once on all data.
There are two settings: class-IL [33] and task-IL [8]. They share main approaches,
such as regularization and rehearsal methods. Regularization methods prevent
the drift of consolidated weights and optimize network parameters for the current
task, e.g., parameter control in EWC [20]. CIL is our focus and aims at learning
a classifier that maintains a good performance on all classes seen in different
sessions. Li et.al. first introduces KD [12] to IL in LwF [26] by modifying a cross-
entropy loss to retain the knowledge. Recent works focus on retaining old-class
samples to compute the KD loss. For example, iCaRL [38] learns both features
and strong classifiers by combining KD and feature learning, e.g., NME.

Incremental Few-Shot Learning (IFSL). In the IFSL [39] or similarly
FSCIL [49] setting, samples in the incremental session are relatively scarce, dif-
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ferent from conventional CIL. While IFSL is based on meta learning, IFSL and
DFSL [13] both utilize attentions. In FSCIL, a model named TOPIC is proposed,
which contains a single neural gas (NG) network to learn feature-space topolo-
gies as knowledge, and adjust NG to preserve the stabilization and enhance the
adaptation. In [10], Dong et. al. propose an exemplar relation KD-IL framework
to balance the tasks of old-knowledge preserving and new-knowledge adaptation
as done in [53]. CEC [56] is proposed to separate classifier from the embedding
learner, and use a graph attention network to propagate context cues between
classifiers for adaptation. In [16], Hou et. al. address the imbalance between old
and new classes by cosine normalization [51,13,16].

Operating Weights for IL. The IL literature since 2017 has seen various
weight operations (op. for short) in the sense of consolidation (e.g., EWC [20]),
aligning [57,14], normalization [57,58], standardization [4], regularization [20,36],
aggregation [28], calibration [47], rectification [46], transfer [25,29], sharing [41],
masking [31], imprinting [37], picking [18], scaling [3], merging [24], pruning [32],
quantizaton [45], weight importance [19], assignment [17], restricting weights to
be positive [57], constraining weight changes [22], and so on.

Different from existing settings [10,49,56] that focus on remembering the
pre-trained base classes only, our setting requires remembering the knowledge
gained in both the base coarse and previous fine sessions. We add finer classes
instead of new classes at the same granularity. Our setting requires a balance
between coarse and fine performance unexplored by existing works . C2FS can
be seen as going from our Session-0 to Session-1, while our setting has more
incremental sessions and is a derived clean one among the mixed setups in IIRC
[1]. Different from exisiting approaches, we do not follow rehearsal methods,
namely, our model learns without memorizing samples [9]. However, retaining
samples is often infeasible, say, when learning on-the-fly [30]. Even if there is
memory for storing previous samples, there often is a budget, buffer, or queue.
Thus, we aim to examine the extreme case of knowledge forgetting, and thus
design IFSL methods to the upper-bound extent. For example, although in [22]
they do not use any base-class training samples and keep the weights of the base
classifier frozen, they still use previous samples in their third phase.

3 A New Problem C2FSCIL

Given a model parameterized by Θ and pre-trained on D = {(xi, yi)}Ni=1 where
yi ∈ Y = {Y1,Y2, ...,YR}, a set of R coarse labels Y, we have a stream of C-way

K-shot support sets S(1),S(2), ...,S(t), ...,S(T ) where S(t) = {(x(t)
j , y

(t)
j )}C·K

j=1 and

y
(t)
j ∈ Z(t) = {Z(t)

1 , ...,Z(t)
C }, a set of C fine-grained labels Z. Then, we adapt

our model to S(1),S(2), ...,S(t) over time and update the parameter set Θ from
Θ(0) all the way to Θ(t). For testing, we also have a stream of (C · t + R)-way

H-shot query sets Q(1),Q(2), ...,Q(t), ...,Q(T ) where Q(t) = {(x(t)
k , y

(t)
k )}(Ct+R)H

k=1

and y
(t)
k ∈ ∪t

l=1Z(l)∪Y, which is the generalized union of all label sets till the t-th
session. Notably, Z(t1)∩Z(t2) = ∅, ∀t1, t2. We assume no sample can be retained
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(unlike rehearsal methods) and the CIL stage only includes (sub-classes of) base
classes. At the t-th session, only the support set S(t) can be used for training.
We set the base of our subsequent theoretical analysis with two definitions [52].
Notably, as we only analyze the last layer, we take off the layer index l therein.
Definition A (Stability). When the model Θ is being trained in the t-th ses-
sion, ∆wt,s in each session should lie in the null space of the uncentered feature
covariance matrix X̄t−1 = [XT

1,1, ...,X
T
t−1,t−1]

T , namely, if X̄t−1∆wt,s = 0 holds,
then Θ is stable at the t-th session’s s-th step.

Note w is the classification-layer’s weight vector, ∆w is the change of w, t
indexes the session, and s indexes the training step. Xp,p where p < t in X̄t−1 is
the input features of classification-layer on p-th session using classification-layer’s
weight trained on p-th session. We call it the absolute stability.
Definition B (Plasticity). Assume that the network Θ is being trained in the
t-th session, and gt,s = {g1t,s, ..., gLt,s} denotes the parameter update generated by
Gradient Descent for training Θ at step s. If ⟨∆wt,s,gt,s⟩ > 0 holds, then Θ
preserves plasticity at the t-th session’s s-th step.
If the inequality condition holds, the Θ’s loss deceases and thus Θ is learning.

4 A Simple Approach Knowe

4.1 Learning Embedding-Weights Contrastively

Now, we elaborate on how we train a generalizable base embedding space [50,27].
cWe follow ANCOR [6] to use MoCo [15] as the backbone, and keep two net-
work streams each of which contains a backbone network with the last-layer FC
replaced by a Multi-Layer Perceptron (MLP). The hidden layer of two streams’
MLP outputs intermediate q and k, respectively. Given coarse labels, the total
loss is defined as Lc = LCon + Lc

CE where

LCon = −
N∑

n=1

log
exp(qT

nk
+
n /τ)

exp(qT
nk

+
n /τ) +

∑
m ̸=n exp(q

T
nk

−
m/τ)

, (1)

and Lc
CE is the standard cross-entropy loss that captures the inter-class cues.

We also use angular normalization [6] to improve their synergy.
Note that m,n index samples, τ is a temperature parameter, k−

m denotes the
intermediate output of the m-th sample, a negative sample, in the same class
with the n-th sample, a positive sample, so as to capture intra-class cues (fine
cues), and reduce unnecessary noises to the subsequent fine-grained classification
[54]. LCon will be small when qn is similar with k+

n and different from k−
m.

4.2 Freezing Memorized Classifier-Weights

In the t-th incremental session, the task is similar to FSL where a support set
S(t) is offered to train a model to be evaluated on a query set Q(t). However,
FSL only evaluates the classification accuracy of the classes appeared in the
support set S(t). In our setting, the query set Q(t) contains base classes, and
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all classes in previous support sets. No matter freezing embedding-weights helps
or not, it does not hurt. We do so, hoping it to reduce model complexity to
avoid over-fitting. As past samples are not retained, we freeze the classifier-
weights of past classes to implicitly retain the label information and only train
the augmented weight matrix W where in the t-th session, we have W[B:E] =

[w
(t)
1 |w(t)

2 |...|w(t)
C ]d×C with B = R + C · (t − 1) + 1, E = R + C · t for t ≥ 1,

except W[:R] = [w
(0)
1 |w(0)

2 |...|w(0)
R ]d×R where d is the feature dimension.

4.3 Normalizing Classifier-Weights

In the last layer, we set the bias term to 0. For a sample x, once a neuron has
its output logit o = wTf(x) ready, then a Softmax activation function Smx(·) is
applied to convert o to a probability so that we can classify x. (T is transpose)

However, such an inner-product linear classifier often favors new classes [16].
Instead, we compute the logit using the normalized inner-product [51] (a.k.a., co-
sine similarity, cosine normalization [13,16]) as õ = w̃Tf̃(x) where L2-normalized
f̃(x) = f(x)/∥f(x)∥2 and w̃i = wi/∥wi∥2, and then apply Softmax to the
rescaled logit õ as

pi(x) = Smx(õ/λ) =
exp(w̃T

i f̃(x)/λ)∑
j exp(w̃

T
j f̃(x)/λ)

(2)

where i is the class index, λ is a temperature parameter that rescales the Soft-
max distribution, as õ is ranged of [−1, 1]. In the t-th session, we minimize the
following cross-entropy loss on the support set S(t):

LS(t)
CE = − 1

C ·K

C·K∑
n=1

R+t∗C∑
i=1

δ
y
(t)
n =i

log[pi(x
(t)
n )] (3)

where δ
y
(t)
n =i

is the indicator function.

5 Theoretical Analysis of Knowe for Stability-Plasticity

In this theory, we decouple the embedding learner and classifier, a linear FC
layer, freeze weights of the embedding learner, and use the conventional Softmax
cross-entropy loss. Different from the conventional FC layer, we freeze weights
of neurons corresponding to previous classes. Now we extend Def. A and B.

Definition 1 (Stability Decay). For the same input sample, let õ
(t)
i denote the

output of the i-th neuron in the last layer in the t-th session. After the loss

reaches the minimum, we define the decay of stability as D =
∑

i(
õ
(T )
i −õ

(t)
i

õ
(t)
i

)2.

Definition 2 (Relative Stability). Given models Θa and Θb, if 0 ≤ Da < Db,
then we say Θa is more stable than Θb.

Assuming embedding-weights are frozen, then we have:
Proposition 1 (Normalizing or freezing weights improves stability; doing both
improves the most). Given Θa, if we only normalize weights of a linear FC
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classifier, we obtain Θb; if we only freeze them, we obtain Θc; if we do both, we
obtain Θd. Then, Dd < Db < Da and Dd < Dc < Da.
Proof. (1) Stability Degree of model Θa.

It is assumed that the training for all sessions will reach the minimum loss.
For the training sample m in the 0-th session, the probability that m belongs
to superclass is one, i.e., pmt,csuper

= 1 and pmt,i = 0(i ̸= csuper). According to

pmi =
exp(omi )∑I

j=1 exp(omj )
, the following conditions are satisfied,

õ(t)
csuper

= a(a ∈ R), õ(t)
i (i ̸= csuper) = −∞. (4)

After training of T -th session has reached the minimum loss, õ
(T )
csub = b(b ∈

R), õ(T )
i (i ̸= csub) = −∞, then,

Da =
∑
i

(
õ
(T )
i − õ

(t)
i

õ
(t)
i

)2 = (
−∞− a

a
)2 + (

b− (−∞)

−∞
)2 = ∞. (5)

Similarly, we can analyze the stability degree for Θb, Θc, Θd. Please see the
full proof in Appendix. Our second claim is about normalization for plasticity.
Proposition 2 (Weights normalized, plasticity remains). To train our FC clas-
sifier, if we denote the loss as L(w) where w is normalized, the weight update at
each step as ∆w, and the learning rate as α, then we have fL(w−α∆w) < L(w).
Proof. For a sample m whose feature vector is x, the output of i-th neuron is

oi = σ(x ·wi) = cos θi =
x ·wi

∥x∥2∥wi∥2
. (6)

The probability of sample m belonging to i-th class is

pi =
exp(oi)∑
j=1 exp(oj)

(7)

And the loss of training is denoted as

L(w) = −
∑
i

yilog(pi) (8)

where yi denotes the label of sample m. Denote the weights update of the i-th
neuron in linear FC layer as ∆wi, then

∆wi =


(pi − 1)(

x

∥x∥2∥wi∥2
− wi(x ·wi)

∥x∥2∥wi∥32
), i = c

pi(
x

∥x∥2∥wi∥2
− wi(x ·wi)

∥x∥2∥wi∥32
), i ̸= c

(9)

According to ŵ = w − α∆w, we have

ŵi =


wi + α(1− pi)

1

∥wi∥2
(

x

∥x∥2
− wi

∥wi∥2
cos θi), i = c

wi − αpi
1

∥wi∥2
(

x

∥x∥2
− wi

∥wi∥2
cos θi), i ̸= c

(10)
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Fig. 2: 10-way 5-shot confusion matrix (left) and visualization of the norm of raw
weights (mid-right) in the last layer for old/new classes. As each session can only
access labels of the present classes, a linear classifier will have a larger weight for
the current classes’ neurons, inducing the queries of previous classes to be likely
assigned into current classes’ region (left) in the embedding space. (CIFAR-100)

By denoting h(α) ≜ L(w − α∆w), according to Taylor’s theorem, we have

L(w − α∆w) = L(w)− α ⟨∆w,g⟩+ o(α) (11)

where |o(α)|
α → 0 when α → 0. Therefore, there exists α > 0 such that

|o(α)| < α| ⟨∆w,g⟩ |,∀α ∈ (0, α) (12)

With g = ∂L(ŵ)
∂ŵ = ∆ŵ, the calculation leads to the conclusion that ⟨∆w,g⟩ =∑

i ∆wi∆ŵi > 0, and thus L(w − α∆w) < L(w) for all α ∈ (0, α). Weights
update ∆w is the descent direction.

Notably, freezing the weights does not affect plasticity. As shown in Fig. 2,
samples of classes seen in the 1st session are totally classified to classes seen
in the 2nd session while only samples of the present classes can be correctly
classified. We plot weight norms to find them grow and propose a conjecture
implying a need of normalization.

Conjecture 1 (FC weights grow over time). Let ∥W(t)∥F denotes the Frobenius
norm of the weight matrix formed by all weight vectors in the FC layer for new
classes in the t-th session. With training converged and norm outliers ignored,
it holds that ∥W(t)∥F > ∥W(t−1)∥F ,∀t ∈ {1, ..., T}.
Analysis. For a conventional linear FC layer, the output of neural network
directly determines the probability of which class the sample belongs to. Thus,
we use ∆oi to represent the reward (∆oi > 0) or penalty (∆oi < 0) for different
neurons after sample x with label c is trained, where oi = x ·wi is the output



Coarse-To-Fine Incremental Few-Shot Learning 9

of the i-th neuron and α > 0 is the learning rate. Then, we have

∆oi =

{
α(1− pi)∥x∥22 ≥ 0, i = c

−αpi∥x∥22 ≤ 0, i ̸= c
(13)

For a sample m with super-class label csuper and sub-class label csub, when
we train sample m only with label csuper and reach a relatively good state in
the 0-th session, we will get pmcsuper

→ 1 and pmi (i ̸= csuper) → 0. When we
train sample m only with label csub in other sessions and reach a relatively good
state, the penalty for superclass of sample m will be much larger than other
classes, meanwhile the reward for subclass of sample m will be much larger too.
Therefore, if i belongs to previously-seen classes, i ̸= c will hold most of the time
during training. Thus, previously-seen classes will keep being penalized during
the gradient descent. As a result, the weights of previously-seen classes are prone
to be smaller than those for the newly added classes. And because we train new
classes in stages and reach a relatively good state (say, the training loss converges
to small value) for all sessions, the FC weights will piecewisely grow over time.
Therefore, the model is consequently biased towards new classes.

As for freezing embedding weights. We have (see the analysis in Appendix ):
Conjecture 2 (Sufficient & necessary condition of no impact of freezing embedding-
weights). p ∨ q ⇔ ¬r where

p: classifier-weights are normalized,
q: classifier-weights are frozen,
r: freezing embedding-weights improves the performance.

6 Experiments

6.1 New Overall Performance Measures

In this section , we evaluate the model after each session with the query set Q(t),
and report the Top-1 accuracy. The base session only contains coarse labels, and
thus is evaluated by the coarse-grained classification accuracy Ac. We evaluate
Ac, the fine-grained accuracy Af , and the total accuracy At per incremental
session, except the last session when only fine labels are available and Ac is not
evaluated. We average At to obtain an overall performance score as

Ā =
1

T + 1

T∑
i=0

Ai
t. (14)

Inspired by [3], we define the fine-class forgetting rate

F t
f =

At−1
f −At

f

At−1
f

, (15)

and the forgetting rate for the base coarse class as

F t
c =

A0
c −At

c

A0
c

. (16)
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With them, we can evaluate the model with an overall measure to represent
the catastrophic forgetting rate as

F =
1

T − 1
(

T∑
t=2

F t
f ∗ ct

Nf
+

T−1∑
t=1

F t
c ∗ (1−

ct
Nf

)) (17)

where T is the number of incremental sessions; ct is the number of appeared fine
classes until the t-th session, and Nf is fine-class total number; Ac and Af are
the accuracy of coarse and fine classes per session, respectively.

6.2 Datasets and Results

CIFAR-100 contains 60, 000 images from 100 fine classes, each of which has 500
training images and 100 test images [21]. They can be grouped into 20 coarse
classes, each of which includes 5 fine classes, e.g., trees contains maple, oak, pine,
palm, and willow. The 100 fine classes are divided into 10 10-way 5-shot sessions.

BREEDS is derived from ImageNet with class hierarchy re-calibrated by
[44] and contains 4 subsets named living17, nonliving26, entity13, and entity30.
They have 17, 26, 13, 30 coarse classes, 4, 4, 20, 8 fine classes per coarse class,
88K, 132K, 334K, 307K training images, 3.4K, 5.2K, 13K, 12K test images.

tieredImageNet (tIN) is a subset of ImageNet and contains 608 classes
[40] that are grouped into 34 high-level super-classes to ensure that the training
classes are distinct enough from the test classes semantically. The train/val/test
set have 20, 6, 8 coarse classes, 351, 97, 160 fine classes, 448K, 124K, 206K images.
Table 1 summarizes our performance and Fig. 3 visualizes confusion matrices.

6.3 Implementation Details

We use ResNet-50 on BREEDS, ‘-12’ on CIFAR100 and ‘-12’ on tIN, train Θ(0)

except FC using ANCOR, use SGD with a momentum 0.9, as well as set weight
decay to 5e-4, batch size to 256, τ to 0.2, and λ to 0.5. The learning rate is 0.12
for Θ(0), and is 0.1 for Θ(1),Θ(2), etc. for 200 epochs. See also project page 3.

6.4 Ablation Study

Impact of base contrastive learning. As shown in Fig 4a, Knowe obtains a
better performance than not using MoCo in Knowe’s base, which verifies that the

3 https://github.com/HAIV-Lab/Knowe

Dataset coarse# fine# total# sessions way/shot queries Ā F

CIFAR-100 20 100 120 10 10/5 15 38.50 0.42
living17 17 68 85 7 10/1 15 54.62 0.33

nonliving26 26 104 130 11 10/1 15 48.41 0.25
entity13 13 260 273 13 20/1 15 41.45 0.38
entity30 30 240 270 8 30/1 15 47.79 0.32

tieredImageNet 20 351 371 10 36/5 15 33.24 0.39

Table 1: Dataset setting and performance. # is class num.

https://github.com/HAIV-Lab/Knowe
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Fig. 3: Confusion matrices of Knowe tested on BREEDS-living17.

(a) (b)

(c) (d)

Fig. 4: Ablation study on living17. (a) Contrastive learning? (b) Freezing
embedding-weights? (c) Freezing classifier-weights? (d) Normalizing weights?

contrastively-learned base model helps fine-grained recognition. Starting from
almost the same fine accuracy in the 2nd session, the gap between w/ MoCo
and w/o MoCo increases, as the former stably outperforms the latter on current
classes. It verifies that the former can learn more fine knowledge than the latter.
Given there are only a few fine-class samples, the extra fine-grained knowledge
is likely from the contrastively-learned base model.

Impact of freezing embedding-weights. Fig. 4b illustrates that freezing
embedding-weights induces a slightly better performance than not freezing them.
If classifier-weights are normalized and frozen, freezing embedding-weights does
not help (p ∧ q ⇒ ¬r), which is shown by small changes of Ā and F in Table 2.

Impact of freezing memorized classifier-weights. As shown in Fig 4c,
there is severe CF of both fine and coarse knowledge when not freezing the
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Mehtod Contr. learn. Decoupled Frozen Normalization
Total accuracy per session Ā ↑ F ↓

0 1 2 3 4 5 6 7 8

(a) Base w/o MoCo ✓ ✓ ✓ 93.18 33.04 26.37 31.08 29.51 35.10 34.71 37.84 N/A 40.10 0.50
(b) FT w/ weight op. ✓ ✓ ✓ 94.21 63.14 47.45 40.10 41.47 34.80 40.59 43.53 N/A 50.66 0.35
(c) FT last layer ✓ ✓ ✓ 94.21 12.06 11.28 12.26 12.26 12.55 12.65 9.51 N/A 22.09 0.66
(d) Knowe w/o norm. ✓ ✓ ✓ 94.50 17.84 14.02 22.26 21.28 24.71 26.77 24.80 N/A 30.77 0.57

LwF+ [26] ✓ 94.50 61.47 44.61 27.45 19.12 11.28 6.37 4.22 N/A 33.63 0.51
ScaIL [3] ✓ 94.50 38.63 25.59 31.08 30.29 35.10 37.84 41.08 N/A 41.76 0.48
Weight Align+ [57] ✓ ✓ ✓ 94.50 50.98 37.94 38.43 37.06 35.20 39.80 43.24 N/A 47.14 0.40
Subsp. Reg.+ [2] ✓ ✓ ✓ 94.50 59.41 39.51 33.43 29.31 25.59 27.84 26.47 N/A 42.01 0.40
Knowe (Ours) ✓ ✓ ✓ ✓ 94.21 63.63 50.88 43.82 42.84 40.29 47.75 53.53 N/A 54.62 0.33

ANCOR [6] ✓ 94.50 11.86 11.18 12.35 11.77 12.55 10.78 9.02 N/A 21.75 0.66
Jt. train. (upp. bd.) ✓ ✓ ✓ ✓ 94.21 63.63 58.53 52.26 46.28 47.75 36.96 42.75 N/A 55.29 0.25

LwF+[26] ✓ 89.48 65.03 48.69 22.72 9.36 6.03 4.61 2.86 3.33 28.01 0.47
ScaIL[3] ✓ 89.48 39.25 25.50 22.44 23.69 25.75 30.81 32.08 35.25 36.03 0.48
Weight Align+ [57] ✓ ✓ ✓ 89.48 47.36 37.06 31.72 30.56 32.28 34.11 36.39 37.06 41.78 0.42
Subsp. Reg.+ [2] ✓ ✓ ✓ 89.48 42.39 28.94 20.86 16.14 16.44 16.75 16.17 16.06 29.25 0.48
Knowe (Ours) ✓ ✓ ✓ ✓ 87.90 63.22 49.22 37.75 34.78 36.25 38.03 40.08 42.83 47.79 0.32

ANCOR[6] ✓ 89.48 8.67 8.28 9.50 6.83 8.75 9.53 8.19 8.69 17.55 0.61
Jt. train. (upp. bd.) ✓ ✓ ✓ ✓ 87.90 63.22 56.56 53.72 47.36 44.78 41.61 38.06 36.75 52.22 0.20

Table 2: Performance on BREEDS living17 (top) and entity30 (bottom).

weights of previously-seen classes, which implies that little knowledge is retained.
Although embedding-weights are frozen and classifier-weights are normalized,
the coarse knowledge is totally forgotten. It implies that, if classifier-weights
are normalized and yet not frozen, freezing the embedding-weights does not help
(p ∧ ¬q ⇒ ¬r). It can be explained that fine-tuning on a few samples normally
induces little change to the embedding-weights and yet great change to classifier-
weights. Moreover, the model without freezing classifier-weights performs much
worse than Knowe that freezes previous weights. The gap of the fine accuracy
increases over time and is larger than the gap of the present accuracy. It implies
that they also differ in the performance of previous fine classes.

Impact of normalizing classifier-weight. Fig 2 has already shown that,
with a linear classifier, the weight norms of new classes totally surpass the weight
norms of previous classes, which causes that the linear classifier biases towards
new classes (i.e., any sample of previous class can be classified as a new class).
That implies a need of normlizing the classifer-weights. As shown in Fig 4d,
when we freeze weights of previous classes and only tune the weights of new
classes w/o normalization, the model performs stably worse, which verifies that
normalizing classifier-weights plays a positive role.

More about freezing embedding-weights. We know ¬p∧ q ⇒ ¬r. Thus,
we have a Conjecture 3: p ∨ q ⇒ ¬r, meaning if classifier-weights are either
normalized or frozen, then freezing embedding-weights does not help. A decent
now acc seems a condition for weight freezing and normalization to be effective.

6.5 Performance Comparison and Analysis

Table 2,3,4 and Fig. 5 compare Knowe with SOTA FSCIL or CIL methods
including LwF [26], ScaIL [3], Weight Aligning [57] and Subspace Regularizers
(Sub. Reg.) [2]. Joint training is non-IL and an acc upper bound in principle.

Overall average acc Ā and forgetting rate F . As shown in Table 2,3,4, Knowe
has the smallest F and the largest Ā on all datasets. From both metrics, Weight
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Method Contr. learn. Decoupled Frozen Normalization 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Ā ↑ F ↓

LwF+ [26] ✓ 86.94 65.51 58.14 44.17 22.76 14.36 9.68 6.92 5.90 5.19 5.32 3.40 N/A N/A 27.36 0.38
ScaIL [3] ✓ 86.94 36.09 24.10 21.47 23.27 23.65 27.95 31.80 34.23 36.09 37.76 38.14 N/A N/A 35.12 0.43
Weight Align.+ [57] ✓ ✓ ✓ 86.94 61.41 46.03 40.00 35.77 34.10 35.96 33.21 35.51 36.60 37.56 37.76 N/A N/A 43.40 0.29
Subsp. Reg.+ [2] ✓ ✓ ✓ 86.94 63.59 52.56 42.95 35.96 31.41 28.01 26.15 23.27 19.68 19.36 20.19 N/A N/A 37.51 0.25
Knowe (Ours) ✓ ✓ ✓ ✓ 86.23 65.90 53.08 46.80 42.82 38.91 41.22 39.10 40.06 41.80 42.44 42.63 N/A N/A 48.41 0.25

ANCOR [6] ✓ 86.94 5.83 6.03 6.92 5.90 6.60 7.63 7.05 7.05 7.50 7.44 2.63 N/A N/A 13.13 0.61
Jt. train. (upp. bd.) ✓ ✓ ✓ ✓ 86.23 65.90 60.51 59.04 53.53 53.85 46.73 46.60 43.85 36.67 37.31 36.80 N/A N/A 52.25 0.16

LwF+[26] ✓ 92.03 59.10 43.64 18.49 10.49 6.82 3.59 2.54 3.10 2.56 2.10 2.23 1.77 1.54 17.86 0.52
ScaIL[3] ✓ 92.03 37.10 13.92 13.36 14.87 18.36 21.72 23.28 24.33 27.62 29.59 31.54 32.36 34.08 29.58 0.49
Weight Align+ [57] ✓ ✓ ✓ 92.03 36.74 24.15 20.51 22.31 24.82 26.41 26.85 27.26 31.49 32.26 35.28 36.72 37.69 33.89 0.46
Subsp. Reg.+ [2] ✓ ✓ ✓ 92.03 52.72 28.95 15.92 12.08 10.82 10.90 11.49 12.05 12.03 11.77 11.72 12.54 14.36 22.10 0.45
Knowe (Ours) ✓ ✓ ✓ ✓ 91.35 66.90 45.69 35.54 30.56 29.21 30.10 29.95 30.85 33.74 35.36 38.54 40.26 42.21 41.45 0.38

ANCOR[6] ✓ 92.03 5.36 5.67 5.49 5.18 6.51 5.82 4.80 5.39 6.28 5.36 5.13 5.26 5.62 11.71 0.57
Jt. train. (upp. bd.) ✓ ✓ ✓ ✓ 91.35 66.90 57.54 49.92 50.59 48.64 47.69 44.41 41.72 39.13 39.62 40.72 38.49 37.26 49.57 0.24

Table 3: Performance on BREEDS nonliving26 (top) and entity13 (bottom).

Method Contr. learn. Decoupled Frozen Normalization 0 1 2 3 4 5 6 7 8 9 10 Ā ↑ F ↓

LwF+[26] ✓ 78.39 41.87 28.00 23.80 14.93 10.53 8.00 8.80 6.47 7.33 6.73 21.35 0.51
ScaIL[3] ✓ 78.39 14.47 14.13 18.07 21.00 25.20 26.20 31.87 32.60 36.53 38.20 30.61 0.52
Weight Align+ [57] ✓ ✓ ✓ 78.39 13.20 14.13 18.20 21.20 24.60 26.93 32.33 32.60 38.93 38.46 30.82 0.53
Subsp. Reg.+ [2] ✓ ✓ ✓ 78.39 41.47 31.80 32.87 26.73 25.73 25.27 26.73 24.27 25.73 24.00 33.00 0.43
Knowe (Ours) ✓ ✓ ✓ ✓ 72.07 36.00 28.13 30.27 32.20 31.20 30.93 36.33 39.27 43.20 43.93 38.50 0.42

ANCOR[6] ✓ 78.39 7.93 7.13 8.27 7.80 8.60 6.40 7.53 6.93 8.20 8.33 14.14 0.59
Jt. train. (upp. bd.) ✓ ✓ ✓ ✓ 72.07 36.00 37.07 40.27 40.13 41.33 38.60 41.13 40.47 41.40 43.47 42.90 0.33

LwF+[26] ✓ 87.64 69.36 13.88 4.22 4.05 4.03 3.02 2.74 1.44 1.05 1.06 17.50 0.55
ScaIL[3] ✓ 87.64 48.51 33.12 26.15 22.66 22.77 23.42 22.72 23.38 25.17 26.65 32.93 0.40
Weight Align+ [57] ✓ ✓ ✓ 87.64 25.13 18.63 18.37 20.08 22.20 24.22 24.73 26.71 29.00 30.45 29.74 0.48
Subsp. Reg.+ [2] ✓ ✓ ✓ 87.64 49.73 32.06 24.35 20.95 20.76 20.84 21.12 21.79 23.15 24.31 31.52 0.42
Knowe (Ours) ✓ ✓ ✓ ✓ 76.15 48.24 30.60 25.60 22.34 23.48 24.79 24.69 27.65 30.26 31.87 33.24 0.39

ANCOR[6] ✓ 87.64 7.10 6.69 6.55 6.36 6.57 6.42 6.55 6.55 6.40 5.17 13.82 0.61
Jt. train. (upp. bd.) ✓ ✓ ✓ ✓ 76.15 48.24 39.89 34.09 32.21 30.85 28.81 29.86 28.57 28.74 29.06 36.95 0.32

Table 4: Comparison with others on CIFAR-100 (top table) and tieredImageNet.

Aligning ranks 2nd on BREEDS, Sub. Reg. ranks 2nd on CIFAR-100, and ScaIL
ranks 2nd on tIN (consistent across two metrics). LwF has poor numbers, which
implies that, with no samples retained, KD does not help.

Total accuracy per session decreases over time yet slower and slower for
Knowe and SOTA methods. However, outstanding ones decrease first and then
rise, because that the proportion of fine classes in the query set gets higher and
their accuracy plays a leading role in the total accuracy. Knowe is the best,
with a strong rising trend, which satisfies the aim of CIL the most and envisions
Knowe continuing performing well when more sessions are added (Table 3) .
Sub. Reg. and Weight Align. often have 2nd-best numbers (both freeze weights);
ScaIL and LwF occasionally do.

Coarse class accuracy decreases over time unavoidably (see Fig. 5), while
Knowe and SOTA methods slow down the decay, with comparable rates. As
IL methods, Weight Aligning, ScaIL, and LwF do not forget knowledge totally
although they do not operate weights as done by Knowe. As an non-IL approach,
ANCOR totally forgets old knowledge from the 1st session because it fine-tunes
on the few fine shots without any extra operation to retain coarse knowledge.
The joint training on all fine classes till the present is non-IL, and in principle
should bound the fine-class performance. Interestingly, it also suffers less from
coarse acc decay, the rate of which is much lower (Fig. 5). Differently, the cause
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Fig. 5: Accuracy comparison on all datasets. Top-down: total, coarse, fine.

can be imbalance between increasing fine classes and coarse classes. Knowe’s
performance is very competitive and indeed bounded by joint training.

Fine class’s total accuracy normally decreases over time yet slower and
slower for Knowe and SOTA methods (Fig. 5), and can be maintained in a similar
range for most methods, among which Knowe often stays the highest, ScaIl and
Weight Aligning are in the middle, Sub Reg. often stays in a low level, and LwF
and ANCOR perform stably the worst. Knowe is the most balanced, while Sub.
Reg. biases towards stability that is its drawback. Joint training does not bound
the accuracy, possibly due to few shots.

Compared works. All empirically-compared CIL methods and ours are
no-rehearsal ones. On the other hand, joint training is rehearsal-based.

7 Conclusion

In this paper, we present a new problem together with new metrics, and theo-
retically analyze why a simple approach can solve it well in the sense of getting
more balanced performance than the SOTA. While it is not new to freeze or
normalize weights, we are unaware of them previously being presented as a prin-
cipled approach (to CIL) that is as simple as fine-tuning. It makes pre-trained
big models more useful for finer-grained tasks. For C2FSCIL with a linear classi-
fier, weights seem to be the knowledge. However, how generic are our findings in
practice? Can they be applied to general FSCIL? If yes, we are more comfortable
with that answer, but then how does a class hierarchy make a difference? Future
work will include examining those questions, non-linear classifiers, and so on.
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