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A Further Method Details and Overview

Recall in Section [3:2] to leverage information across a semantic spectrum, we
extract features from throughout ResNet-50, instead of using only features from
the final convolutional map as in [22]. Following the notation in Section and
Section we provide a formal description of this procedure here.

Concretely, given a layer [, we define yl!l = fl(v) e RPFHrxWr a5 the
feature map of height Hp, width W and feature resolution Dy obtained at the
1" layer of encoding via f . Then given a predefined set of layers £, we obtain a
final feature map F e RP#*H PWE yig simple layer fusion:

F = [ (f1(v)): Sa(F ()5 Si (S (v))]. i e £ (5)

where S; is a bilinear upsampling or downsampling layer which projects the
feature map at layer [ to a desired, common spatial dimensionality Hf, x W, for
the concatenation operator [- ; -]. In our work, we let £ = {res2,res3,res4}.

We also provide pseudo-code to outline our framework. In Algorithm [1, we
detail our KMeans bootstrapping process (c.f. Section . In Algorithm
we describe the von Mises-Fisher (vMF) clustering consistency loss (c.f. Sec-
tion . Finally, in Algorithm |3] we show how these two components fit into
the larger framework. Input parameters and hyperparameters are described in
the corresponding sections of the main text.

Algorithm 1 Bootstrap segmentation masks (for a single batch of images {I}).

function BOOTSTRAPMASKS( fo, {1}, £, Kmin, Kmaz)
Extract feature map y = fg[e]({l})
Sample K ~ Unif(Kmin, Kmaz) > Scale-dynamic sampling
KMeans clustering on y with K clusters to obtain feature prototypes P
{M} « Label features in y via Euclidean-closest prototype in P
Interpolate {M} to spatial dimensions of {I}
return Masks {M}
end function

Algorithm 2 Clustering consistency loss (for a single batch of images {I}).

function CLUSTCONSISTENCY (fo, fe, €, {1}, K, Aioss)
Augmentations t ~ T, t" ~ T’
v=t({I}),v' =t'({I})
Extract feature maps y = fe[e] (v),y' = fg](v')
KMeans clustering on y,y’ with K clusters to obtain feature prototypes P, P’
L= Aloss‘cclus >
Update fp to minimize £, fe as EMA of fs

end function
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Algorithm 3 CYBORGS Training Flow (for a single batch of images {I}).
for:=1:W do

CLUSTCONSISTENCY (fo, fe, £, {1}, K, 1) > vMF warmup period
end for
Masks {M} = BOOTSTRAPMASKS( fo, {1}, £, Kimin, Kmaz) > Section

fort=W+1,W+2,..., do:
if t % N ==0 then
Masks {M} = BOOTSTRAPMASKS( fo, {I}, £, Kimin, Kmaz)
end if
Augmentations t ~ T, t" ~ T’
v = t({1}), v = ' ({T})
Extract object-level representations hm, h,,, using {M} > (1)
L= ﬂmask > "
Update fp to minimize £, fe as EMA of fs
if t % M ==0 then
CLUSTCONSISTENCY ( fo, fe, £, {1}, K, AonrF)
end if
end for

B Experimental Details

Linear transfer. We perform linear classification on PASCAL VOCO07 and semi-
supervised linear transfer on ImageNet-1k, akin to [52]. For VOC07, we extract
a frozen feature map from the penultimate layer of our ResNet-50 pretrained
backbone, before downsampling to a 2x2 spatial grid via adaptive average pooling.
We flatten and ¢2-normalize the features, yielding R3192 feature vectors. We then
train per-class SVMs on the trainval split, performing a 3-fold cross validation
on costs C' € {0.01,0.1,1.0,10.0}, before evaluating mAP on the test split.

For ImageNet-1k, we follow settings from [52] and finetune our backbone on
the 1% and 10% training subset splits as released in [4]. We report the top-1 and
top-5 accuracy on the official val split.

PASCAL VOC object detection. For object detection, we initialize a ResNet-50-C4
backbone with pretrained weights from CYBORGS, before inserting into a Faster
RCNN architecture. We then finetune with the trainval07+12 split from PASCAL
VOC, before reporting all metrics on the test2007 split via the Detectron2 API
[49]. We use all default training settings from [42] for standardized comparison.

COCO instance segmentation. For segmentation, we initialize a ResNet-50-FPN
backbone with pretrained weights from CYBORGS, before inserting into a Mask
RCNN architecture. We then finetune with the train2017 split from COCO, before
reporting all metrics on the val2017 split via the Detectron2 API [49]. Again, we
use all default training settings from [42] for standardized comparison, except we
follow a 1x training schedule with learning rate decay scheduled accordingly.
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Method Pretraining Data mloU
1) RANDOM INIT. 63.5
2) SUPERVISED Supervised, ImageNet 73.7
3) SIMCLR [9] ImageNet 73.1
4) ByoL [17] ImageNet 71.6
5) Moco-v2 [11] ImageNet 74.5
6) DENSECL [46] ImageNet 75.7
7) pETCO [51] ImageNet 76.5
8) Moco-v2 [I1] COCO 73.8
9) DENSECL [40] COCO 75.6
10) BYOL [17] COCO 72.2
11) orwL [52] COCO 72.7
12) CYBORGS(ours) COCO 75.9

Table C.1: Transfer Learning on CityScapes, ResNet-50 backbones.

LVIS, 1x schedule

Pretraining
Method

bb bb bb mk mk mk

Data APPP APED APPD Apmk pApmk Apml

1) SUPERVISED - 20.4 329 21.7 194 30.6 20.5
2) soco [T ImageNet 26.3 41.2 27.8 25.0 38.5 26.8
3) DENSECL [46] CcOCO 20.0 32.3 20.9 19.7 31.0 20.8
4) BYOL [17] COCO 19.8 32.6 20.8 19.4 30.5 20.5
5) orL [52] CcOCO 20.5 33.5 21.5 20.1 31.5 214
6) CYBORGS(ours) COCO 23.9 38.3 25.2 23.4 36.2 24.7

Table C.2: Transfer Learning on LVIS, ResNet-50 backbones.

C Further Semantic Segmentation Results

CityScapes semantic segmentation We further evaluate the segmentation prowess
of CYBORGS representations by transferring to out-of-distribution data. We choose
the real-world urban driving scenes CityScapes dataset, and follow the finetuning
protocol of [46], training a FCN model on the train_fine split (2975 images) for
40k iterations before testing on the val split. We demonstrate strong results even
when compared to state-of-the-art ImageNet-pretrained SSL methods, suggesting
that our bootstrapping of segmentation masks can lead to representations which
sensibly adapt to similar segmentation tasks under different data distributions.
In particular, we outperform (+0.3 mIoU) DENSECL [46], which is a contrastive
learning method specifically designed for strong downstream performance on
dense prediction tasks, including object detection and semantic segmentation.

LVIS long-tail instance segmentation. An emerging property of self-supervised
representations is their ability to generalize to the semantics of unseen, diverse
object distributions [15] [43] 48]. By assessing transfer performance of CYBORGS
on the LVIS long-tail instance segmentation benchmark, with 1203 object cat-
egories across ~164k images [I§], we hope to verify a similar property in our
representations.

We follow the standard finetuning protocol in [42], adjusting parameters for
a 1x schedule. In comparison to other SSL methods pretrained on COCO, we
offer a significant improvement of +3.4 APP® and +3.3 AP™k,



