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A Further Method Details and Overview

Recall in Section 3.2, to leverage information across a semantic spectrum, we
extract features from throughout ResNet-50, instead of using only features from
the final convolutional map as in [22]. Following the notation in Section 3.1 and
Section 3.2, we provide a formal description of this procedure here.

Concretely, given a layer l, we define y[l] = f [l](v) ∈ RDF×HF×WF as the
feature map of height HF , width WF and feature resolution DF obtained at the
lth layer of encoding via f . Then given a predefined set of layers L, we obtain a
final feature map F ∈ RD′F×H

′

F×W
′

F via simple layer fusion:

F = [S1(f [1](v));S2(f [2](v));⋯;Sl(f [l](v))],∀l ∈ L (5)

where Sl is a bilinear upsampling or downsampling layer which projects the
feature map at layer l to a desired, common spatial dimensionality H ′F ×W ′

F for
the concatenation operator [⋅ ; ⋅]. In our work, we let L = {res2,res3,res4}.

We also provide pseudo-code to outline our framework. In Algorithm 1, we
detail our KMeans bootstrapping process (c.f. Section 3.3). In Algorithm 2,
we describe the von Mises-Fisher (vMF) clustering consistency loss (c.f. Sec-
tion 3.4). Finally, in Algorithm 3, we show how these two components fit into
the larger framework. Input parameters and hyperparameters are described in
the corresponding sections of the main text.

Algorithm 1 Bootstrap segmentation masks (for a single batch of images {I}).
function BootstrapMasks(fθ,{I}, ℓ,Kmin,Kmax)

Extract feature map y = f [ℓ]θ ({I})
Sample K ∼ Unif(Kmin,Kmax) ▷ Scale-dynamic sampling
KMeans clustering on y with K clusters to obtain feature prototypes P
{M} ← Label features in y via Euclidean-closest prototype in P
Interpolate {M} to spatial dimensions of {I}
return Masks {M}

end function

Algorithm 2 Clustering consistency loss (for a single batch of images {I}).
function ClustConsistency(fθ, fξ, ℓ,{I},K,λloss)

Augmentations t ∼ T , t′ ∼ T ′
v = t({I}),v′ = t′({I})
Extract feature maps y = f [ℓ]θ (v),y

′ = f [ℓ]ξ (v
′)

KMeans clustering on y,y′ with K clusters to obtain feature prototypes P,P′

L = λlossLclus ▷ (3)
Update fθ to minimize L, fξ as EMA of fθ

end function
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Algorithm 3 CYBORGS Training Flow (for a single batch of images {I}).
for i = 1 ∶W do

ClustConsistency(fθ, fξ, ℓ,{I},K,1) ▷ vMF warmup period
end for

Masks {M} = BootstrapMasks(fθ,{I}, ℓ,Kmin,Kmax) ▷ Section 3.3

for t =W + 1,W + 2, . . . , do:
if t % N == 0 then

Masks {M} = BootstrapMasks(fθ,{I}, ℓ,Kmin,Kmax)
end if
Augmentations t ∼ T , t′ ∼ T ′
v = t({I}),v′ = t′({I})
Extract object-level representations hm,h′m′ using {M} ▷ (1)
L = Lmask ▷ (2)
Update fθ to minimize L, fξ as EMA of fθ
if t % M == 0 then

ClustConsistency(fθ, fξ, ℓ,{I},K,λvMF )
end if

end for

B Experimental Details

Linear transfer. We perform linear classification on PASCAL VOC07 and semi-
supervised linear transfer on ImageNet-1k, akin to [52]. For VOC07, we extract
a frozen feature map from the penultimate layer of our ResNet-50 pretrained
backbone, before downsampling to a 2×2 spatial grid via adaptive average pooling.
We flatten and ℓ2-normalize the features, yielding R8192 feature vectors. We then
train per-class SVMs on the trainval split, performing a 3-fold cross validation
on costs C ∈ {0.01,0.1,1.0,10.0}, before evaluating mAP on the test split.

For ImageNet-1k, we follow settings from [52] and finetune our backbone on
the 1% and 10% training subset splits as released in [4]. We report the top-1 and
top-5 accuracy on the official val split.

PASCAL VOC object detection. For object detection, we initialize a ResNet-50-C4
backbone with pretrained weights from cyborgs, before inserting into a Faster
RCNN architecture. We then finetune with the trainval07+12 split from PASCAL
VOC, before reporting all metrics on the test2007 split via the Detectron2 API
[49]. We use all default training settings from [42] for standardized comparison.

COCO instance segmentation. For segmentation, we initialize a ResNet-50-FPN
backbone with pretrained weights from cyborgs, before inserting into a Mask
RCNN architecture. We then finetune with the train2017 split from COCO, before
reporting all metrics on the val2017 split via the Detectron2 API [49]. Again, we
use all default training settings from [42] for standardized comparison, except we
follow a 1x training schedule with learning rate decay scheduled accordingly.
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Method Pretraining Data mIoU

1) random init. – 63.5
2) supervised Supervised, ImageNet 73.7

3) simclr [9] ImageNet 73.1
4) byol [17] ImageNet 71.6
5) moco-v2 [11] ImageNet 74.5
6) densecl [46] ImageNet 75.7
7) detco [51] ImageNet 76.5

8) moco-v2 [11] COCO 73.8
9) densecl [46] COCO 75.6
10) byol [17] COCO 72.2
11) orl [52] COCO 72.7
12) cyborgs(ours) COCO 75.9

Table C.1: Transfer Learning on CityScapes, ResNet-50 backbones.

Method
Pretraining

Data

LVIS, 1x schedule

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

1) supervised – 20.4 32.9 21.7 19.4 30.6 20.5
2) soco [47] ImageNet 26.3 41.2 27.8 25.0 38.5 26.8

3) densecl [46] COCO 20.0 32.3 20.9 19.7 31.0 20.8
4) byol [17] COCO 19.8 32.6 20.8 19.4 30.5 20.5
5) orl [52] COCO 20.5 33.5 21.5 20.1 31.5 21.4
6) cyborgs(ours) COCO 23.9 38.3 25.2 23.4 36.2 24.7

Table C.2: Transfer Learning on LVIS, ResNet-50 backbones.

C Further Semantic Segmentation Results

CityScapes semantic segmentation We further evaluate the segmentation prowess
of cyborgs representations by transferring to out-of-distribution data. We choose
the real-world urban driving scenes CityScapes dataset, and follow the finetuning
protocol of [46], training a FCN model on the train fine split (2975 images) for
40k iterations before testing on the val split. We demonstrate strong results even
when compared to state-of-the-art ImageNet-pretrained SSL methods, suggesting
that our bootstrapping of segmentation masks can lead to representations which
sensibly adapt to similar segmentation tasks under different data distributions.
In particular, we outperform (+0.3 mIoU) densecl [46], which is a contrastive
learning method specifically designed for strong downstream performance on
dense prediction tasks, including object detection and semantic segmentation.

LVIS long-tail instance segmentation. An emerging property of self-supervised
representations is their ability to generalize to the semantics of unseen, diverse
object distributions [15, 43, 48]. By assessing transfer performance of cyborgs
on the LVIS long-tail instance segmentation benchmark, with 1203 object cat-
egories across ∼164k images [18], we hope to verify a similar property in our
representations.

We follow the standard finetuning protocol in [42], adjusting parameters for
a 1x schedule. In comparison to other SSL methods pretrained on COCO, we
offer a significant improvement of +3.4 APbb and +3.3 APmk.


