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1 Compare with More Existing Methods

We compare our method with more semi-supervised learning and novel class dis-
covery baselines, including PRL+[14], ORCA+[2] and GCD[12]. Also, we apply
different backbone architectures on our method to compare with different exist-
ing methods fairly. Furthermore, we validate the effectiveness of PSS over the
more advanced self-supervised methods for model pretraining, such as SwAV
[4] and DINO[5]. Lastly, we experiment with other clustering algorithms of
HAC/DBSCAN to be used within our PSS progressive design.

Baselines with ResNet-50 backbone architecture We train PRL+ and
ORCA+ with a ResNet-50 backbone. We adapt PRL to the open-world repre-
sentation learning setting and denote it as PRL+. PRL uses in-degrees of nodes
in a k-nearest-neighbors (k-NN) graph built over input features as the sample
selection criterion. Thus, we replace the sample selection criterion of PSS to node
in-degrees for PRL+. For ORCA+, we train an ORCA model to generate pseudo
labels for U and re-train the feature extractor with Smooth-AP loss on Lin ∪ U .
We adapt ORCA to our open-world representation learning setting in this way
because it only has Cin and Cout classification heads but not the Ctest classi-
fication head and in our practical setting, test set novel classes and unlabeled
samples are unavailable during training. Table 2 shows the retireval performance
of PSS, PRL+, and ORCA+ over the iNaturalist benchmark, all of which use
ResNet-50 as the feature extractor backbone. Benefiting from the progressive
pipeline and sample selection method, PSS outperforms the other two existing
methods. Also, though PRL+ also improves across iterations (Recall@1: 0.5376
→ 0.5433 → 0.5458 → 0.5465), PSS with its homogeneity density metric signif-
icantly outperforms this alternative density metric, achieving Recall@1 0.5714
as opposed to 0.5465, demonstrating the effectiveness of our sample selection
method.
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Table 1: iNaturalist challenging
dataset split: attributes of the
labeled, unlabeled and test set

split #images #classes #super-classes

Lin 25,440 948 7
U 300,406 5,690 14
test 136,093 2,452 13

Table 2: Retrieval performance of PSS and ex-
isting methods using ResNet-50 backbone on
iNaturalist

method backbone Recall@1 Recall@4 Recall@16 Recall@32

PRL+[14] ResNet-50 0.5465 0.7172 0.8352 0.8788
ORCA+[2] ResNet-50 0.5413 0.7187 0.8395 0.8830

PSS ResNet-50 0.5714 0.7357 0.8501 0.8914

Baselines with ViT backbone architecture We train GCD with a 16 patch
size ViT-Base backbone pretrained with DINO[5] on ImageNet. To compare
with GCD fairly, we also train PSS with the same backbone. Using the same
dataset split in the main paper, the retrieval performance of the supervised
baseline (with Lin only) in Recall@1 is 0.6822, which is already similar to the
oracle performance (0.6823) using all ground truth of Lin ∪ U . We believe it is
due to the randomly sampled Lin from all of the super categories in iNaturalist
already being a strongly representative training set over a higher-capacity vision
transformer backbone and more generalized DINO pretrained feature. Thus, we
extend our dataset split to a even more practical and challenging setting as
follows.

The fine-grain categories over all data in iNaturalist are from 14 super-classes,
we randomly sample about 16% of the training classes in 7 super-classes instead
of all super-classes as the seen classes Cin, and take 60% of the images from each
class in Cin as the labeled training set Lin. The attributes of the new dataset split
is shown in Table 1. Compared with the previous dataset split, Lin in the new
split has larger distribution gap with U and the test set, thus more challenging.

We validate the performance of GCD and PSS using ViT backbone on this
more challenging dataset split, see Table 3. PSS outperforms GCD and the
progressive method generalizes to the stronger vision transformer backbone. It
also validates the robustness of PSS over different backbones. Note that the su-
pervised baseline outperforms GCD because different feature extractor training
losses are used (smooth-ap [1] for the supervised baseline as opposed to noise
contrastive [8] and supervised contrastive [9] for GCD).

More advanced self-supervised methods for pretraining We also apply
PSS over supervised baselines pretrained with more advanced self-supervised ap-
proaches such as SwAV [4] and DINO[5] to test its generalization. In particular,
we adopt these unsupervised methods via self-supervised pretraining followed-
by fine-tuning over our labeled train set, similar to the adaptation of DINO for
the supervised baseline over ViT backbones in GCD [12]. The nature image re-
trieval performance improvement of PSS (0.6699) over the supervised baseline
(DINO[5] pretrained, 0.6550) shown in Table 3 illustrates the superior general-
ization capability of PSS over stronger pretrained features. Furthermore, Table
4 demonstrates the progressive retrieval performance improvement in PSS over
the supervised baseline pretrained with SwAV [4] through self-supervision. Here
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we use the same challenging dataset split as the one in DINO pretraining and
the GCD [12] experiment above. It shows that PSS is able to generalize over
SwAV[4] pretrained supervised baseline models as well.

Other clustering methods We also experimented with other clustering al-
gorithms of HAC/DBSCAN in the PSS progressive design (Table 5). Here, we
keep all other design choices the same and only alter the clustering method. It is
observed that alternative clustering methods (such as HAC, achieving Recall@1:
0.5376 → 0.5479 → 0.5502 across iterations) are also applicable to our PSS
framework for progressive performance improvements while HiLANDER brings
the most gain. In addition, high computational efficiency is essential for PSS
because it runs clustering and feature refinement over multiple iterations. With
HAC/DBSCAN, the clustering run-time is prohibitively expensive across itera-
tions. Thus, we select HiLANDER to be used with PSS due to its high clustering
pseudo-label quality and fast runtime.

Table 3: Retrieval performance of PSS and GCD using ViT-Base/16 backbone
on iNaturalist. PSS outperforms GCD

method backbone Recall@1 Recall@4 Recall@16 Recall@32

sup. baseline (DINO[5] pretrain) ViT-Base/16 0.6550 0.7993 0.8895 0.9214
GCD[12] ViT-Base/16 0.6203 0.7763 0.8774 0.9130

PSS ViT-Base/16 0.6699 0.8126 0.9006 0.9306

Table 4: Retrieval performance of PSS over the supervised baseline with SwAV[4]
pretraining on iNaturalist. PSS generalizes over SwAV[4] pretrained models

method backbone Recall@1 Recall@4 Recall@16 Recall@32

sup. baseline (SwAV[5] pretrain) ResNet-50 0.5384 0.7021 0.8218 0.8678

PSS iter1 ResNet-50 0.5385 0.7023 0.8226 0.8684
PSS iter2 ResNet-50 0.5402 0.7047 0.8235 0.8696
PSS iter3 ResNet-50 0.5415 0.7051 0.8251 0.8706



4 Cao et al.

Table 5: Retrieval performance of PSS with other clustering methods over iNat-
uralist

method backbone Recall@1 Recall@4 Recall@16 Recall@32

sup. baseline ResNet-50 0.5376 0.7135 0.8359 0.8817
PSS w. DBSCAN ResNet-50 0.5477 0.7227 0.8409 0.8847

PSS w. HAC ResNet-50 0.5502 0.7230 0.8435 0.8864
PSS w. HiLANDER ResNet-50 0.5714 0.7357 0.8501 0.8914

Table 6: Training efficiency and accuracy comparison of PSS and prior works on
the nature species retrieval and face verification benchmarks

Benchmark Method U selection criteria Total Training Samples
Performance

(R@1 / FNMR@FMR1e-4)

iNaturalist

PL [10] All 354,857 0.5447
Hi-LANDER [13] All 354,857 0.5421

UNO [7] All 651,692 0.5372
Deep Clustering [3] All 1,006,549 0.5548

PRL+ [14] Node Indegree 507,055 0.5465
ORCA+ [2] All 651,692 0.5413

PSS Density 262,937 0.5714

IJBC

DBSCAN [6] All 8,554,382 0.4203
GCN-V [15] All 8,554,382 0.2508

Hi-LANDER [13] All 8,554,382 0.2472
RoyChowdhury et al [11] Identity Disjoint Set 2,706,271 0.2706

Deep Clustering [3] All 15,983,890 0.2234
PSS Density 6,939,329 0.2165

2 Efficiency and Accuracy Comparison

In Table 6, we list the unlabeled set sample selection criteria, total number of
training samples and corresponding accuracy for all compared prior works. Total
training samples stands for a summation of samples used across all training steps
(one-time sample selection or iterative) of pseudo-labeler and feature extractor.
For instance, PL [10] trains a pseudo-labeler with 29, 011 images from Lin and
a feature extractor with 325, 846 images from Lin ∪ U , ending up with a total
number of 354, 857. Table 1 of the main paper shows the dataset attributes over
nature species retrieval and face verification. With the same feature extraction
backbone, these numbers are proportional to the training efficiency of compared
methods. On iNaturalist, PSS is the most training efficient method while achiev-
ing the highest Recall@1. Similarly, on the IJBC face verification benchmark,
PSS utilizes the second least number of training samples to obtain the lowest
FNMR. Note that RoyChowdhury [11] selects from unlabeled set U only once.

3 Qualitative Visualization

We qualitatively visualize some training set samples T and selected samples
Uselected which are “far” and “close” to T in the 1st iteration of PSS, see Figure 1.
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We use the new dataset split in Section 1 for the qualitative visualization here.
Note that “far” and “close” Uselected has large and small distance-to-closest-
labeled-class respectively. It is observed that some “far” Uselected samples are
from super-classes Aves, Animalia, and Plantae, which are not in the existing
labeled training set T . It shows that our density-based sample selection method
has the ability to include some far-away samples to the existing labeled training
set, thus can expand the feature space and improve representation generalization.

Insecta Reptilia

Insecta Reptilia

Aves Animalia Plantae

T

“close” 
Uselected

“far” 
Uselected

T

Fig. 1: Some qualitative visualization of selected samples Uselected which are “far”
and “close” to the training set T in terms of distance-to-closest-labeled-class

4 FAQ

Why does DeepClustering for face verification stop after iteration 2?
It’s highly costly to run DeepClustering for face verification beyond itera-
tion 2. Even at the 2nd iteration, DeepClustering is already greater than 2
times more costly than PSS as it requires more than twice number of sam-
ples over its iterative feature training process, as shown in Table 6. We also
found that if we run DeepClustering to its original stopping criterion for face
verification, though the error rate can get further reduced (0.2234 to 0.2014
FNMR@FMR1e-4), the cost grows further, with 3 times (23,413,398 training
samples) of the cost of PSS (6,939,329 training samples).
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