
Improving Self-supervised Lightweight Model
Learning via Hard-aware Metric Distillation

Hao Liu2, Mang Ye1,3⋆

1 School of Computer Science, Wuhan University
2 School of Computer Science, Beijing Institute of Technology

3 Hubei Luojia Laboratory
https://github.com/liuhao-lh/SMD

Abstract. The performance of self-supervised learning (SSL) models is
hindered by the scale of the network. Existing SSL methods suffer a pre-
cipitous drop in lightweight models, which is important for many mobile
devices. To address this problem, we propose a method to improve the
lightweight network (as student) via distilling the metric knowledge in a
larger SSL model (as teacher). We exploit the relation between teacher
and student to mine the positive and negative supervision from the unla-
beled data, which captures more accurate supervision signals. To adap-
tively handle the uncertainty in positive and negative sample pairs, we
incorporate a dynamic weighting strategy to the metric relation between
embeddings. Different from previous self-supervised distillers, our solu-
tion directly optimizes the network from a metric transfer perspective
by utilizing the relationships between samples and networks, without
additional SSL constraints. Our method significantly boosts the perfor-
mance of lightweight networks and outperforms existing distillers with
fewer training epochs on the large-scale ImageNet. Interestingly, the SSL
performance even beats the teacher network in several settings.

1 Introduction

As an effective way to explore the information in the data itself, self-supervised
learning (SSL) can obtain discriminative task-agnostic representations, while al-
lowing the training without prohibitively expensive data annotation. Recently,
there has been impressive progress in SSL [4,6,7,11,15,35]. Some SSL models
trained on the large-scale ImageNet without labels have achieved comparable
or even better accuracy than the supervised models when transferred to down-
stream tasks, such as semi-supervised image classification and object detection.

Generally, the gap between supervised and self-supervised is much smaller
when increasing the capacity of the network architecture [1]. Therefore, the top-
performing SSL algorithms usually require large networks as their backbone.
This greatly limits the applicability of SSL for many mobile devices with limited
capacity, i.e., the lightweight model is preferred in edge computing applications.
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Fig. 1: Comparison with existing self-supervised distillers. X is the input images.
The red arrow indicates the knowledge transfer direction. Both (a) CompRess
[1] and (b) SEED [9] transfer the knowledge of the similarity between a sample
and a negative memory bank. (c) DisCo [10] constrains the last embedding of
the student to be consistent with that of the teacher. (d) Our SMD mines and
optimizes the metric relationship between samples in a batch, which does not
need to maintain a memory bank. It also utilizes embedding relations between
the teacher and student models.

However, existing SSL methods do not work well on the lightweight network. For
example, the linear evaluation of MobileNet-V3-Large [19], its Top-1 accuracy on
ImageNet using MoCo-V2 is only 36.2%, which is far from satisfying compared
to its fully supervised counterparts 75.2% [10]. This motivates us to investigate
a feasible solution to design powerful lightweight SSL models.

To learn better representations for lightweight self-supervised models, many
researchers set out to solve this problem from the perspective of knowledge dis-
tillation. Most supervised distillers [18,29] cannot be extended to self-supervised
distillation since the self-supervision paradigm does not contain any training
labels. We illustrate some recently proposed self-supervised distillers in Fig.1.
CompRess [1] and SEED [9] utilize the memory bank in MoCo [15] for knowl-
edge transfer. DisCo [10] and SimDis [12] extract extra supervision from the
representation and optimize the student model by aligning the features between
the same samples. However, they are constrained by the self-supervised learning
framework that simply assumes non-target images as negative samples. None of
them has explored the relationships between samples under the self-supervised
knowledge distillation task.

In the well-trained larger SSL teacher space, we assume that the distance
between positive sample pairs is small, and the distance between negative sample
pairs is large. During the distillation, the lightweight student optimizes toward
the teacher, i.e., for the same sample, the distance between the teacher features
and student features should not be large, where we name this distance as teacher-
to-student metric difference. In the teacher space, if the distance between two
samples is smaller than the above teacher-to-student metric difference, we can
consider that the distance is small enough so that these two samples are treated
as positive sample pairs. Otherwise, these two samples are negative pairs. Based
on this idea, we divide unlabeled data into positive and negative sample pairs
and thus perform effective knowledge distillation from the perspective of the
metric relation under the self-supervised learning setting, i.e., making positive
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pairs concentrated and negative pairs separated. We utilize the metric differences
between the well-trained teacher and to-be-optimized student model, acting as a
dynamic decision boundary to divide positive and negative sets without category
label supervision.

In this work, we propose a novel Self-supervised Metric Distillation (SMD)
for lightweight model learning. Specifically, we optimize the metric relation be-
tween teacher and student embeddings. Unlike previous self-supervised training
and distillation methods, we focus on optimizing difficult pairs rather than all
sample pairs. Therefore, we introduce a hard mining strategy to improve the
widely adopted Info-NCE [23]. Inevitably, there will be some incorrectly di-
vided positive and negative sample pairs. To reduce their influence, we generate
weight coefficients based on the metric relation between teacher and student
embeddings. This prevents incorrectly divided samples from affecting the opti-
mization and also gives different sample pairs different optimization strengths,
thereby effectively improving the performance of the student model. With the
help of the above strategies, our SMD has achieved compelling results without
any complex projectors [10,12] or a huge negative sample queue [9,1].

Our method performs more accurate optimization based on the positive and
negative sample pairs mined by the teacher-guided metric difference. We present
comprehensive experiments on CIFAR100 and ImageNet to evaluate our distilla-
tion method in the self-supervised manner. Furthermore, our method can also be
deployed in a supervised distillation framework, which not only surpasses many
supervised distillation methods but also obtains state-of-the-art results. Overall,
our contributions can be summarized as follows:

– In the self-supervised distillation framework, we are the first to attempt
to explore the explicit relationship between samples and find an effective
strategy to divide positive and negative pairs from unlabeled data through
the teacher-to-student metric difference.

– We design a self-supervised hard-aware metric distillation approach that
optimizes the student embeddings by adaptively utilizing the teacher relation
supervision, which can weaken the impact of incorrectly divided samples.

– Our method significantly improves the performance of lightweight models in
the self-supervised knowledge distillation task and achieves a much higher
accuracy than other methods in self-supervised knowledge distillation.

– Our method can also be seamlessly applied in the supervised distillation
framework without network modification and achieves much a higher accu-
racy than existing supervised distillers. The learned student network even
outperforms the teacher in some settings.

2 Related Work

Supervised Knowledge Distillation is commonly used in the supervised
paradigm to improve the performance of lightweight models under extra supervi-
sion from powerful but large models, which is also called model compression [3].
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Early work achieved this by aligning the network logits [18] or the intermediate
representations [26]. Recently, many works have proposed to transfer carefully
designed statistics from teacher to student networks, which includes attention
maps [38], mutual information [2,29], probability distributions [25], maximum
mean discrepancies [20] and activation boundaries of the hidden neurons [17].
Self-supervised Knowledge Distillation. Most effective distillation have a
supervised loss term [18,29,5]. Thus, they cannot be directly applied to self-
supervised models since the self-supervision paradigm does not contain any train-
ing labels. Some recent works have made some attempts to solve this problem.
Both CompR [1] and SEED [9] are inherited from the idea of the negative sample
queue in MoCo [15]. They use KL-divergence to align two probability distribu-
tions, which is obtained by computing the similarity between the sample features
and the features stored in the queue. For DisCo [10] and SimDis [12], their core
idea is to optimize the output of the teacher model and the student model for
the same sample via L2 loss. All these methods are constrained by the idea
of the self-supervision training framework, where all samples except the target
are considered as negative samples. Our SMD attempts to dig deeper into the
relationship between samples from unlabeled data in the knowledge distillation
framework and optimize specific sample pairs directly from a metric learning
perspective, which as far as we know has not yet been investigated.

3 Proposed Method

Our SMD aims at optimizing the student features by distilling the feature em-
beddings learned from the teacher. The main idea is to find the set of positive
and negative sample pairs from the unlabeled data, then optimize the relative
distances between the fixed teacher features and optimizable student features,
reinforcing the student features’ discriminability under the teacher’s supervision.

3.1 Difference-Guided Positive and Negative Mining

Given a well-trained self-supervised teacher model f t(·) and a randomly ini-
tialized student model fs(·), the student/teacher feature of an unlabeled in-
put image xi is represented as fs(xi)/f

t(xi). The core idea of the previous
approaches[12,10] is to directly optimize the features between fs(xi) and f t(xi).
This obviously ignores the influence of the critical negative samples [14,32]. How-
ever, it is not feasible to randomly choose one of the unlabeled data as the nega-
tive sample because the network performance will be affected if the selected one
is a positive sample. Since there is a huge gap between a well pre-trained teacher
model and a randomly initialized student model. This leads us to the following
intuition: Could we find the positive and negative samples in the unlabeled data
based on the differences between teacher and student models?

Take xi as the anchor. For another image xa in the batch, we calculate
its teacher embedding f t(xa). Let D(·) be a metric function measuring the
distance between two images in the embedding space. A larger D indicates a
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Fig. 2: Schematization of SMD: 1) Feature Extraction: Teacher and student ex-
tract embeddings for unlabeled images. 2) Difference-Guided Positive and Neg-
ative Mining § 3.1: The positive and negative samples are divided according to
the embeddings of teacher and student networks. The embeddings with red tri-
angles ( ) are from the teacher network and those without red triangles are from
the student network. 3) Hard-aware Metric Distillation § 3.2: Find the hardest
samples from the positive and negative set respectively, and then optimize the
cross metric between student and teacher embeddings based on template rela-
tions. Best viewed in color. Zoom in for details.

lower similarity between two embeddings. Here, we adopt the Euclidean distance
D(f(xi),f(xj)) = ∥f̄(xi) − f̄(xj)∥2, in which f̄(xi) and f̄(xj) are normalized
embedding features. Since the teacher is well trained, D(f t(xi),f

t(xa)) is gen-
erally small if xi and xa belong to the same category. We identify xi and xa

as a positive pair when D(f t(xi),f
t(xa)) is smaller than a decision boundary,

and vice versa [34]. Here, the decision boundary about D is critical. Setting it
as a hyper-parameter is a spontaneous idea for tackling this problem, but it is
impossible to separate all positive and negative sample pairs with only one hyper-
parameter. During the distillation, the lightweight student optimizes toward the
teacher, but the cumbersome teacher network and the lightweight student mod-
els are usually very different in structure, which will make it impossible for f t(xi)
and fs(xi) to match perfectly. We name this little gap teacher-to-student metric
difference, and tentatively believe that it can provide some useful information:

(xi, xa) ∈

{
Sp
i , D(f t(xi),f

t(xa)) < D(f t(xi),f
s(xi)),

Sn
i , D(f t(xi),f

t(xa)) ≥ D(f t(xi),f
s(xi)).

(1)

For xi, other samples in the batch are divided into the positive set Sp
i and nega-

tive set Sn
i . Moreover, different samples have different teacher-to-student metric

differences D(f t(xi),f
s(xi)), which serve as the dynamical decision boundaries.
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3.2 Hard-aware Metric Distillation

We assume that the obtained Sp
i and Sn

i are both reliable. The primary goal
of our hard-aware metric distillation is to optimize the cross metric relation
between teacher and student features in the embedding space, i.e., for every
sample xi, pull f

t(xi) and fs(xj) closer while pushing f t(xi) and fs(xk) apart,
where xj ∈ Sp

i , and xk ∈ Sn
i . For simplicity, we use the shorthand notation dpij =

D(f t(xi),f
s(xj)), d

n
ik = D(f t(xi),f

s(xk)). The learning target is to increase all
dnik and decrease all dpij . To achieve this, we adopt an Info-NCE -like loss [23] to
distill the metric knowledge learned in the teacher network:

Li = − log

∑K
k=1 exp(d

n
ik/τ)∑K

k=1 exp(d
n
ik/τ) +

∑J
j=1 exp(d

p
ij/τ)

, (2)

where τ is a temperature hyper-parameter. K and J represent the number of
samples in Sn

i and Sp
i , respectively. For every xi, the student network pulls all

positive embeddings fs(xj) towards f
t(xi), and pushes all negative embeddings

fs(xk) away from f t(xi).
However, it is cost-prohibitive to perform the above optimization for all sam-

ple pairs even in a batch. To improve this, we revisit Eq.(2), in which τ is always
set to quite small [33,15,9]. This will sharpen the probability distribution [18],
which makes a few key samples dominate the entire loss. From this, we speculate
that the hardest case should play a key role. We utilize an online batch hard
mining strategy based on the Sp

i and Sn
i . Specifically, we select the positive and

negative cross-model pairs within each sampled batch online. First, we calcu-
late the cross-relation embedding distance of each image pair for the student
and teacher networks in a batch. For each anchor’s teacher embedding f t(xi),
we select its hardest positive and hardest negative samples from the student
embeddings. The online mining process is formulated as:

dpi = max
j∈Sp

i

dpij , dni = min
k∈Sn

i

dnik, (3)

where dpi and dni represent the hardest positive and negative pair mined from the
student features for anchor xi. With the selected hard positives and negatives,
our learning target evolves from Eq.(2) to:

Li = − log
exp(dni /τ)

exp(dni /τ) + exp(dpi /τ)
. (4)

The denominator only contains one hardest positive pair and one hardest neg-
ative pair. By minimizing Eq.(4), we pull the hardest positive pair closer and
push the hardest negative pair farther.

There will inevitably be some incorrectly divided sample pairs in Sp
i and Sn

i .
Though Eq.(4) allows the optimization process to focus on a few key samples, it
also amplifies the impact of these incorrectly divided pairs. We can prevent these
wrong samples from hindering the optimization process if they can be ruled out,
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i.e., assign zero weight to these samples. Here, we improve Eq.(4) by a teacher-
guided self-supervised weighting mechanism, which re-assigns the contribution
of different dpi and dni in the overall optimization process:

Lmd
i = − log

exp(ani d
n
i /τ)

exp(ani d
n
i /τ) + exp(api d

p
i /τ)

, (5)

where api and ani are non-negative weighting factors.
Given an anchor sample xi with teacher features f t(xi), we first get its hard-

est positive xjh and the hardest negative samples xkh from Sp
i and Sn

i . After
identifying the hardest sample index from all the student features, we calcu-
late the distances D(f t(xi),f

t(xjh)) and D(f t(xi),f
t(xkh)) within the teacher

embedding space. These two distances are encoded as the main guidance for
optimizing dpi and dni , so api and ani in Eq.(5) are defined in a teacher-guided
self-supervised manner as:{

api = [dpi −D(f t(xi),f
t(xjh))]+,

ani = [D(f t(xi),f
t(xkh))− dni ]+.

(6)

where D(f t(xi),f
t(xjh)) and D(f t(xi),f

t(xkh)) are template relations; []+ is
the “cut-off at zero” operation to ensure api and anj are non-negative, and also
stops the optimization process when the student network outperforms the teacher
network. When the sample pair is incorrectly divided, optimizing Eq.(5) will go
against our goal if all weighting factors are 1. With Eq.(6), the optimization will
be stopped when the false-negative samples are pushed far beyond the template
relation or false-positive samples are pulled close within the template relation.
api and ani will set the optimization of the incorrect pair right. Here the template
relation is the lower bound of the worst case. When the sample pair is correctly
divided, the ideal convergence status is that dpi and dni are better than the tem-
plate relation instead of pulling positive samples as close as possible and pushing
negative samples as far as possible. This moderate training goal can also improve
the generalization ability.

3.3 Learning Constraint

Embedding Alignment. Since student and teacher networks have different
structures, their embedding spaces are often different. It is difficult for the stu-
dent network to find the correct embedding space where the teacher network
features are located since our method is to optimize the metric relationship be-
tween the features. To solve this, we added L2 constraint in the first few training
epochs to directly align the embedding space of the teacher and student networks:

Lalign
i = ||f̄ t

(xi)− f̄
s
(xi)||2.

Feature Embedding Transformation. To calculate dpi and dni in Eq.(5), a
straightforward solution is to directly adopt the backbone features of the student
and teacher networks as fs(x) and f t(x). However, the student and teacher



8 Hao Liu and Mang Ye

usually have different backbone structures, thus fs(x) and f t(x) are not directly
comparable due to different dimensions dims and dimt. Therefore, we introduce
an embedding layer e(·) to encode the student backbone features fs(x). The
embedding layer is composed of a FC layer. The output of embedding layer
fe(fs(x)) with dimension dimt takes the place of student backbone features
fs(x) for hard-aware metric distillation. Compared with the backbone features,
the feature dimension of fe(fs(x)) is easier to adjust when the teacher and
student networks have different structures.

The overall training loss for our proposed SMD is:

LSMD =
1

N

∑N

i=1
(Lmd

i + Lalign
i ), (7)

where N is the batch size. Experimentally, it is sufficient to add the L2 constraint
only in the first one or two epochs, which only accounts for 0.2% to 1% of the
whole training process. Without this constraint, the training would not converge
in most scenarios from experiments in § 4.4.

4 Experiments

4.1 Self-supervised Distillation on CIFAR100

Dataset. In this section, all the experiments are conducted on CIFAR-100 [21],
which contains 50K training images and 10K test images from a total of 100
classes. The image size is 32 × 32.
Self-Supervised Pre-training of Vanilla Network. We use SimSiam [7] to
pre-train the vanilla teacher and student network. ResNet [16] and Wide-ResNet
[37] are selected as the teacher network. A projector (a two-layer multi-layer-
perceptron (MLP) with batch normalization (BN)) and a predictor (a two-layer
MLP and the output linear layer has no BN and ReLU) are appended at the end
of the encoder (backbone) after average pooling. All networks are pre-trained for
800 epochs by a standard SGD optimizer with a momentum of 0.9 and a weight
decay parameter of 5e-4. The initial learning rate is set as 0.06 and updated by
a cosine decay scheduler with 10 warm-up epochs. The batch size is 512. For
MobileNet and ShuffleNet, the initial learning rate is 0.012.
Self-Supervised Distillation on Student Network. We choose multiple
lightweight networks as the student network: ResNet and Wide-ResNet with
fewer layers, MobileNet [27] and ShuffleNet [22]. The hyper-parameter τ is set
to 0.02. All training strategies are consistent with the vanilla network.
Linear and kNN Evaluation. In order to validate the effectiveness of our
SMD, we treat the network as a frozen feature extractor after self-supervised
pre-training/distillation and train a linear classifier on the labeled training set.
The initial learning rate is set as 30 and updated by a cosine decay scheduler.
The batch size is 256. SGD optimizer with momentum 0.9 is used for 100 epochs
training and the weight decay is 0. We also perform classification using K-Nearest
Neighbors (kNN) based on the backbone feature by taking the most frequent
label of its K (K = 200) nearest neighbors.
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T:resnet 32×4 T:WRN -40-2 T:resnet 32×4 T:ResNet-50 T:WRN -40-2
S:resnet 32 S:WRN -16-2 S:MobileNetV2 S:ShuffleNetV2 S:ShuffleNetV2

Methods kNN Top-1 kNN Top-1 kNN Top-1 kNN Top-1 kNN Top-1
Teacher 60.63 67.27 56.16 63.16 61.89 69.96 60.63 67.27 56.16 63.16
Student 46.35 52.54 48.45 58.58 26.88 35.87 31.78 48.90 31.78 48.90

L2 49.68 55.48 52.60 60.16 54.34 58.43 58.52 66.25 55.37 63.73
SSL+SMD 52.52 57.97 53.42 60.92 56.89 61.32 60.12 67.43 57.32 67.11

SMD 52.54 58.15 53.53 60.98 57.12 61.89 60.21 67.70 57.16 67.88

Table 1: Results on the CIFAR-100 under self-supervised distillation
framework. The kNN accuracy (%) and Top-1 classification accuracy (%) for
transferring across some teacher and student architectures.

Table 1 compares Top-1 accuracy using kNN and using linear evaluation
(Top-1) with different teacher-student combinations. We list the baseline results
of self-supervised pre-training using SimSiam in the first and second rows for
each teacher-student combination. We observe that our SMD consistently out-
performs the student baseline. Moreover, the performance of the student network
will be improved with a better teacher network. In addition, we explore several
alternative distillation strategies. L2: the core idea of [10] and [12]. The embed-
dings of the same image are pulled closer. SMD+SSL: add the self-supervised
loss to our method. Our SMD has a considerable improvement compared to L2

when the structure of the teacher and student network is quite different (the last
three columns). We conjecture that optimizing more abstract metric knowledge
is easier to generalize than directly pulling two embeddings that are not in the
same space closer. Moreover, we study the effect of the original SSL supervision
as supplementary loss (SSL+SMD) and find it is not necessary for distillation.
Perhaps the goals of distillation and self-supervised learning are different. Distil-
lation forces the student network to mimic the predictions of the teacher network
while self-supervised learning attempts to discover and learn latent patterns from
the data itself, where the former contains more fruitful information.

4.2 Self-supervised Distillation on ImageNet

Dataset. In this section, all the experiments are conducted on the large-scale
ImageNet 2012 dataset [8], which provides 1,281,167 images from 1,000 classes
for training and 50,000 for validation.
Self-Supervised Pre-training of Vanilla Network.We use the official model
ResNet-50 (100 epochs) released by SimSiam [7] as the teacher network. The
SimSiam baseline of the student models is trained with the official SimSiam
strategy, where all networks are pre-trained for 100 epochs by an SGD optimizer
with a momentum of 0.9 and a weight decay parameter of 1e-4. The initial
learning rate is 0.1 with a 512 batch size and updated by a cosine decay scheduler.
Self-Supervised Distillation on Student Network. We choose multiple
lightweight networks as the student network: ResNet with 18 and 34 layers,
MobileNet-V3-Large [19], EfficientNet-B0 and EfficientNet-B1 [28]. τ is set to
0.04. All training strategies are consistent with the vanilla network.
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ResNet-18 ResNet-34 Efficient-B0 Efficient-B1 Mobile-V3
Epoch Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Supervised 69.5 89.1 73.3 91.4 77.3 95.3 79.2 94.5 75.2 92.2
MoCo-V2 200 52.5 77.0 57.4 81.6 42.2 68.5 50.7 74.6 36.3 62.2
SEED 200 57.9 82.0 58.5 82.6 61.3 82.7 61.4 83.1 55.2 80.3
DisCo 200 60.6 83.7 62.5 85.4 66.5 87.6 66.6 87.5 64.4 86.2

SimSiam 100 30.5 57.2 33.4 59.7 - - - - - -
CompR-1q∗ 100 60.5 83.0 62.1 84.2 65.2 86.3 65.8 86.5 62.7 85.1

SMD 100 61.8 84.3 64.1 86.0 66.5 87.4 66.8 87.3 64.5 86.7

Table 2: Comparison of distillation methods on full ImageNet. Top-1
and Top-5 linear evaluation accuracy (%) for multiple students on full ImageNet
validation set. The teacher network for all methods is ResNet-50. MoCo-V2 and
SimSiam denote self-supervised learning baselines before distillation. We denote
by * methods where we use our re-implementation based on the paper; for all
other methods we use the results reported by their original papers. The first row
shows the supervised performances of student networks. “-” means the student
network collapses or has poor results.

Linear Evaluation. We train a linear classifier on top of the frozen network
encoder after self-supervised pre-training/distillation. Use the LARS optimizer
[36] for 90 epochs training with a cosine decay learning rate schedule. The base
learning rate is 0.1, scaled linearly with the batch size (LearningRate = 0.1 ×
BatchSize/256). The results are reported in terms of Top-1 and Top-5 accuracy.

Table 2 compares the results of different distillation objectives on multiple
teacher-student pairs. The SimSiam(baseline) even collapses in some cases, and
related studies [9] conjecture that smaller models with fewer parameters cannot
effectively learn instance-level discriminative representation with a large amount
of unlabeled data. The student models distilled by SMD outperform the coun-
terparts pre-trained by SimSiam by a large margin. Besides, we observe that our
SMD consistently outperforms all other distillation objectives. Note that SEED
[9] and DisCo [10] use the MoCo-V2 [15] training strategy that performs better
on lightweight models and needs more training epochs. Due to the computa-
tional limitation, unlike SEED and DisCo, we use the SimSiam baseline that
only needs to train 100 epochs. Almost all papers about self-supervised learning
and distillation have verified that the final results benefit from more training
epochs [6,10]. In addition, DisCo needs an MLP with a large dimension of the
hidden layer to deal with the distilling bottleneck phenomenon. SEED needs to
maintain a large negative sample queue with a length of 65,536. The additional
parameters required by our SMD are only a fully connected layer used to align
the feature dimensions of the teacher and student models. Our method achieves
better results than other methods on a weaker baseline and fewer additional
parameters, verifying that SMD can learn effective metric relationships from
unlabeled data.

The self-supervised distillation performance is greatly influenced by the train-
ing strategy, so we re-implement CompR [1] by the training strategy of SMD.
Under the same training strategy, our SMD also surpasses CompR-1q by a large
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WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 vgg13
WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 74.64
Student 73.26 71.98 69.06 69.06 71.14 70.36

KD[18] 74.92 73.54 70.66 70.67 73.08 72.98
FitNet[26] 73.58 72.24 69.21 68.99 71.06 71.02
SP[30] 73.83 72.43 69.67 70.04 72.69 72.68

RKD[24] 73.35 72.22 69.61 69.25 71.82 71.48
KDCL[13] 73.93 73.12 70.58 70.36 72.67 72.94
CRD[29] 75.48 74.14 71.16 71.46 73.48 73.94

WCoRD[5] 75.88 74.73 71.56 71.57 73.81 74.55

SMD 76.39 74.76 71.59 71.62 73.94 74.84

Table 3: CIFAR-100 Top-1 accuracy (%) under supervised distillation
framework, when the student and teacher share similar network architecture.

margin. CompR relies heavily on a huge negative sample queue with a length of
128,000. When the size of the negative sample queue decreases, their performance
drops rapidly [1]. It is worth noting that our method can outperform CompR
by directly optimizing real-time instance features with online hard mining in
a 256-size batch. Both SEED and CompR are derived from the idea of latent
negative sampling [33]. They treat all non-target unlabeled samples as negative,
which misclassifies some positive samples. Our SMD mines positive and negative
pairs from unlabeled samples, which is a good solution to this problem.

4.3 Applicability On Supervised Distillation Framework

To further highlight the superiority of SMD, we deploy our method in a su-
pervised distillation framework, the baseline of which is usually a supervised
classification problem. In the distillation part, the state-of-the-art supervised
distillation methods usually use label information for knowledge transfer. We
apply SMD to the supervised distillation framework without any modification.
The only difference between the supervised distillation and the unsupervised
distillation framework is that we must add a fully connected layer after the
backbone of the student network and a classification loss will be trained to-
gether with our Eq.(7). Note that the distillation part of our SMD does not use
any label information.

We evaluate our SMD on CIFAR-100 following the training procedure of CRD
[29] in all the experiments for fair comparisons. All the models are trained for 240
epochs by SGD, and the learning rate drops by 0.1 after 150, 180, and 210 epochs.
We set the weight decay to 5e-4, the batch size N to 64, and the momentum
to 0.9. The initial learning rate is 0.05 for all models except MobileNet and
ShuffleNet, where it is 0.01. τ is set to 0.04.

Table 3 and Table 4 list different teacher-student pairs to verify that our
method is robust. We also listed some classic methods (KD [18] and FitNet
[26]) and recently proposed methods with better performance [5,29,13,30,24].
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ResNet-50 ResNet-50 resnet32x4 resnet32x4 WRN-40-2
MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 79.34 79.34 79.42 79.42 75.61
Student 64.60 70.36 70.50 71.82 70.50

KD[18] 67.35 73.81 74.07 74.45 74.83
FitNet[26] 63.16 70.69 73.59 73.54 73.73
SP[30] 68.08 73.34 73.48 74.56 74.52

RKD[24] 64.43 71.50 72.28 73.21 72.21
KDCL[13] 67.64 73.03 74.32 75.35 74.79
CRD[29] 69.11 74.30 75.11 75.65 76.05

WCoRD[5] 70.45 74.86 75.40 75.96 76.32

SMD 70.76 74.95 76.21 76.82 76.89

Table 4: CIFAR-100 Top-1 accuracy (%) under supervised distillation
framework, for transfer across very different teacher and student architectures.

For WCoRD and KDCL, we use the results that are reported in their original
paper. For all other methods, we use author-provided or author-verified code
from the CRD repository. We can observe that our SMD can consistently out-
perform all other distillation methods with a large margin, including the recent
state-of-the-art CRD and WCoRD. Note that most of these methods require
the label information in the distillation process to mine the relationships be-
tween samples. For example, CRD heavily relies on accurate negative samples
provided by annotated labels. Our SMD does not require any label information
in the distillation process and effectively completes knowledge transfer in a self-
supervised manner. In particular, our students outperform the teachers in some
cases (WRN-40-2 to WRN-16-2, vgg13 to vgg8, andWRN-40-2 to ShuffleNetV1).
This benefits from “cut-off at zero” strategy in Eq.(6). The knowledge learned in
the teacher model may be redundant, so the teacher is not the optimal solution.
In the distillation task, the student uses the optimization directions provided by
the teacher, combined with the directions of the student’s gradients, jointly find-
ing an optimal solution. “cut-off at zero” retains this optimization state, rather
than letting students continue optimizing towards the teacher.

4.4 Analysis

In this section, all experiments are conducted on two teacher-student combina-
tions under the supervised distillation framework, MobileNetV2 supervised by
ResNet-50 and resnet20 supervised by resnet56. We first comprehensively verify
the correctness of the positive and negative sets obtained by Eq.(1). Following
that, we show the necessity of the weighting factors, hard mining and L2 loss.
Difference-Guided Positive and Negative Mining. To verify the accuracy
of the difference-guided positive and negative mining, we list the changes of the
total accuracy with the number of iterations in Table 5. The overall accuracy
increases rapidly as the number of iterations increases, and soon reaches 99%.
This verifies that our method can make a preliminary division. The accuracy
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Epoch Accuracy(%) TP TN FP FN

1 (10 iter) 2.25 92 0 4004 0
1 (30 iter) 76.73 102 3041 953 0
1 (100 iter) 99.37 104 3966 26 0
2 99.53 108 3969 17 2
150 99.17 81 3981 1 33
240 99.12 74 3986 0 36

Table 5: Statistical information for positive and negative mining. Total
Accuracy (%), TP, TN, FP, and FN for MobileNetV2 with batch=64.

SMD SMD without weighting factors
Epoch TP TN FP FN TP TN FP FN
1 (30 iter) 5 63 59 1 0 6 6 0
1 (100 iter) 49 64 15 0 9 64 55 0
2 59 64 5 0 36 64 28 0
150 62 64 2 0 14 64 50 0
240 64 64 0 0 11 64 53 0

Table 6: Statistical information in the mined hardest nega-
tives/positives with and without weighting factors. TP, TN, FP, and FN for
MobileNetV2 with batch=64.

seems to be satisfactory, but the number of positive and negative sample pairs
is unbalanced since every batch is obtained by random sampling. To compre-
hensively evaluate the results, we count the True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) in a batch during the train-
ing. In the first few iterations, most of the samples are classified as positive pairs
because the embedding spaces of teachers and students are not aligned and the
teacher-to-student metric difference is large. After the two spaces are aligned,
our method of obtaining positive and negative sets yields almost accurate results
in the early epoch. This verifies that the teacher-to-student metric difference can
indeed serve as a decision boundary that can be used to divide positive and neg-
ative samples. In the later stage, this difference will become very small because
the student embedding has been trained toward the teacher embedding and our
supervision mining method tends to divide more pairs as negative. Fortunately,
these incorrectly divided pairs will not affect our performance due to the hard
mining strategy and the weighting factors in Eq.(6). From another perspective,
knowledge distillation aims to lower the gap between student and teacher spaces.
The gradual shrinking of the decision boundary and positive examples will en-
sure that the embedding space learned by the student is similar to that of the
teacher. In the limit, the two spaces will be perfectly aligned when the decision
boundary is zero. This gradual way of adjusting the positive and negative pairs
is conducive to SSL distillation.

Importance of Hard Mining. Hard mining is introduced based on the as-
sumption that the hardest case plays a key role in optimization [31], and it also
prevents all pairs from performing cost-prohibitive optimization. In addition to
these, we find that hard mining can weaken the impact of incorrectly divided
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pairs. Table 6 lists the statistical results of our SMD in the mined hardest neg-
atives/positives. In the later training stage, almost all the hardest samples are
correct. Combined with the data in Table 5, we reasonably infer that although
some FNs are positive, for the well-trained teacher, these FNs are further away
from the anchor compared to the hardest negative samples. Therefore, these FNs
do not affect our optimization after hard mining, nor do FPs.
Weighting Factors. We conducted a comparison using our SMD and SMD
without api and ani . The Top-1 result for MobileNetV2 decreases from 70.76
to 63.48. For resnet20, from 71.56 to 69.05. Adding such a weighting factor
brings a substantial improvement. Table 6 also lists the statistical results in
the mined hardest negatives/positives of SMD without weighting factors. At
the 30th iteration, only 6 out of 64 samples find the corresponding positive
and negative sample pairs. Since the student network has not converged, the
remaining 58 samples cannot find the corresponding negative samples and fail
to join the distillation (all other samples are classified as positive). From 150
to 240 epoch, the TP even gradually decreases. Hard mining allows distillation
to focus on optimizing difficult samples, but it also can exacerbate errors due
to samples with inevitable wrong division, resulting in even worse performance
than baseline. By introducing these two dynamic weighting factors, the impact
of incorrectly divided pairs is greatly mitigated. This brilliant design can also
provide a moderate optimization target for the correct sample pairs, thereby
significantly improving the distillation results.
Necessity of L2 loss. When the L2 loss was completely removed, the Top-
1 accuracy for MobileNetV2 decreases to 65.65, but only a slight change for
resnet20, to 71.64. We can infer that L2 loss plays a key role although it only
acts on the first two epochs. When the structural differences between the student
and the teacher are too large and the embeddings of the student network fail to
find the embedding space of the teacher network, SMD cannot converge without
L2 loss. Note that the absence of L2 loss does not degrade the performance when
the student network can easily find the embedding space of the teacher network.
These observations suggest that L2 loss can help align the embedding space, but
the final performance of SMD will not benefit from it.

5 Conclusion

In this work, we propose SMD to effectively improve the lightweight SSL model
via distilling the metric information. Our solution utilizes the relationship be-
tween samples from unlabeled data in the knowledge distillation framework,
which has not yet been investigated. Moreover, we also incorporate a dynamic
weighting strategy to handle pairwise uncertainty adaptively. Extensive exper-
iments demonstrate that our proposed SMD achieves state-of-the-art perfor-
mance on various benchmarks of lightweight models.
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