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A Details of Implementation

The source code for this paper can be found at the following link: https://
github.com/DiffuseMorph/DiffuseMorph.

A.1 Network Architecture

Diffusion Network As we described in the paper, we employed the network
architecture of DDPM [8] for the diffusion network Gθ of the proposed method.
Fig. 1 illustrates the structure of the diffusion network. Specifically, it consists of
four encoder and four decoder blocks. Each block has the Resnet block composed
of the group normalization [13], the swish function [6], and convolution layers,
which takes the embedded time te as well as the output of the preceding layer.
At the last encoder block, the feature maps are attended by the self-attention
module [12]. Also, each decoder block additionally takes the feature maps of the
encoder outputs via skip-connection that enables the decoder to use the encoding
information of inputs. Accordingly, when the moving image m, fixed image f ,
and perturbed target image xt are given to the diffusion network with the time
step t, the network is trained to estimate the latent feature of the conditional
score function ϵ̂ of the deformation between the moving and fixed images. Here,
we configured the kernel dimension of convolution layers according to the input
image dimension.

Deformation Network For the deformation network Mψ, we implemented
VoxelMorph-1 [3] that presents the network architecture for image registration.
As illustrated in Fig. 2, the deformation network is a U-shape network with
encoder and decoder blocks, similar to the diffusion network. However, instead
of the Resnet block, each block has the convolution and leakyReLU [7] layers,
called CL units, which enables the network to focus on image processing and
learn the complex image features. Also, as the downsampling by the convolution
is with stride 2, the upsampling is performed by the transposed convolution with
stride 2. The final network output is generated by the convolution with stride 1.
Thus, given the moving image m and the latent feature of the diffusion network
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Fig. 1. The architecture of the diffusion network Gθ. The Resnet block (pink arrow)
is composed of the group normalization, swish function, and convolution layers. The
number of convolutional channels is shown as a/b below the square box, where a and
b are for 2D and 3D networks, respectively. The downsampling in the encoder is per-
formed by the convolution layer with stride 2, whereas the upsampling in the decoder is
done by nearest interpolation with scale factor 2, followed by the convolution layer with
stride 1. Each feature map of the encoder is given to the decoder via skip-connection.

Fig. 2. The architecture of the deformation network Mψ. It is a modified U-net struc-
ture with the convolution layer and leakyReLU activation function. The number of
convolutional channels is shown as a/b below the square box, where a and b are for 2D
and 3D networks, respectively. The image features are downsampled by the convolution
with stride 2 (black arrow), while they are upsampled by the transposed convolution
with stride 2 (blue arrow). The feature map of each encoder block is concatenated to
that of the decoder block at the same level.
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output ϵ̂, the deformation network estimates the registration field ϕ that warps
the moving image into the fixed image. Similar to the diffusion network, the
convolution layers are configured depending on the input image dimension.

A.2 Data Processing

The intensity range of grayscale facial data and medical images used in the
experiments of the main paper is [0, 1]. We scaled this intensity range of the
data into [-1, 1]. Then, the noisy target is sampled using the scaled image and
given to our model as an input, along with a condition of the moving and fixed
images. Since the moving image is deformed by the registration field using the
spatial transformation layer with linear interpolation, we rescaled the moving
image into [0, 1] just before warping the moving image. For data augmentation
of the facial data, we used random horizontal flipping. On the other hand, for
the brain and cardiac MR data, we used random horizontal/vertical flips and
random rotations with 90 degrees for data augmentation.

A.3 Baseline Methods

To implement baseline methods in our main paper, we set parameters by follow-
ing several references. Specifically, for cardiac data, we implemented the baselines
using the suggested parameters of [3, 5]. For the brain data, we set the parame-
ters by following to [9], and SyN was conducted by mostly following to [4] using
a step size of 0.25 at three scales with at most 100 iterations each.

B Memory and Time Costs

In this section, we analyzed the costs when training and testing the proposed
model. Specifically, we computed the number of learnable parameters of our
model, memory usage, and average runtime for the test. Table 1 reports the
costs in the face experiment. Compared to the methods of VM and VM-diff, our
method has more learnable parameters, but the image registration is performed
in real-time since ours provides the registration in one step as other methods.
Also, the synthetic image generation takes about 6 seconds for sampling with 80
steps that we described in the main paper.

Table 1. The memory and time costs of ours and other methods.

Method
Network Test (Registration) Test (Generation)

#Params Memory Time Memory Time

VM [3] 74.74M 0.30 GB 0.05 sec N/A N/A
VM-diff [5] 74.74M 0.35 GB 0.10 sec N/A N/A
Ours 90.67M 0.37 GB 0.07 sec 0.37 GB 6.02 sec
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Fig. 3. Visual results of facial expression image registration (left) using the estimated
registration fields (right). From top to bottom, the results are deformed from the front-
gazed neutral to right-gazed surprised images, from the right-gazed surprised to front-
gazed happy images, from the front-gazed neutral to right-gazed happy images, from
the left-gazed neutral to front-gazed angry images, from the front-gazed disgusted to
left-gazed sad images. The mean values of NMSE/SSIM are displayed on each result.

C Additional Experimental Results

C.1 Image Registration Results of the Comparisons

2D Facial Expression Image Registration For the intra-subject facial ex-
pression image registration task, we compared the proposed method with the
VoxelMorph (VM) [3] and VM-diff [5]. We implemented these methods using
the same architecture of the deformation network Dψ of our model and trained
the networks until the training loss converges for a fair comparison. Fig. 3 shows
the results of visual comparisons on various facial expression images. Compared
to the other baseline methods, we can see that our model provides more accu-
rate deformation of the moving source image into the fixed target image by the
smooth registration field. This can be also observed through the quantitative
evaluation with NMSE and SSIM that are displayed on each result.

3D Cardiac MR Image Registration We also implemented our method
for the intra-subject 3D cardiac MR image registration task. For the baseline
methods, we compared ours with VM [3] and VM-diff [5]. As the face image
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Fig. 4. Visual results of cardiac MR image registration (left) using the estimated reg-
istration fields (right). The registration results show the overlaid contours of segmen-
tation maps (green: epicardium of the right ventricle (RV), red: myocardium of left
ventricle (Myo), blue: left blood-pool (BP)). The Dice score for each structure is dis-
played with the corresponding color on each result.

registration, we trained these models using the deformation network architecture
Dψ of our method. Fig. 4 visualizes the registration results of the cardiac image
at the end-diastolic phase to the end-systolic phase. We also display the contours
of segmentation maps for several structures and their Dice scores. The results
show that our proposed method achieves higher registration performance than
the comparative methods in that the moving source image is more accurately
aligned with the fixed target image.

3D Brain MR Image Registration To verify the performance of the atlas-
based 3D brain image registration, we employed the following comparative meth-
ods: SyN [1] by Advanced Normalization Tools (ANTs) [2], VM [3], VM-diff [5],
SYMNet [11], MSDIRNet [10], and CM [9]. For the learning-based methods, we
used the 3D model of deformation network Dψ as a baseline network and set the
same parameters for a fair comparison. Fig. 5 shows the results of brain image
registration. The Dice scores for several anatomical structures are displayed on
each result, and the overall quantitative evaluation results can be found in the
main paper. The visual results with the contours of segmentation maps show
that the proposed DiffuseMorph deforms the moving source image more similar
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Fig. 5. Visual results of atlas-based brain MR image registration (odd rows) using
the estimated registration fields (even rows). Segmentation maps of several anatomical
structures are overlaid with the contours (blue: ventricles, green: thalami, orange: third
ventricle, pink: hippocampi). The Dice score of each structure is displayed with the
corresponding color on each result.

to the fixed target images than the others, not only in the overall shape but also
in the detailed structures.

C.2 Image Registration Along Continuous Trajectory

The proposed method can provide continuous image deformation for the mov-
ing image along the trajectory toward the fixed image, which is one of the main
contributions of our paper. Here, we show additional results of ours and compar-
ative methods, VM and VM-diff. For the case of VM, we obtain the deformations
by linearly interpolating the registration field. For the VM-diff, the continuous
deformation is done by integrating the velocity field in shorter timescales. In con-
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trast, our method yields the intermediate images by scaling the latent feature
from the conditional score function of the deformation.

Fig. 6 shows the results on the facial expression image registration task. As
can be seen from the results, the estimated registration fields of VM are only
scaled so that the change of the specific facial movement such as eyes is not clearly
visible. Also, VM-diff is limited in providing continuous deformation since the
registration fields in early levels are near zero but deform images rapidly in late
levels. On the other hand, in our proposed method, the estimated registration
fields from the scaled latent feature are not just a scaled version as in the VM, but
rather exhibits very dynamically changing deformation fields depending on the
positions (for example, more specifically consistent movement along the eyes and
mouths compared to other methods). Thus, the resulting intermediate deformed
images of our method have distinct changes from the moving and fixed images.
These results can be observed similarly in Fig. 7, which visualizes the comparison
results for the cardiac MR image registration task and verifies the continuous
deformation performance of our method.

Fig. 6. Results of the continuous image deformation using the facial expression images
with landmarks. Image registration is performed from the front-gazed surprised to the
left-gazed neutral images (top), and from the right-gazed angry to the front-gazed
fearful images (bottom). The average of MSE between the deformed and target facial
landmarks is displayed on each result.
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Fig. 7. Results of the continuous image deformation using the cardiac MR images. GT
is the ground-truth data, and the orange box shows the remarkable regions.

C.3 Synthetic Deformed Image Generation

In addition to the image registration, thanks to jointly training of the diffusion
and deformation networks, our DiffuseMorph provides the image generation via
the reverse of the diffusion process. As described in the main paper, given the
condition with a pair of moving and fixed images, the generation process starts
from one step forward diffusion on the moving image. Then, the noisy moving
image with a certain noise level is refined iteratively by the reverse diffusion
steps, resulting in the synthetic deformed images aligned with the fixed image.
Fig. 8 shows the generative process on the facial expression images. The sampling
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results are obtained by 80 diffusion steps starting from the moving image with
the noise level α200. As our method learns the conditional score function of the
deformation using various pairs of facial expression images, we can see that the
generated samples from the moving images become similar to the fixed images.
This indicates that our model has a capacity for conditional image generation
as well as image registration.

Fig. 8. Results of the synthetic deformed image generation via our generative process
from T = 80. From top to bottom, the deformed image is generated from the left-
gazed neutral to the front-gazed happy images, from the front-gazed disgusted to the
front-gazed sad images, from the front-gazed contemptuous to the right-gazed happy
images, from the front-gazed contemptuous to the front-gazed sad images, from the
front-gazed angry to the right-gazed happy images, from the front-gazed fearful to the
left-gazed sad images, from the front-gazed surprised to the front-gazed fearful images.
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