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1 Overview

This supplementary document includes information about our training algo-
rithm, experimental setup, and further evaluations. We provide our training
algorithm in Section 2. Next, we cover additional implementation details in Sec-
tion 3. Section 4 provides details for the baseline implementations. We conduct
experiments within a more restricted environment with limited number of la-
beled data samples in Section 5. We include results for a moderately imbalanced
dataset, i.e. SVHN, in Section 6. Furthermore, we provide results on three addi-
tional datasets (FGVC-Aircraft, Stanford-Cars, and Herbarium19) in Section 7.
Finally, we discuss the effect of varying the frequency of iterative pseudo-labeling
in our proposed OpenLDN approach in Section 8.

2 OpenLDN Training Algorithm

We provide OpenLDN training algorithm in Alg. 1. For OpenLDN training, we
require a set of labeled data SL, and a set of unlabeled data SU . In addition to
this, we need to set the number of maximum iterations for stage-1 (learning to
discover novel classes) and stage-2 (closed-world SSL) training: t1 and t2 and
also the frequency for iterative pseudo-labeling, m. The OpenLDN algorithm
outputs trained feature extractor fΘ, and classifier fΦ.

For stage-1 of OpenLDN training, first, we initialize feature extractor, fΘ,
classifier, fΦ, and similarity prediction network, fΩ . Next, we sample a batch
of labeled examples from known classes, Xl, and their corresponding labels Yl.
We also sample a batch of unlabeled samples from both known and novel classes
Xu. After that, to learn to recognise novel classes, we compute Lnov and update
the parameters of feature extractor, fΘ, and classifier, fΦ, accordingly. Next,
we compute a cross-entropy loss on the labeled examples with these updated
parameters and update the parameters of similarity prediction network, fΩ ,
based on this cross-entropy loss using the proposed bi-level optimization rule. We
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continue this training procedure for t1 iterations to train the feature extractor fΘ,
classifier fΦ, and similarity prediction network, fΩ . We use the trained feature
extractor fΘ and classifier fΦ for generating pseudo-labels for the subsequent
closed-world SSL training.

For stage-2 of OpenLDN training, first, we generate pseudo-labels, SPL, for
novel classes using the trained feature extractor, fΘ, and classifier, fΦ. Next, we
select top-k pseudo-labels from each class, Sselected. After that, we complement
the original set of labeled samples with the selected pseudo-labeled samples,
S̃L and also remove the selected pseudo-labeled samples from the unlabeled set
to obtain S̃U . We re-initialize the feature extractor and classifier for the sub-
sequent closed-world SSL training. Next, we perform closed-world SSL training
by sampling a batch of labeled/pseudo-labeled samples Xl, their corresponding
labels/pseudo-labels Yl, and also a batch of unlabeled samples Xu. We update
the network parameters based on the appropriate closed-world SSL loss. We
repeat the pseudo-label generation process every m iterations to mitigate the
impact of noisy pseudo-labels. The stage-2 of OpenLDN ends after t2 iterations
and returns the trained feature extractor fΘ, and classifier fΦ.

Algorithm 1 OpenLDN training algorithm

Input: Set of labeled data SL, set of unlabeled data SU , maximum iterations t1 and
t2, and frequency of iterative pseudo-labeling m
Output: Trained feature extractor fΘ, and classifier fΦ

Stage-1: Learning to Discover Novel Classes

1: Initialize feature extractor fΘ, classifier fΦ, and similarity prediction network fΩ
2: for t = 1...t1 do
3: Xl,Yl ← SampleBatch(SL)
4: Xu ← SampleBatch(SU )
5: L ← Lnov(Θ

(t), Φ(t), Ω(t),Xl,Xu,Yl) ▷ Eq. 1
6: (Θ(t+1), Φ(t+1))← (Θ(t), Φ(t))− α(Θ,Φ)∇(Θ,Φ)L
7: L ← Ll

ce(Θ
(t+1), Φ(t+1),Xl,Yl)

8: Ω(t+1) ← Ω(t) − αΩ∇ΩL
Stage-2: Closed-World SSL Training

9: SPL ← Generate Pseudo-Labels ▷ Eq. 8
10: Sselected ← TopK(SPL) ▷ Select top-k
11: S̃L ← SL ∪ Sselected

12: S̃U ← SU \ Sselected

13: Initialize feature extractor fΘ, and classifier fΦ
14: for t = 1...t2 do
15: Xl,Yl ← SampleBatch(S̃L)
16: Xu ← SampleBatch(S̃U )
17: Update Θ and Φ using closed-world SSL loss
18: if t%m = 0 then
19: Repeat steps 9 to 12

20: return fΘ, fΦ
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3 Additional Implementation Details

In this section, we provide additional implementation details of our method.
In OpenLDN algorithm, we use standard data augmentations which include
random crop, and random horizontal flip for all datasets. To obtain the strongly
augmented version of the image, xs, we use Randaugment [3]. We use the default
parameters for Randaugment in all the datasets and set the value of N to 2 and
M to 10. Here, N is the number of concurrent random augmentations and M
is the magnitude of the selected augmentations in Randaugment. Following the
prior works [6,2], we also modify the base feature extractor, ResNet-18 [8], for
CIFAR-10, and CIFAR-100 datasets. To this end, we remove the first max-
pooling layer; this helps in dealing with images of smaller resolution (32×32).
We also change the first convolutional layer; we set the stride to 1 and the
kernel size to 3×3. For Tiny ImageNet dataset experiment, we do not remove
the first max-pooling layer. However, we do make the same change to the first
convolutional layer as above. We do not modify the network architecture for
ImageNet-100, and Oxford-IIIT Pet dataset experiments. To reduce the training
time, we downsample the images (train and test) of Oxford-IIIT Pet dataset to
256×256 before applying data augmentation. We use the same downsampling
operation for the baseline methods. We do not modify default parameters for
Mixmatch [1] and UDA [15]. Finally, we apply Mixup [16] augmentation for
the labeled and pseudo-labeled data in UDA training. We observe that this
change helps the network to generate better pseudo-labels over time. For all the
experiments, we report the results from the last epoch.

4 Baseline Implementation Details

For comparing our results on Tiny ImageNet and Oxford-IIIT Pet datasets, we
modify three novel class discovery methods for the open-world SSL problem:
DTC [7], RankStats [6], and UNO[4]. The details of these modifications are pro-
vided in this section. For DTC[7], we extend the unlabeled head to include both
known and novel classes (for more details about the unlabeled head please refer
to [7]). Following ORCA [2], we perform SimCLR pretraining for RankStats[6].
After that, similar to DTC, we also extend the unlabeled head of RankStats
(for more details about the unlabeled head please refer to [6]). However, neither
of these methods in their original formulation assume that the unlabeled data
contain samples from known classes. Therefore, extending the unlabeled head
to encompass both known and novel classes does not induce any ordering (pre-
defined known class order) for the known classes. Hence, in our evaluation we
use Hungarian algorithm [10] to match the known classes from the unlabeled
head with the ground-truth labels. Finally, we calculate clustering accuracy on
known classes for these two methods. UNO [4] is a novel class discovery method
which assumes that the unlabeled data only contain samples from novel classes.
Therefore, UNO generates pseudo-labels only for novel classes. To extend UNO
to open-world SSL setup, we generate pseudo-labels for both known and novel
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classes. For evaluation, we concatenate the labeled and unlabeled head predic-
tions (for more details about the concatenation strategy please refer to [4]). Sim-
ilar to OpenLDN, we calculate standard accuracy on known classes for UNO.
For evaluating novel classes, and the joint task of classifying both known and
novel classes we calculate clustering accuracy.

Method Known Novel All

FixMatch[13] 64.3 49.4 47.3
DS3L[5] 70.5 46.6 43.5
DTC[7] 42.7 31.8 32.4
RankStats[6] 71.4 63.9 66.7
UNO[4] 86.5 71.2 78.9
ORCA[2] 82.8 85.5 84.1
OpenLDN-MixMatch 92.4↑9.6 93.2↑7.7 92.8↑8.7

Table 1: Average accuracy on CIFAR-10 dataset with 10% labeled data. We
set the first 50% classes as known and the remaining 50% classes as novel. The
results are averaged over three independent runs.

5 Experiments with Limited Number of Labeled Data

In this section, we conduct additional experiments on CIFAR-10 and CIFAR-100
datasets with 10% labeled data. The results on CIFAR-10 dataset are provided in
Tab. 1. We observe that, similar to the results with 50% labeled data, OpenLDN
significantly outperforms the closed-world SSL method, FixMatch[13], safe SSL
method, DS3L[5], novel class discovery methods, DTC[7], RankStats[6], and
UNO[4]. We also observe that OpenLDN outperforms ORCA[2] by 7.7% on novel
classes and 8.7% on joint task of classifying known and novel classes. These re-
sults suggest that the performance gap between OpenLDN and other methods
is even higher when working with less amount of annotated data.

Next, we report the results on CIFAR-100 dataset with 10% labeled data in
Tab. 2. Once again we observe performance improvements similar to the ones
observed in the CIFAR-10 experiment. On this dataset, OpenLDN outperforms
ORCA[2] by 8.2% on novel classes and 9.1% on all classes. We draw two conclu-
sions from these results on CIFAR-10 and CIFAR-100 datasts. First, OpenLDN
shows larger improvement when the amount of labeled data is limited. This fea-
ture is particularly desirable since label efficiency is one of the crucial requirement
of a SSL method. Second, we observe that the improvement is higher on CIFAR-
100 dataset compared to CIFAR-10 dataset, which suggests that OpenLDN can
scale up to challenging datasets (higher number of classes) more efficiently.

6 SVHN Experiment

We conduct additional experiment on SVHN[12] dataset. In this experiment, we
set the first 5 classes as known and the remaining classes as novel. We consider
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Method Known Novel All

FixMatch[13] 30.9 18.5 15.3
DS3L[5] 33.7 15.8 15.1
DTC[7] 22.1 10.5 13.7
RankStats[6] 20.4 16.7 17.8
UNO[4] 53.7 33.6 42.7
ORCA[2] 52.5 31.8 38.6
OpenLDN-MixMatch 55.0↑2.5 40.0↑8.2 47.7↑9.1

Table 2: Average accuracy on CIFAR-100 dataset with 10% labeled data. We
set the first 50% classes as seen and the remaining 50% classes as novel. The
results are averaged over three independent runs.

Method Known Novel All

UNO[4] 85.4 74.3 79.0
OpenLDN-MixMatch 95.7↑10.3 87.2↑12.9 92.6↑13.6

Table 3: Accuracy on SVHN dataset with 10% labeled data. We set the first
50% classes as known and the remaining 50% classes as novel.

10% data from known classes as labeled. As a baseline, we conduct the same
experiment with UNO[4]. The results are provided in Tab. 3. From these re-
sults, we observe that OpenLDN outperforms UNO by a large margin. To be
specific, OpenLDN improves over UNO by 10.3% on known classes; an even
higher improvement (12.9%) is observed on novel classes. Finally, on the joint
task of classifying both known and novel classes, OpenLDN outperforms UNO
by 13.6%. Results on this dataset provide additional evidence of the effective-
ness of OpenLDN which can consistently outperform other existing methods on
multiple datasets. It is important to note that the SVHN dataset contains a
moderate level of imbalance; the dataset suffers from an imbalance factor[17] of
2.98. Therefore, the results on this dataset also demonstrates that OpenLDN
works reasonably well under moderate imbalance.

Method FGVC-Aircraf Stanford-Cars Herbarium19

ORCA[2] 14.7 9.6 22.9
OpenLDN-UDA 45.7↑31.0 38.7↑29.1 45.0↑22.1

Table 4: Accuracy on FGVC-Aircraf, Stanford-Cars, and Herbarium19
datasets with 50% labeled data. We set the first 50% classes as known and the
remaining 50% classes as novel.
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7 Additional Results on FGVC-Aircraft, Stanford-Cars,
and Herbarium19 Datasets

We conduct additional experiments on FGVC-Aircraft[11], Stanford-Cars[9], and
Herbarium19 [14] dataset. In this experiment, we set the first 50% classes as
known and the remaining classes as novel. We consider 50% data from known
classes as labeled. We compare our results with ORCA. We use ResNet-18 for
both ORCA and OpenLDN. The results are provided in Tab. 4. On all three
datasets, OpenLDN substantially outperforms ORCA. However, we request read-
ers to interpret the ORCA results with caution since it might be possible to ob-
tain improved results for ORCA with better hyperparameter selection. Overall,
these results (4) further validate OpenLDN’s effectiveness on more challenging
fine-grained and imbalanced datasets.
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Fig. 1: The effect of changing the frequency of iterative pseudo-labeling on final
accuracy. These graphs demonstrate classification accuracies on known/novel/all
classes for CIFAR-100 dataset.

8 Frequency of Iterative Pseudo-Labeling

Recall that in OpenLDN algorithm, during the second stage we generate pseudo-
labels for novel classes after every 10 epochs. We introduce this iterative pseudo-
labeling procedure to mitigate the negative impact of the noise present in the
generated pseudo-labels after the novel class discovery phase. Here, we inves-
tigate the effect of changing the frequency of iterative pseudo-label generation
process. To analyse this effect, we conduct experiments on CIFAR-100 (50%
labeled data). The results are provided in Fig. 1. We observe that different fre-
quencies for iterative pseudo-labeling lead to similar performance. This suggests
that iterative pseudo-labeling is not sensitive to this hyperparameter and can
improve the second stage closed-world SSL training irrespective of the frequency
used. Besides, Fig. 1 demonstrates that applying a frequency of 15 leads to op-
timal performance. However, since we do not use any validation set to tune this
hyperparameter, in our main experiments, instead, we apply our initial guess
and use a frequency of 10.
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