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1 Outline

This supplementary material includes the following sections. First, our training
algorithm is introduced in section 2. Then, we provide implementation details
in section 3. The details of the datasets that we use in our experiments are
available in section 4. Next, in sections 5 and 6, we provide additional results
with varying the amount of labeled data. After that, we provide additional details
about estimating the number of novel classes in section 7. We discuss the effect
of varying the number of novel classes for the novel class discovery (NCD) task
in section 8. Next, we analyse the effect of changing temperature in section
9. Finally, in section 10, we demonstrate that our proposed method is able to
recognise novel classes without confusing them with seen classes.

2 Training Algorithm

We provide our training algorithm in Alg. 1. For training, we require access to a
labeled dataset, DL, and a set of unlabeled data, DU . We also require the prior

class distribution, ρ = ⟨NC1

U /NU , ..., N
C|CL|+|CN |
U /NU ⟩, iterations per epoch, E,

the maximum iterations, K, and the temperature, T . First, we initialize the
neural network, fw, and assign T to the sample uncertainties, UL and UU . Next,
we sample a batch of labeled and unlabeled data, as well as their corresponding
sample uncertainties. After that, we obtain the class-distribution-aware pseudo-
labels using Sinkhorn-Knopp algorithm[15] while minimizing the optimization
problem in Eq. 1.

min
A∈Aρ

−Tr((APπ)
T log(ŶU/NU )), (1)

where Aρ is the transportation polytope defined in Eq. 3 of the main text which
satisfies the prior class distribution ρ, Pπ is the permutation matrix that reorders
the columns of the assignment matrix, A, according to the order of marginals
of the output probabilities, Ŷ.

We also perform cross pseudo-labeling to encourage perturbation invariant
feature learning. Next, we generate the hard pseudo-labels for confident novel
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classes from the generated pseudo-labels. As a result we will have a mixture
of soft and hard pseudo-labels. Then, we concatenate the input images from
the labeled and unlabeled batch. We also concatenate the ground-truth labels
and generated coherent pseudo-labels, and the sample uncertainty scores. In
the next step, we perform Mixup augmentation[18] on the concatenated inputs,
labels, and uncertainty scores. Once we obtain the mixed inputs, labels, and
uncertainty values, we update the network parameters using cross entropy loss.
We update the uncertainty values for the unlabeled samples at the end of each
epoch (E iterations). Finally, the algorithm ends after completing K iterations
and returns the trained neural network, fw.

Algorithm 1 Training algorithm

Input: Labeled data, DL, a set of unlabeled data, prior class distribution ρ, DU , iter-
ations per epoch E, maximum iterations K, temperature T .
Output: Trained neural network, fw.

1: Initialize neural network, fw.
2: UL ← T , UU ← T ▷ UL, and UU are sample uncertainties.
3: for k = 1...K do
4: (Xl,Yl,ul)← SampleBatch(DL,UL)
5: (Xu,X

′
u,uu)← SampleBatch(DU ,UU )

6: Ỹu, Ỹ
′
u ← Sinkhorn(fw(X

′
u), ρ), Sinkhorn(fw(Xu), ρ) ▷ Eq. 1 and cross PL.

7: Ȳu, Ȳ
′
u ← MixedPL(Ỹu),MixedPL(Ỹ′

u)
8: X,Y,u← Concat(Xl,Xu,X

′
u),Concat(Yl, Ȳu, Ȳ′

u),Concat(ul,uu,uu)
9: Xm,Ym,um ← Mixup(X,Y,u)
10: w(k+1) ← w(k) − α∇wLce(w

(k),Xm,Ym,um)
11: if k%E = 0 then
12: UU ← Uncertainty(DU ) ▷ Eq. 6

13: return fw

3 Implementation Details

To effectively process the lower resolution images from CIFAR-10 and CIFAR-
100 datasets, similar to previous works [1,5,3], we modify the first convolutional
layer and set the kernel size to 3×3 and apply a stride of 1. In addition, we
remove the first max-pooling layer. We make a similar change for experiments in
Tiny ImageNet dataset. However, we do not remove the first max-pooling layer
since the images are of higher resolution. For ImageNet-100 and the fine-grained
dataset experiments we do not make any changes to the network. Besides, for
comparison, we use the same network for all the methods.

For data augmentation, we primarily use SimCLR[2] augmentations, which
include: random resized crop, horizontal flip, color jittering, random grayscale,
and Gaussian blur. For CIFAR-10 and CIFAR-100 we use solarize and equalize
transformations instead of random grayscale and Gaussian blur. We also use
Mixup augmentation in our training. For Mixup [18] augmentation, γ is set to
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0.75. For all of our experiments, we use a threshold of 0.5 for generating hard
pseudo-labels for the confident novel class samples.

For all of our experiments, except CIFAR-10 and CIFAR-100 experiments
with 50% labeled data (Sec. 5), we apply a temperature value of 0.1. In our exper-
iments, we observe that higher number of labeled examples per class (CIFAR-10
and CIFAR-100) creates a relatively stronger bias towards known classes when
the temperature value is low. To address this issue, we use a temperature of 0.2
for the 50% labeled data experiments on CIFAR-10 and CIFAR-100 datasts. For
performing uncertainty-guided temperature scaling we normalize the uncertainty
values of the entire dataset to make the maximum uncertainty value 1. Finally,
we clip the uncertainty values between 0.1 and 1.0 so that very low uncertainty
values do not lead to overconfident predictions.

Table 1: Details of the datasets used in our experiments.

Dataset No Class Train Samples Test Samples

CIFAR-10 [8] 10 50, 000 10, 000
CIFAR-100 [9] 100 50, 000 10, 000
ImageNet-100 [14] 100 128, 545 5, 000
Tiny ImageNet [11] 200 100, 000 10, 000
Oxford-IIIT Pet [13] 37 3, 680 3, 669
FGVC-Aircraft [12] 100 6, 667 3, 333
Stanford-Cars [7] 196 8, 144 8, 041

4 Datasets

We provide the details of the datasets used in our experiments in Tab. 1, which
shows the number of classes in each dataset alongside the number of train and
test samples. For FGVC-Aricraft[12] dataset, we train our model on the joint
set of training and validation samples. Besides, since Oxford-IIIT Pet dataset
contains odd number of classes, in 50% novel class experiment, we treat the first
19 classes of this dataset as seen and the remaining 18 classes as novel.

The input resolution of CIFAR-10 and CIFAR-100 images is 32×32; Tiny
ImageNet images are slightly larger, i.e., 64×64. For the fine-grained datasets
the images vary in size and aspect ratio. Therefore, for computational efficiency,
we pre-process the images for fine-grained datasets and resize them to 256×256
resolution; this pre-processing operation is performed for both train and test
images in all of our experiments.

5 Experiments with More Labeled Data

In this work we propose a solution for the realistic open-world SSL problem.
Therefore, in the main text, we include experiments with only limited number
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Table 2: Accuracy on CIFAR-10 and CIFAR-100 datasets with 50% classes
as seen and 50% classes as novel.

Method
CIFAR-10 CIFAR-100

Seen Novel All Seen Novel All

FixMatch[16] 71.5 50.4 49.5 39.6 23.5 20.3
DS3L[4] 77.6 45.3 40.2 55.1 23.7 24.0
CGDL[17] 72.3 44.6 39.7 49.3 22.5 23.5
DTC [6] 53.9 39.5 38.3 31.3 22.9 18.3
RankStats[5] 86.6 81.0 82.9 36.4 28.4 23.1
SimCLR[2] 58.3 63.4 51.7 28.6 21.1 22.3
UNO[3] 91.6 69.3 80.5 68.3 36.5 51.5
ORCA[1] 88.2 90.4 89.7 66.9 43.0 48.1
Ours 96.8 92.8 94.8 80.2 49.3 64.7

Table 3: Accuracy on Tiny ImageNet dataset with 50% labeled data. We
consider 50% classes as seen and 50% classes as novel.

Method Seen Novel All

DTC [6] 28.8 16.3 19.9
RankStats [5] 5.7 5.4 3.4
UNO [3] 46.5 15.7 30.3
Ours 59.1 24.2 41.7

of labeled examples (10%). In this section, we provide additional results with
more labeled data to provide additional comparison with other methods. To this
end, we conduct experiments with 50% labeled data on CIFAR-10, CIFAR-100,
and Tiny ImageNet. Tab. 2 reports the results on CIFAR-10 and CIFAR-100
datasets. We observe that similar to experiments with 10% labeled data, our
proposed method outperforms all the other techniques. To be specific, in parallel
to outperforming ORCA[1], our proposed algorithm also outperforms popular
self-supervised learning method, SimCLR[2], and a recently proposed open-set
recognition method, CGDL[17]. On CIFAR-10 dataset our porposed method
outperforms ORCA[1] by 5.1% and on CIFAR-100 dataset it outperforms the
second best method UNO[3] by 13.2%.

We conduct similar experiments on Tiny ImageNet dataset. Similar to our ex-
periments in the main text, we compare our performance with DTC[6], RankStats[5],
and UNO[3]. We observe that our proposed method outperforms the second best
method UNO by 11.4%. The experiments on these three datasets demonstrate
that our proposed method can perform reasonably well even with more labeled
data.
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Table 4: Accuracy on CIFAR-10 dataset with 50% classes as seen and 50%
classes as novel.

Method
1% Data 5% Data

Seen Novel All Seen Novel All

UNO[3] 48.4 67.1 52.6 74.6 68.4 71.8
Ours 92.0 91.1 91.6 90.9 91.4 91.2

6 Reducing the Number of Labeled Data

In this section, we discuss additional experiments with lower number of labeled
data. We report results on CIFAR-10 dataset with only 1% and 5% labeled data
in Tab. 4. Since the source code for ORCA[1] is not publicly available, we restrict
our comparison to UNO[3], which is the previous best method on this dataset.
We observe that our proposed method significantly outperforms UNO in both
of these experimental setups. We also notice that the performance of UNO on
seen classes significantly degrades when only 1% labeled data is available, which
is not the case for our porposed algorithm. Furthermore, even though we do not
directly compare our results with ORCA and other baseline methods for these
challenging experiments, we notice that our proposed method with 1% and 5%
labeled data, is able to outperform ORCA with higher number of labeled data,
both 10% and 50% labeled data, on seen/novel/all class performances.

Table 5: Accuracy on CIFAR-100 dataset with 5% labeled data. We consider
50% classes as seen and 50% classes as novel.

Method Seen Novel All

UNO[3] 44.0 31.7 36.5
Ours 60.1 47.4 54.4

Next, we conduct experiments on CIFAR-100 dataset with only 5% labeled
data. The results are depicted in Tab. 5. For this experiment we also compare
our results with UNO[3], which is the previous best method on this dataset.
We notice that similar to the results on CIFAR-10, our proposed method out-
performs UNO by a large margin and achieves 15.7% improvement over UNO
on novel classes. Besides, the performance on novel classes and all classes is
better than ORCA even when ORCA uses 50% of labeled data. The results on
these two datasets demonstrate that our proposed algorithm is much more la-
bel efficient than ORCA, and can achieve strong performance even when only
a handful of labeled examples (250 labeled examples in CIFAR-10 1% labeled
data experiment) are available.

Finally, we conduct experiments on the fine-grained datasets with only 25%
labeled data. We choose 25% labeled data for these experiments since even with
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Table 6: Accuracy on Oxford-IIIT Pet, FGVC-Aircraft, and Stanford-
Cars datasets with 25% labeled data. We consider 50% classes as seen and
50% classes as novel.

Method
Oxford-IIIT Pet FGVC-Aircraft Stanford-Cars
Seen Novel All Seen Novel All Seen Novel All

UNO[3] 35.6 19.1 25.8 28.2 20.7 21.9 26.5 10.3 17.2
Ours 59.1 31.4 45.6 52.4 36.5 45.3 67.4 32.5 50.0

such a large portion of labeled data, the number of labeled samples is not greater
than ∼1000 samples. This experimental setup is challenging, since handling such
large resolution images with a large number of classes is always difficult for neural
networks. We present the results in Tab. 6. We compare our results with UNO[3]
since the source code for ORCA is not publicly available. The results in Tab. 6
demonstrates that similar to 50% labeled data experiment, our proposed method
outperforms UNO significantly on all of these datasets. These results further
validate the effectiveness of our method by demonstrating that it can work on
challenging fine-grained classification tasks with a large number of classes while
using only a handful of labeled examples.

Table 7: Estimation of the number of novel classes. The table shows the estimated
number of classes on different datasets with and without sample reassignment
technique.

Dataset GT
Estimated

w/o reassignment w reassignment

CIFAR-10 10 10 10
CIFAR-100 100 87 117
ImageNet-100 100 84 139
Tiny ImageNet 200 132 192

7 Estimating Number of Novel Classes

For estimating the number of novel classes we vary the value of k from the
number of labeled classes to 400. We can potentially use a higher upper limit
but our experiment demonstrate that using a higher number does not change
the number of estimated classes. For each value of k, we average the results from
3 independent runs of the k-means clustering algorithm to obtain more stable
performance. For sample reassignment, first we perform Hungarian matching
[10] for the labeled samples. Such matching provides us the dominant clusters
for the labeled samples. After that, we select the misclassified labeled examples
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and reassign them to these dominant labeled clusters using their nearest neighbor
cluster. To obtain the final estimate of the number of classes we average the top
10 values and use that as our estimate to make the prediction more stable.

Table 7 reports the performance of our number of class estimation proce-
dure with and without misclassified labeled example reassignment. Overall, we
are able to estimate the number of classes reasonably well on the four common
benchmark datasets that we investigated in our study. We observe that gener-
ally without the reassignment step, the estimated number of classes tends to
be lower than the actual number of classes. On the more challenging Tiny Ima-
geNet dataset, the reassignment step seems crucial for obtaining more accurate
estimates.
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Fig. 1: Performance on CIFAR-100 dataset for novel class discovery (NCD)
task with different numbers of novel classes.

8 Varying the Number of Novel Classes for NCD Task

In the main text, we provide results on novel class discovery (NCD) task on
CIFAR-100 dataset. In this section, we provide additional results by varying the
percentage of novel classes. The results are provided in Fig. 1. We compare our
method only with UNO since it outperforms the previous works with a signif-
icant margin. For this comparison we use the official code available for UNO.
In this comparison, we report ‘task-agnostic’ accuracy, which is a more realis-
tic evaluation. In ‘task-agnostic’ setting, we assume that we do not have any
knowledge about the sample belonging to seen classes or novel classes. We ob-
serve that UNO achieves similar performance to our method when the number of
novel classes is lower. However, as the percentage of novel classes increase, per-
formance of UNO falls behind significantly. Moreover, we observe a predictable
drop in performance for both methods as we increase the percentage of novel
classes. In summary, these results demonstrate that our method can work well
in more challenging scenarios where the number of novel classes are significantly
higher than the seen classes.
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Fig. 2: Accuracy on CIFAR-100 dataset with different temperature values.
These graphs suggest that our proposed method is not sensitive to change of
temperature parameter over a large interval of temperature values.

9 Analysis of Temperature

In this section, we discuss the effect of changing the temperature parameter of
our proposed algorithm (Alg. 1). To this end, we conduct a series of experiments
by varying the temperature parameter on CIFAR-100 dataset with 10% labeled
data. The results are reported in Fig. 2. We notice that our proposed method
is relatively stable over a large range of temperature values; even though we
use a temperature of 0.1 in most of our experiments, results in Fig. 2 suggest
that temperature values of 0.2 and 0.3 also yield similar performances. However,
the performance on seen/novel/all classes deteriorates for temperature values
greater than 0.3. Overall these results demonstrate that the performance of our
method is relatively stable to the choice of temperature hyperparameter.

10 Confusing Novel Classes with Seen Classes

To perform an in-depth analysis of the performance of our proposed method on
both seen and novel classes, we plot the confusion matrix for all the test samples
of CIFAR-100 dataset (10% labeeld data). In this analysis, we use Hungarian
algorithm[10] to match the predictions for all classes to the ground-truth labels.
We report the results in Fig. 3. These results provide evidence that our proposed
algorithm can successfully recognise novel classes without confusing them with
seen classes. Moreover, interestingly, our proposed method performs well even
for a difficult problem, such as CIFAR-100, where it encounters a high number
of novel classes.
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Fig. 3: Confusion matrix for test samples of CIFAR-100 dataset. This matrix
shows that our proposed method successfully recognises novel classes without
confusing them with seen classes.
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