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Abstract. We propose Masked Siamese Networks (MSN), a self-
supervised learning framework for learning image representations. Our
approach matches the representation of an image view containing ran-
domly masked patches to the representation of the original unmasked
image. This self-supervised pre-training strategy is particularly scalable
when applied to Vision Transformers since only the unmasked patches
are processed by the network. As a result, MSNs improve the scalability
of joint-embedding architectures, while producing representations of a
high semantic level that perform competitively on low-shot image classifi-
cation. For instance, on ImageNet-1K, with only 5,000 annotated images,
our base MSN model achieves 72.4% top-1 accuracy, and with 1% of
ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new
state-of-the-art for self-supervised learning on this benchmark. Our code
is publicly available at https://github.com/facebookresearch/msn.

Keywords: Self-Supervised Representation Learning, Low-Shot Classifi-
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1 Introduction

Self-Supervised Learning (SSL) has emerged as an effective strategy for unsu-
pervised learning of image representations, eliminating the need to manually
annotate vast quantities of data. By training large models on unlabeled data, SSL
aims to learn representations that can be effectively applied to a downstream
prediction task with few labels [15].

One of the core ideas of SSL is to remove a portion of the input and learn
to predict the removed content [43]. Auto-regressive models and denoising auto-
encoders instantiate this principle in vision by predicting the missing parts at the
pixel or token level [12,50, 27,5, 3]. Masked auto-encoders in particular, which
learn representations by reconstructing randomly masked patches from an input,
have been successfully applied in vision [27,55,52,5]. However, optimizing a
reconstruction loss requires modelling low-level image details that are not neces-
sary for classification tasks involving semantic abstraction. Thus, the resulting
representations often need to be fine-tuned for semantic recognition tasks which
can lead to overfitting in low-shot settings. Nevertheless, masked auto-encoders
have enabled the training of large-scale models and demonstrated state-of-the-art
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Fig. 1: Masked Siamese Networks. First use random data augmentations to generate
two views of an image, referred to as the anchor view and the target view. Subsequently,
a random mask is applied to the anchor view, while the target view is left unchanged.
The objective is then to assign the representation of the masked anchor view to the same
clusters as the representation of the unmasked target view. A standard cross-entropy
loss is used as the criterion to optimize.

performance when fine-tuning on large labeled datasets, with millions of labels [5,
27,55, 3].

Joint-embedding architectures, on the other hand, avoid reconstruction. Ap-
proaches such as Siamese Networks [28,10,15,25,11,57, 6] learn a representation
by training an encoder network to produce similar embeddings for two different
views of the same image [9,22]. Here the views are typically constructed by ap-
plying different image transforms — such as random scaling, cropping, and color
jitter — to the input [53,41]. The inductive bias introduced by this invariance-
based pre-training typically produces strong off-the-shelf representations of a
high semantic level [11] but often disregards rich local structure that can be
helpful to model.

In this work, we propose Masked Siamese Networks (MSNs), a self-supervised
learning framework that leverages the idea of mask-denoising while avoiding pixel
and token-level reconstruction. Given two views of an image, MSN randomly
masks patches from one view while leaving the other view unchanged. The
objective is to train a neural network encoder, parametrized with a vision
transformer (ViT) [21], to output similar embeddings for the two views. In
this procedure, MSN does not predict the masked patches at the input level,
but rather performs the denoising step implicitly at the representation level by
ensuring that the representation of the masked input matches the representation
of the unmasked one. Figure 1 shows a schematic of the method.

Empirically, we demonstrate that MSNs learn strong off-the-shelf representa-
tions that excel at low-shot prediction (cf. Figure 2). In particular, MSN achieves
good classification performance using 100x fewer labels than current mask-based
auto-encoders [27,54]. In the standard 1% ImageNet low-shot classification task,
an MSN-trained ViT-B/4 (using a patch size of 4x4 pixels) achieves 75.7% top-1
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accuracy, outperforming the previous 800M parameter state-of-the-art convolu-
tional network [14] while using nearly 10x fewer parameters (cf. Figure 2a).

Since a good representation should not need many examples to learn about
a concept [24], we also consider a more challenging evaluation benchmark for
label-efficient low-shot classification [45, 39], using from 1 labeled image per class
up to 5 images per class (cf. Table 2). MSN also achieves state-of-the-art in that
regime; e.g., with only 5 labeled images per class, we can pre-train a ViT-B
with MSN on ImageNet-1K to achieve over 72% top-1 accuracy, surpassing the
previous state-of-the-art method, DINO [11], by 8% top-1.

Similar to masked auto-encoders, MSNs also exhibit good computational
scaling since only the unmasked patches are processed by the ViT encoder.
For example, by randomly masking 70% of the patches, MSN uses half the
computation and memory compared to an unmasked joint-embedding baseline. In
practice, we pre-train a ViT-L/7 on as few as 18 AWS p4d-24xlarge machines.
Without masking, the same job requires over 42 machines.

Finally, we also show that MSNs are competitive with prior works on other
self-supervised benchmarks that use many labels for evaluation (e.g., fine-tuning,
linear-evaluation, transfer learning).

2 Prerequisites

Problem Formulation Consider a large collection of unlabeled images, D =
(x;)%_,, and a small dataset of annotated images, S = (x4;, ;)% ,, with L < U.
Here, the images in S may overlap with the images in the dataset D. Our goal is
to learn image representations by first pre-training on D and then adapting the
representation to the supervised task using S.

Siamese Networks The goal of siamese networks [7, 9], as they are used in
self-supervised learning, is to learn an encoder that produces similar image
embeddings for two views of an image. Specifically, given an encoder fy(-) and
two views x; and Xf of an image, the encoder independently processes each view
and outputs representations z; and z:r respectively, referred to as the anchor
representation and the target representation. The objective of siamese networks
is to learn an encoder that is not sensitive to differences between views, so the
representations z; and zl+ should match. In practice, the encoder fy(-) is usually
parameterized as a deep neural network with learnable parameters 6.

The main challenge with siamese architectures is to prevent representation
collapse in which the encoder produces a constant image embedding regard-
less of the input. Several approaches have been investigated in the literature.
Contrastive losses explicitly push away embeddings of different images [9, 28,
15]. Information maximization approaches try to maximize the entropy of the
average prediction [11, 1] or spread out the embeddings uniformly on the surface
of a sphere [10]. Asymmetric approaches rely on an asymmetric architectural
choice such as stop-gradient operations and a momentum encoder [15,25] to
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(a) Evaluation using 1% of ImageNet-1K labels
(~13 imgs/class). Evaluation with Frozen Fea-
tures corresponds to freezing the weights and
training a logistic regression classifier with the
available labeled samples. Evaluation with Fine-
Tuning corresponds to adding a linear head and
fine-tuning the model+head, end-to-end.
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(b) Low-shot evaluation comparing MSN (ViT-
L/7) to the best publicly available models in
low-shot classification for DINO (ViT-B/8) and
MAE (ViT-L/16). MSN and DINO use a linear
probe, whereas MAE uses partial fine-tuning,
where the last block of the pre-trained model
along with a linear head are adapted.

Fig. 2: Low-shot Evaluation of self-supervised models, pre-trained on ImageNet-1K.
(Left) MSN matches the previous 800M parameter state-of-the-art, while using a model
that is 10x smaller, and no fine-tuning. (Right) MSN achieves good classification
performance using less labels than current mask-based auto-encoders.

prevent collapse. Other approaches try to decorrelate the vector components of
the embeddings to minimize redundancy across samples [57, 6].

Vision Transformer We use a standard Vision Transformer (ViT) architec-
ture [21] as the encoder. Vision Transformers first extract a sequence of non-
overlapping patches of resolution N x N from an image. Next, they apply a
linear layer to extract patch tokens, and subsequently add learnable positional
embeddings to them. An extra learnable [CLS] token is added to the sequence.
This token aims to aggregate information from the full sequence of patches [21,
11]. The sequence of tokens is then fed to a stack of Transformer layers [49].
A Transformer layer is composed of a self-attention [49] and a fully-connected
layer with skip connections [29]. Self-attention uses an attention mechanism [4]
applied to the entire sequence of elements to update the representation. The
output representation associated to the [CLS] token is used as the output of the
encoder.

3 Masked Siamese Networks

We now describe the proposed Masked Siamese Network (MSN) training pro-
cedure, which combines invariance-based pre-training with mask denoising; see
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(a) No Mask (b) Random Mask (c) Focal Mask

Fig. 3: Masking strategies. When applying a Random Mask, we randomly drop
patches across a global view of the image. When applying a Focal Mask, we randomly
select a local continuous block of an image, and mask everything around it. We typically
leverage both Random and Focal Masking strategies when pre-training with MSNs.

Figure 1 for a schematic. MSNs first use random data augmentations to gener-
ate two views of an image, referred to as the anchor view and the target view.
Subsequently, a random mask is applied to the anchor view, while the target
view is left unchanged. Similar to clustering-based SSL approaches [10,11, 1],
learning occurs by computing a soft-distribution over a set of prototypes for both
the anchor and target views. The objective is then to assign the representation
of the masked anchor view to the same prototypes as the representation of the
unmasked target view. We use a standard cross-entropy loss to optimize this
criterion.

In contrast to previous work on masked image modelling, the mask-denoising
process in MSN is discriminative, rather than generative [27, 55,52, 5,61]. MSN
architectures do not directly predict pixel values (or tokens) for the masked
patches. Instead, the loss is applied directly to the output corresponding to the
[CLS] token of the encoder.

Input Views In each iteration of pre-training, we sample a mini-batch of B > 1
images. For an index i € [B], let x; denote the " image in the mini-batch. For
each image x;, we first apply a random set of data augmentations to generate a
target view, denoted x;r, and M > 1 anchor views, denoted x; 1,X;,2,...,X;i M-

Patchify and Mask Next, we “patchify” each view by converting it into a
sequence of non-overlapping N x N patches. After patchifying the anchor view
Xi,m, we also apply the additional step of masking by randomly dropping some
of the patches. We denote by X; ,, the sequence of masked anchor patches, and
by )‘(j‘ the sequence of unmasked target patches. Because of masking, the anchor
sequence X; ., can have a different length than the patchified target sequence )‘(Zr,
even if both image views originally have the same resolution.

We investigate two strategies for masking the anchor views, Random Masking
and Focal Masking, which are depicted in Figure 3. When applying Random
Masking, we randomly drop potentially non-contiguous patches across the se-
quence. Conversely, when applying Focal Masking, we randomly select a local
continuous block of the anchor view and drop all the patches around it.
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Encoder Given a parameterized anchor encoder, denoted fy(-), let z; , € R
denote the representation computed from the patchified (and masked) anchor
view X; ,,. Similarly, given a parameterized target encoder f3(-), with a potentially
different set of parameters 6, let zf € R? denote the representation computed
from the patchified target view %;. In MSNs, the parameters § of the target
encoder are updated via an exponential moving average of the anchor encoder
parameters [25]. Both encoders correspond to the trunk of a ViT [21]. We take
the output of the network to be the representation corresponding to the [CLS]
token.

Similarity Metric and Predictions Let q € RXX? denote K > 1 learnable
prototypes, each of dimension d. To train the encoder, we compute a distribution
based on the similarity between these prototypes and each anchor and target
view pair, and we penalize the encoder for differences between these distributions.
More precisely, for an anchor representation z; ,,, we compute a “prediction”
Pi.m € Ak in the K-dimensional simplex by measuring the cosine similarity to
the prototypes matrix q. For Lo-normalized representations and prototypes, the
predictions p; ,, can be concisely written as
Di,m = softmax (M) ,
-
where 7 € (0,1) is a temperature. Similarly, for each target representation zj' ,
we generate a prediction p;r € Ak by measuring the cosine similarity to the
same prototypes matrix q. When computing the target predictions, we also use a
temperature parameter 7+ € (07 1). Note, we always choose Tt <7to encourage
sharper target predictions, which implicitly guides the model to produce confident
low entropy anchor predictions. As we show in Appendix D, target sharpening
coupled with mean-entropy maximization is provably sufficient to eliminate
collapsing solutions in the MSN framework.

Training Objective As previously mentioned, to train the encoder, we penalize
when the anchor prediction p; ., is different from the target prediction pj. We
enforce this criterion using a standard cross-entropy loss H(p; m, pj)

We also incorporate the mean entropy maximization (ME-MAX) regularizer,
also used in [1, 33], to encourage the model to utilize the full set of prototypes.
Denote the average prediction across all the anchor views by

B M

_ 1
b= mz sz‘,m-

i=1 m=1

The ME-MAX regularizer simply seeks to maximize the entropy of p, denoted H (p),
or equivalently, minimize the negative entropy of p. Thus, the overall objective
to be minimized when training the encoder parameters # and prototypes q is

| BM
VB Z Z H(pim,pi) — AH(p), (1)

i=1 m=1
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where A > 0 controls the weight of the ME-MAX regularization. Note that when
training, we only compute gradients with respect to the anchor predictions p; ,,
not the target predictions p;".

4 Related Work

Unsupervised pre-training for vision has seen rapid progress with the development
of view-invariant representation learning and joint embedding architectures [53,
28,15,25,11, 6]. Most similar to our approach is DINO [11] which leverages a
Siamese Network with a cross-entropy loss and a momentum encoder. DINO
also uses multi-crop training, which is a form of focal masking, but it requires
an unmasked anchor view during training. MSN can be seen as a generalization
of DINO, leveraging both random and focal masking without requiring any
unmasked anchor views. Since the cross-entropy loss in equation (1) is only
differentiated with respect to the anchor predictions, not the target, MSN only
backpropagates through the anchor network and only needs to store the activation
associated with the masked view. MSN therefore reduces the computational
and memory requirements. MSN also differs from DINO in its mechanism for
preventing representation collapse (entropy maximization as opposed to centering
and sharpening). Our empirical results show that MSN compares favourably to
DINO across various degrees of supervision for the downstream task.

A prominent line of work in SSL is to remove a portion of the input and learn to
reconstruct the removed content [18]. For example, in the field of image recognition,
some works have proposed to predict augmented image channels [60], which can
be regarded as a form of image colorization [59, 34, 35]. Other approaches propose
to remove and learn to regress entire image regions: the seminal Context Encoders
of Pathak et al. [43] train a network to generate missing image patches based on
their surroundings. Recent works revisit this idea and investigate the pre-training
of ViTs with masked auto-encoders [12,27, 55,52, 5]. These approaches corrupt
images with mask-noise and predict missing input values at the pixel level [21,
27, 54] or using a tokenizer [5,52]. Our approach does not predict the missing
value at the input level, but instead performs the denoising step implicitly by
ensuring that the global representation of the noisy input matches that of the
uncorrupted input.

Some recent approaches have started to explore the combination of joint-
embedding architectures and denoising pre-training tasks [23, 3, 61]. Those ap-
proaches mask an image by replacing the masked patches with a learnable mask
token, and output a single vector for each masked patch. The objective is then
to directly match each computed patch vector to the equivalent patch token
extracted from a target encoder. Different from these approaches, we only match
the view representations globally and do not consider a patch level loss. Con-
sequently, we can completely ignore the masked patches, significantly reducing
the computational and memory requirements. For example, when training our
largest model, a ViT-L/7, we mask over 70% of the input patches, and reduce
memory and computational overhead by half.
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Table 1: Extreme low-shot. We evaluate the label-efficiency of self-supervised models
pretrained on the ImageNet-1K dataset. For evaluation, we use an extremely small
number of the ImageNet-1K labels and report the mean top-1 accuracy and standard
deviation across 3 random splits of the data.

Images per Class

Method Architecture Epochs 1 2 5
BOT [61] ViT-S/16 800 404+ 05 508 +0.8  59.9+ 0.2
ViT-B/16 400 46.1 403 5624 0.7 647 + 0.3
ViT-S/16 800 389404 489403 585+ 0.1
DINO [11] ViT-B/16 400 418+ 03 519406 61.4+02
ViT-S/8 800 4554+ 0.4  56.0 £ 0.7  64.7 + 0.4
ViT-B/8 300 458 £ 0.5 5594+ 0.6  64.6 + 0.2
ViT-B/16 1600 82+03 250403  40.54 0.2
MAE [27] ViT-L/16 1600 123402 193 +1.8 423403
ViT-H/14 1600 11.6 £ 04 186 +£0.2 3284 0.2
ViT-S/16 800 471401 558 £0.6  62.8+0.3
ViT-B/16 600 498+ 0.2 589 +04  65.5+0.3
MSN (Ours)  viT-B/8 600 55.1 4+ 0.1 649+ 0.7 71.6 + 0.3
ViT-L/7 200 57.1 + 0.6 66.4 + 0.6 72.1 + 0.2
5 Results

We evaluate MSN representations learned on the ImageNet-1K dataset [44]. We
first consider low-shot evaluation on ImageNet-1K using as few as 1-5 images
per class. We also compare with the state-of-the-art in settings where more
supervision is available and investigate transfer-learning performance. Finally,
we conduct ablation experiments with MSN. By default, we pre-train with a
batch-size of 1024 images, generating several anchor views from each image: 1
view with a random mask, and 10 views with focal masks. We find that the
optimal masking ratio is model-dependent, with larger models benefiting from
more aggressive patch dropping. We describe MSN implementation details in
Appendix C.

5.1 Label-Efficient Learning

The premise of SSL is to learn representations on unlabeled data that can be
effectively applied to prediction tasks with few labels [14]. In this section we
explore the performance of self-supervised approaches when very few labeled
examples are available.

Extreme Low-Shot We first evaluate the classification performance of unsu-
pervised models that have been pre-trained on ImageNet-1K, by using 1, 2, and
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Table 2: Low-shot evaluation on ImageNet-1K using 1% of the labels (approximately 13
images per class). fIndicates evaluations we computed using publicly available models.

Method Architecture Params. Top 1
Comparing similar architectures
Barlow-Tw. [57] RN50 24M 55.0
SimCLRv2 [14] RN50 24M 57.9
PAWS [1] RN50 24M 66.5
DINO [11] ViT-S/16 22M 64.5
iBOT [61] ViT-S/16 22M 65.9
MSN ViT-S/16 22M 67.2
Comparing larger architectures
BYOL [25] RN200 (2x) 250M 71.2
SimCLRv2 [14] RN151+SK (3x) 795M 74.9
iBOT [61]* ViT-B/16 86M 69.7
DINO [11] ViT-B/8 86M 70.0
MSN ViT-B/4 86M 75.7

5 labeled images per class for supervised evaluation. We compare MSN to the
joint-embedding approach, DINO [14], the auto-encoding approach, MAE [27],
and the hybrid approach, iBOT [61], which combines a joint-embedding archi-
tecture with a token-based patch-level loss. We download the official released
models of each related approach for evaluation.

To adapt the joint-embeddings models to the supervised task, we freeze the
weights of the pre-trained model and train a linear classifier on top using 1, 2 or
5 labeled samples (see Appendix C). For MAE, we rely on partial fine-tuning [27],
except for the 1 image per class setting, and all results with the ViT-H/14
architecture, which use a linear classifier. Partial fine-tuning corresponds to
fine-tuning the last block of the pre-trained model along with a linear head. MAE
benefits from partial fine-tuning, but for sufficiently large models, such as the
ViT-H/14, this leads to significant overfitting in the low-shot regime. We compare
both protocols in more detail in Appendix E.

Table 1 reports the extreme low-shot evaluation results. MSN outperforms the
other representation learning approaches across all levels of supervision. Moreover,
the improvement offered by MSN increases as the amount of available labeled
data is decreased. The performance of MSN also benefits from increased model
size — settings with less labeled data appear to benefit more from increased
model depth and smaller patch sizes.

We also observe that joint-embedding approaches appear to be more robust
to the limited availability of downstream supervision than reconstruction-based
auto-encoding approaches. To explain this observation, we refer to the Masked
Auto-Encoders paper [27] which conjectures that using a pixel reconstruction loss
results in encoder representations of a lower semantic level than other methods.
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Table 3: Linear evaluation on ImageNet-1K using 100% of the labels.

Method Architecture Params. Epochs Top 1
Comparing similar architectures

SimCLRv2 [14] RN50 24M 800 71.7

BYOL [25] RN50 24M 1000 74.4

DINO [11] ViT-S/16 22M 800 77.0

iBOT [61] ViT-S/16 22M 800 77.9

MSN ViT-S/16 22M 600 76.9

Comparing larger architectures

MAE [27] ViT-H/14 632M 1600 76.6
BYOL [25] RN200 (2x) 250M 800 79.6
SimCLRv2 [14] RN151+SK (3x)  795M 800 79.8
iBOT [61] ViT-B/16 86M 400 79.4
DINO [11] ViT-B/8 86M 300 80.1
MoCov3 [16] ViT-BN-L/7 304M 300 81.0
MSN ViT-L/7 304M 200 80.7

Conversely, the inductive bias introduced by invariance-based pre-training appears
to be helpful in the low-shot regime.

1% ImageNet-1K Table 2 reports a comparison on the 1% ImageNet-1K
task, which is a standard benchmark for low-shot evaluation of self-supervised
models [13]. For reference, the best reported result in the literature on 1%
labeled data is 76.6%, achieved with a multi-stage semi-supervised pipeline,
i.e., self-distilling from a fine-tuned ResNet-152 with 3x wider channels and
selective kernels [14]. Here we focus on comparing to other models trained in a
self-supervised setting. Our best MSN model using a ViT-L/7 achieves 75.1% top
1 accuracy, surpassing the previous 800M parameter state-of-the-art convolutional
network [14] while using significantly fewer parameters and no fine-tuning. When
focusing the comparison on similar architectures (models with similar FLOP
counts), MSN also consistently improves upon previous approaches.

5.2 Linear Evaluation and Fine-tuning

In this section we compare with the state-of-the-art on standard evaluation bench-
marks where more supervised samples are available to adapt the representation.
We use the full ImageNet-1K training images with 1.28M labels.

Linear Evaluation We evaluate self-supervised pretrained models by freezing
their weights and training a linear classifier. Table 3 reports the linear evaluation
results on ImageNet-1K. We observe that MSN performs competitively with the
state-of-the-art. The best MSN model achieves 80.7% top-1 accuracy.
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Table 4: End-to-end fine-tuning of a ViT-B/16 encoder on ImageNet-1K using 100% of
the labels. MSN obtains competitive performance with both joint-embedding approaches
and auto-encoding approaches.

Initialization Pretrain Epochs Top 1

DINO [11] 800 83.6
BEiT [5] 800 83.2
iBOT [27) 800 83.8
MAE [27] 1600 83.6
SimMIM [55] ; 83.8
MaskFeat [52] - 84.0
Data2Vec [3] 800 84.2
MSN 600 83.4

Table 5: Transfer Learning with a ViT-Base/16 pre-trained on ImageNet-1K. Across all
tasks, various levels of supervision, and evaluation methods, MSN either outperforms
or achieves similar results to DINO pre-training. The MSN model is trained with a
masking ratio of 0.3; i.e., dropping 30% of patches, and thus reduces the computational
cost of pre-training relative to DINO.

Top 1
CIFAR10 CIFAR100 iNat18 iNatl19
Evaluation Method 4000 labels 50000 labels
Fine-Tunin DINO — 99.0 90.5 72.0 78.2
UINE SN - 99.0 90.5 72.1 78.1
Linear Fval  PINO 93.2 95.3 82.9 - -
" MSN 93.8 95.7 82.8 — —

Fine-Tuning In this evaluation setting, we finetune all the weights of the self-
supervised model using all the labels from the ImageNet-1K training set. We
focus on the ViT-B/16 architecture. We adopt the same fine-tuning protocol
as [5], and provide the details in Appendix C. Table 4 reports the comparison with
fine-tuning evaluation using 100% labels on ImageNet-1K. MSN is competitive
with joint-embedding approaches, such as DINO, and generative auto-encoding
approaches, such as MAE.

5.3 Transfer Learning

We also report transfer learning experiments on the CIFAR10, CIFAR100 and
iNaturalist datasets in Table 5 when using a self-supervised ViT-B/16 pre-trained
on ImageNet-1K. Across all tasks, various levels of supervision, and evaluation
methods, MSN either outperforms or achieves similar results to DINO pre-training.
Recall that MSN pre-training is also less computationally expensive than DINO
pre-training due to the anchor masking.
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5.4 Ablations

We now conduct a series of experiments to gain insights into the important design
decisions used in MSN such as the masking strategy and the data augmentation
strategy. We measure the accuracy of the models by training a logistic regression
classifier on the frozen trunk using 1% of ImageNet-1K labels (~13 imgs/class).

Combining Random and Focal Masking In MSN we apply both random
and focal masking to the anchor views. Focal masking corresponds to selecting
a small crop from the anchor view. Random masking corresponds to randomly
dropping potentially non-contiguous patches from the anchor view.

Table 6: Masking strategy. Impact of masking strategy on low-shot accuracy (1% of
ImageNet-1K labels) of a ViT-B/16. We only generate one anchor view of each image,
except in the last row, where we generate two views, one with a Random Mask and one
with a Focal Mask. A random masking ratio of 0.5 is used. Applying a random mask to
the anchor view is better than applying no mask. By combining both random and focal
masking strategies, we obtain the strongest performance.

Anchor View Top 1
No Mask 49.3
Focal Mask 39.3
Random Mask 52.3

Random Mask + Focal Mask 59.8

Table 6 reports the effect on low-shot evaluation when using a) No Masking, b)
Focal Masking, ¢) Random Masking, or d) Random and Focal Masking. Applying
a random mask to the anchor view is always better than applying no mask. By
contrast, applying only a focal mask degrades the performance, which highlights
the importance of maintaining a global view during pre-training. By combining
both random and focal masking strategies, we obtain the strongest performance.

Random Masking Ratio Here we explore the relationship between the op-
timal masking ratio and the model size. Table 7 reports the low-shot learning
performance for various random masking ratios as we increase the model size.!
When increasing the model size, we find that increasing the masking ratio
(dropping more patches) is helpful for improving low-shot performance. We also
find that the ViT-L/16 runs with weak masking are unstable, while the runs
with more aggressive masking are quite stable. However, we do not have sufficient

! Note that the performance of the ViT-S/16 can be improved by removing the Sinkhorn
normalization, as we do in Table 2, however for consistency of evaluation with other
models, we keep it in for this this ablation.
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Table 7: Masking ratio. Impact of pre-training random masking ratio (fraction of
randomly dropped patches in each random mask) on ImageNet 1% accuracy. Accuracy
of larger models improves when leveraging aggressive masking during pre-training.

Top 1

Random Masking Ratio
Architecture 0.15 0.3 0.5 0.7

ViT-S/16 66.3 66.0 64.8 -
ViT-B/16 68.8  69.6 - -
ViT-L/16 NaN NaN 70.1 694

evidence to claim that increasing the masking ratio always improves the stability
of large ViT pre-training.

Augmentation Invariance and Low-Shot Learning We explore the im-
portance of data-augmentation invariance for low-shot learning. We pretrain a
ViT-B/16 with MSN, where the teacher and anchor networks either share the
input image view or use different input views; in both cases, the anchor view
is always masked. The views are constructed by applying random ColorlJitter,
Crop, Horizontal Flips, and GaussianBlur to the input image.

Table 8: Impact of view-sharing during pre-training when evaluating on ImageNet 1%.
The target view is constructed by applying random ColorJitter, Crop, Horizontal Flips,
and GaussianBlur to the input image. When using the same image view, MSN finds a
shortcut solution. Using color jitter prevents this pathological behaviour. Randomly
applying additional geometric data transformations to the anchor further improves
performance, demonstrating the importance of view invariance in the low-shot setting.

Anchor View Generation Top 1
Target View 7.0
Target View + ColorJitter 48.7

Target View + ColorJitter + Crop + Flip + GaussianBlur 52.3

Table 8 reports top-1 accuracy when evaluating with 1% of ImageNet-1K
labels. Sharing the view leads to a top-1 accuracy of 7%; MSN finds a shortcut
solution relying on color statistics. Using different colors in the input views
resolves this pathological behaviour and achieves a top-1 of 48.3%. Further
applying the geometric data-augmentations independently to the two views (as
opposed to sharing views) further improves the performance to 52.3%, showing
the importance of learning view-invariant representations in the low-shot setting.
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Random Masking Compute and Memory We look at the effect of the
random masking ratio, i.e., the fraction of dropped patches from the global anchor
view, on the computational requirements of large model pre-training. In each
iteration we also generate 10 focal views (small crops) of each input image; the
random masking ratio has no impact on these views.

Table 9: Impact of random masking ratio on GPU memory usage and runtime when
pre-training a ViT-L/7. Measurements are conducted on a single AWS p4d-24xlarge
machine, containing 8 A100 GPUs, using a batch-size of 2 images per GPU. In each
iteration we also generate 10 focal views (small crops) of each input image; the random
masking ratio has no impact on these views. Using more aggressive masking of the
global view progressively reduces device memory utilization and speeds up training.S

Masking Ratio | Mem./GPU  Throughput

0.0 26G 415 imgs/s
0.3 21G 480 imgs/s
0.5 18G 525 imgs/s
0.7 17G 600 imgs/s

Table 9 reports the memory consumption and throughput (imgs/s) of a
ViT-L/7 model on a single AWS p4d-24xlarge machine using a batch-size of
2 images per GPU. As expected, using more aggressive masking of the global
view progressively reduces device memory utilization and speeds up training.
For example, by randomly masking 70% of the patches, we can use MSN to
pre-train a full-precision ViT-Large with a patch-size of 7 x 7 on as few as 18
AWS p4d-24xlarge machines. Without masking, the same job requires over 42
machines when using the default batch-size of 1024 images.

6 Conclusion

We propose Masked Siamese Networks (MSNs), a self-supervised learning frame-
work that leverages the idea of mask-denoising while avoiding pixel and token-level
reconstruction. We demonstrate empirically that MSNs learn strong off-the-shelf
representations that excel at label-efficient learning, while simultaneously improv-
ing the scalability of joint-embedding architectures. By relying on view-invariant
representation learning, MSN does require the specification of data transfor-
mations, and it may be that the optimal transformations and invariances are
dataset and task dependant. In future work, we plan to explore more flexible
mechanisms to learn those transformations and also explore the use of equivariant
representations.
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