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1 ResNet-34 Results
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Fig. 1: Partial dimensional collapse for large subsets. Just as we did
in Figure 3 for ResNet-18, we show the singular values of the representations
computed by ResNet-34 models trained on different size subsets of ImageNet.
The model trained on 1% exhibits no collapse, whereas more data (other than
the 10% model) tends to lead to more collapse. Note that the degree of collapse
for ResNet-34 is in general much worse than it is for ResNet-18. We hypothesize
that this is due to its increased depth but equivalent width, which makes it
easier for SimSiam to lose information at every layer and compute collapsed
representations.
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2 Distillation

Table 1: Distillation yields strong performance using smaller networks, regardless
of pre-training algorithm. We show the linear probe accuracy of the ResNet-50
teachers trained by SimSiam or MoCo-v3 and the student networks obtained by
distilling each teacher network.

Pre-training Algorithm ResNet-50 Teacher ResNet-18 ResNet-34

SimSiam 68.1 58.9 62.5
MoCo-v3 66.4 56.4 57.5

Model distillation [7,1] is a technique for compressing the knowledge in a large
model into a smaller model. During the distillation process, the smaller student
network learns to match the outputs of the larger teacher network. Training a
large teacher model on a dataset (e.g. with cross-entropy loss) and distilling it
into a smaller model typically performs better than directly training the small
model. If we have a lot of compute available and only care about obtaining good
small models, training a ResNet-50 with SimSiam (which does not collapse) and
distilling it into a smaller model is an effective alternative approach for preventing
partial dimensional collapse.

We distill a ResNet-50 into ResNet-18 and ResNet-34 by adding a fully
connected layer that predicts the 2048-dimensional ResNet-50 representation
and minimizes the mean-squared error (MSE). Note that this is equivalent to
learning the top singular vectors of the teacher network representations, as the
student network tries to learn a low-rank approximation of the teacher. Training
the student is fairly straightforward. We train for 100 epochs on ImageNet-1k
using the same hyperparameters used for SimSiam training. We find that the
ResNet-50 teacher outputs are typically very small, on the order of 0.001 - 0.1,
so minimizing the MSE with respect to the raw outputs leads to small gradient
values and extremely long training times. Thus, we employ the standard trick of
computing the mean and standard deviation of each dimension of the teacher
output and using them to normalize the teacher output to have a mean of 0
and a variance of 1 in each dimension. We do this using an exponential moving
average that updates the mean and standard deviation online.

As expected, Table 1 shows that distillation produces ResNet-18 and ResNet-
34 networks with strong linear probing performance. Note that this outcome is
orthogonal to our work. First, distillation is incredibly compute-heavy. Training
and distilling ResNet-50 into ResNet-18 takes as much as 4× the compute as
directly training the ResNet-18. Second, distillation is effective regardless of
the pre-training algorithm – MoCo and SimSiam both benefit from distillation.
Finally, distillation performance does not resolve the fact that vanilla SimSiam
uniquely has the partial dimensional collapse problem and cannot be used to
train smaller networks.
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3 Additional Experiments

3.1 Vision Transformers

Self-supervised algorithms are typically evaluated using ResNets, but different
architectures have qualitatively different behaviors. For example, self-supervised
training with DINO [2] leads Vision Transformers [4] to learn features correspond-
ing to semantic segmentation, whereas ResNets trained with DINO do not. Thus,
we experimented with using SimSiam to train Vision Transformers of varying
sizes, in order to look for further architecture-related qualitative differences. Due
to computational constraints, we tried ViT-Small, which was used in [3], as well
as variants with fewer layers or attention heads. We trained these models using
SimSiam for 100 epochs using the following hyperparameters from [3]: AdamW
optimizer, learning rate of 1.5× 10−4, weight decay of 0.1, learning rate warmup
for 10 epochs, and frozen linear patch projection.

Surprisingly, these ViTs only achieve about 6-10% linear probe accuracy.
There could be several reasons for their poor performance. We could have used
bad hyperparameters, although this indicates that SimSiam is very sensitive to
hyperparameter values. This also could be due to their limited representation size
(384 dim), which makes it less likely that they have learned many useful features.
Finally, this could indicate that ViT fundamentally lacks some architectural
inductive bias that makes non-contrastive algorithms like SimSiam or BYOL
work with ResNet. Further work in this area could be illuminating.

3.2 Nearest Neighbors SimSiam

We test whether a queue-based nearest neighbors loss (NNSiam, [5]) improves
SimSiam training for ResNet-18. Given a pair of augmentations x1 and x2, the
NNSiam objective is use x1 to predict the nearest neighbor of x2’s projected
representation in a MoCo-style queue. We train for 100 epochs on ImageNet with
the same hyperparameters as vanilla SimSiam and a queue of length 25600.

This achieves a linear probe accuracy of 34.4% on ImageNet, which is better
than the vanilla “multiple pass” baseline (30.0%), but still vastly underperforms
our proposed methods, including “single pass“ (44.5%) or hybrid training (48.3%).

3.3 Additional Baseline: Learning Rate Warmup

Table 2: Additional baseline for comparing validation top-1 linear finetuning
accuracy for different SimSiam training methods.

Training method ResNet-18 ResNet-34 ResNet-50

IID 30.01 16.83 68.09
IID + 10-epoch lr warmup 28.38 35.82 -
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Figure 1(b) showed that MoCo-v3 [3] and BYOL [6] achieve reasonable
performance with ResNet-18, whereas SimSiam collapses. One potential source
of this difference is the learning rate warmup: MoCo-v3 and BYOL both utilize
a linear learning rate warmup over the first 10 epochs, whereas SimSiam uses
no warmup. We add a 10-epoch learning rate warmup to SimSiam and show
that this detail is not responsible for the huge deficit in SimSiam performance.
Table 2 shows that warmup decreases ResNet-18 performance from 30.01% to
28.38% but increases ResNet-34 performance from 16.83% to 35.82%. This still
falls quite short of the performance of our hybrid continual-IID method, which
outperforms this baseline by 20 percentage points (ResNet-18) and 15 percentage
points (ResNet-34).
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