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Abstract. The ubiquity of camera-enabled mobile devices has lead to
large amounts of unlabelled video data being produced at the edge. Al-
though various self-supervised learning (SSL) methods have been pro-
posed to harvest their latent spatio-temporal representations for task-
specific training, practical challenges including privacy concerns and com-
munication costs prevent SSL from being deployed at large scales. To
mitigate these issues, we propose the use of Federated Learning (FL)
to the task of video SSL. In this work, we evaluate the performance
of current state-of-the-art (SOTA) video-SSL techniques and identify
their shortcomings when integrated into the large-scale FL setting simu-
lated with kinetics-400 dataset. We follow by proposing a novel federated
SSL framework for video, dubbed FedVSSL, that integrates different ag-
gregation strategies and partial weight updating. Extensive experiments
demonstrate the effectiveness and significance of FedVSSL as it outper-
forms the centralized SOTA for the downstream retrieval task by 6.66%
on UCF-101 and 5.13% on HMDB-51.

Keywords: Self-Supervised Learning, Federated Learning, Video Un-
derstanding, Model Aggregation

1 Introduction

A plethora of video content, often unlabelled and of private nature, is gener-
ated everyday from cameras in cellphones, tablets, and other mobile devices
[10,21,31,1,38]. Being able to repurpose this data to solve various tasks in com-
puter vision has been of great interest to researchers since the last decade
[4,13,23,7,32,41,40,10]. Self-Supervised Learning (SSL) allows us to harvest these
data contents by learning intermediate visual representations from unlabelled
data, which can then be used as a starting point to solve specific downstream
tasks (e.g., human action recognition [36], temporal action detection [45]). In
practice, however, deploying SSL in its näıve form would require massive amounts
of data to be sent to a centralized server for processing, posing significant con-
cerns around privacy, [17,15], communication, and storage costs, ultimately lim-
iting the technology to small datasets.

⋆ Equal contribution, authors ordered alphabetically.
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A natural way to mitigate those issues is to combine SSL with the novel decen-
tralized machine learning technique known as Federated Learning (FL) [29]. In
FL, distributed population of edge devices collaboratively train a shared model
while keeping their personal data private. Essentially, FL dilutes the burden of
training across devices and avoids privacy and storage issues by not collecting
users’ data samples. The potential integration of video-SSL and FL into one
coherent system offers lots of benefits in addition to data privacy. It enables
large-scale decentralized feature learning from real-world data without requir-
ing any costly and laborious data annotations. This can practically improve the
performance and enables a vast majority of vision models for video applications
[10], which have been under the shadow otherwise. Surprisingly, bearing such
potential benefits there is no prior work that has so far studied video-SSL in FL.

In this paper, we conduct the first comprehensive study on video-SSL train-
ing in cross-device FL environment [20]. Our key findings from this study shows
that: (1) The vanilla FL pretraining of video-SSL approaches are surprisingly
not affected by the distribution of the data either being IID or non-IID. (2)
Video-SSL with FL performs significantly better than the corresponding cen-
tralized SSL pretraining on video retrieval tasks and comparatively worse when
the model is fined-tuned for action recognition. (3) We also show that the video
SSL methods in FL settings are computationally efficient, regularized, and re-
silient to small-scale perturbation, compared to their centralized counterparts.

Based on the findings of our study of video-SSL with FL, we propose a novel
federated learning framework, FedVSSL, designed specifically for video SSL.
This framework allows to transceive only the backbone parameters of the video-
SSL model during each communication round in FL. It then leverages a novel
aggregation strategy, inspired by stochastic weighted averaging (SWA) [16], to
aggregate and update the weights of the clients (performing video-SSL) at the
server. FedVSSL obtains the state-of-the-art (SOTA) performance in video clip
retrieval and competitive performance on action recognition against FedAvg and
centralized video-SSL. The main contributions of this work are as follows:

1. We conduct the first systematic study of training video-SSL methods in
FL cross-device settings with a large number of distributed clients. This
establishes a baseline for näıvely implementing various video-SSL techniques
using FL; shedding light on the basic problems of integrating video-SSL with
FL into one coherent system.

2. Based on the above, we propose a general FL framework, FedVSSL, based
on SWA [16] for pretraining video-SSL methods in FL. Our method obtains
SOTA performance in video clip retrieval and competitive performance on
action recognition against FedAvg and centralized video-SSL.

3. We release our code and models on GitHub 4 to allow for reproducibility
and stimulate further research in the field.

4 https://github.com/yasar-rehman/FEDVSSL

https://github.com/yasar-rehman/FEDVSSL
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2 Background and Related Work

2.1 Video Self-supervised Representation Learning

Video-SSL approaches often rely on solving a pretext task [8] in an unsupervised
fashion to learn representations that can be reused in solving other downstream
tasks. The pretext tasks in video-SSL are either based on contrastive meth-
ods, non-contrastive methods, or a combination of both. Contrastive methods
exploit the similarity between the two augmented views of the input samples
using contrastive learning to learn the spatio-temporal representation from the
unlabeled data [12,11,28,8,34]. On the other hand, non-contrastive approaches
utilize specialized pretext tasks to generate pseudo signals to learn the spatio-
temporal representation in a supervised manner, usually requiring just a single
input [19,30,42,18,2,43,40,39,26].

Regardless of the specific SSL method being deployed, a recent study has
shown that SSL models become more robust on a wide range of vision-based tasks
when pretrained on real-world and uncurated data [10]. Bearing such tremendous
potential, video-SSL models can extend the horizons of the many vision-based
applications. However, the utility of these video-SSL models is significantly lim-
ited by the scale of the datasets available on the training server due to issues
such as data privacy, communication cost and large data storage requirements.
In this paper, we extend the utility of video-SSL methods beyond the central-
ized servers. This would allow harvesting of information from an unprecedented
amount of user data, offering new opportunities to advance the quality and ro-
bustness of video-SSL models.

2.2 Federated Visual Representation Learning

Federated Learning (FL) [29] has received a lot of attention in recent years. In
this new paradigm, the server now needs to aggregate incoming weights from
clients to progressively produce better networks. In its original form [29], aggre-
gation was performed using FedAvg, an aggregation strategy that generates a
model via a weighted sum of clients’ parameters. However, this simple aggrega-
tion method can perform particularly poorly in realistic scenarios where clients
have very different data distributions, i. e. the available datasets are essentially
not Independent and Identically Distributed (IID).

In the past few years, a number of aggregation strategies have been proposed
to improve upon the original FedAvg. Authors in [9] introduce local-model train-
ing loss as a weighting coefficient for aggregation. Adaptive federated optimiza-
tion approaches, proposed in [33], incorporate knowledge of past iterations by
applying a separate gradient-based optimization on the server-side. Specific to
SSL, authors in [44] suggest using contrastive-learning on the server-side based
on the logits sent by the clients, thus imposing some privacy issues.

Besides choosing a specific aggregation method when training using SSL in
FL, we must also decide which parts of the networks need to be aggregated
as some of the weights are associated with latent representations (backbone)
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while others are simply used for solving the pretext tasks (head). To this end,
authors in [46] proposed FedU, that determines the update of the clients’ model
classification head based on the degree of backbone model divergence between
the server and the clients.

It is important to note that the above-mentioned works were applied to small-
scale image-based datasets [24,35] and that their proposed aggregation methods
rely on the usual class-label based definition of non-IID. However, SSL should
not depend on class-based labels, which prompts the question of whether such
a definition of non-IID datasets bears any impact in video-SSL in FL. To the
best of our knowledge, ours is the first FL SSL training framework tailored to
video that is capable of producing SOTA models better than their centralized
counterparts, regardless of the pretext class-label non-IID partitioning. We do
this by correctly selecting only the backbone weights for aggregation.

3 Methodology

In this section, we provide the details of our systematic study on video-SSL using
Federated Learning. Based on our findings, we follow by describing our proposed
FedVSSL approach.

3.1 Federated Video-SSL System Design

We begin with a vanilla FL system that can be integrated with the video-
SSL learning. The resulting FL video-SSL system is depicted in Fig. 1-Stage
1. We consider having n partitions {di}ni=1 of dataset D distributed among
{ci|ci ∈ C}ni=1 decentralized clients in a Non-IID fashion. Each decentralized
client learns intermediate features collaboratively by training the video-SSL ap-
proach on their respective local data partition for a few epochs before performing
synchronization through the server. The synchronization includes receiving the
clients’ model parameters, performing model aggregation, and sending back the
global model again to clients. More specifically, our training pipeline can be
described as follows:

1. Each client ci holds a set of local parameters {θbi , θ
pt

i } for a backbone net-
work f(θb) parameterized by the weights θb followed by a predictor head network
f(θpt) parameterized by the weights θpt . Note that all clients use the same model
architecture but the parameter weights {θbi , θ

pt

i }1≤i≤n can be non-consensus.
During each FL round r, local video-SSL pretraining and synchronization will
be conducted intersectively.

2. During the communication/synchronization step, each client would receive
global values for the weights θbg and θpt

g aggregated on the server based on certain
FL aggregation strategies.

3. During each round r, a random subset of clients, M , is selected to per-
form video-SSL training. Each participant m ∈ M optimizes its local model’s
parameters {θbm, θpt

m} for E number of local epochs.
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Fig. 1: System overview: Stage-1 (left) represents the FL video-SSL pretraining. For
the downstream tasks; video clip retrieval is seen in Stage-2(a) and action recognition
is depicted in Stage-2(b)

The local training steps in each client completely follows the setup of the
video-SSL algorithms, including the pre-training task together with the task-
specific loss function design. The optimization is performed with SGD by mini-
mizing the objective Jpt

m (θb, θpt):

Jpt
m (θb, θpt) = Ex∼dmLm(x, ypt, θ

b, θpt), (1)

where (x, ypt) is the data with its corresponding pseudo labels for the specific
pretext task pt. At the end of the R rounds, the final global model parameters
θbg for the backbone network can be used to extract spatio-temporal represen-
tations from videos for downstream tasks. We then follow the common practice
of evaluating the performance of representation learning as done in traditional
video-SSL work [42,41]. The representations learned by the global model param-
eters θbg are evaluated by solving the downstream tasks tsk as is shown in Fig. 1
- Stage 2. In this work, we consider two downstream tasks:

Action Recognition: A classification head (fully connected layer) repre-
sented by f(θtsk) is attached following the final layer of f(θbg), resulting in the

model Ftsk parameterized by {θbg, θtsk}. The Ftsk is then fine-tuned in two ways:

(1) fine-tuning the whole network {θbg, θtsk}, and (2) fine-tuning only the linear

classification layer f(θtsk, i.e., linear probe.
Video Clip Retrieval: For the video clip retrieval, we determine the video

label by majority voting of K-nearest neighbor (KNN) by directly using the
parameters learned by f(θbg) after the FL video-SSL pretraining and followed
the protocol as described in [42].

The above generic video federated-SSL system allows us to perform a system-
atic analysis of the video-SSL approaches and its implications in FL environment
against a number of key factors:

Video-SSL in Vanilla FL Settings. In this scenario, our main objective
is to evaluate the performance gap between pretraining video-SSL algorithms in
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FL and centralized environment. This evaluation will then quantify how different
video-SSL methods behave in FL settings with IID and Non-IID data.

Aggregation Strategies. The aggregation method plays an important role
towards superior performance of the final feature representations learned in FL
video-SSL pretraining. We intend to study the effects of different aggregation
strategies on the feature representations learned during FL pretraining of video-
SSL approaches and hence the downstream tasks.

Loss-Surface and Model Stability of Video-SSL in FL. These analyses
enable us to perform a side-by-side comparison of the key properties of pretrain-
ing video-SSL approaches in FL settings against their centralized counterpart.
For example, recent work indicates that averaging the weights of the neural
networks leads to wider minima [16,27] which subsequently provides better gen-
eralization. A natural question arises as to whether the aggregation strategies,
based on weight averaging, by performing FL video-SSL pretraining could pro-
vide wider minima? Moreover, do such wider minima potentially lead to model
stability against small-scale perturbations that naturally occur during the com-
munication between edge devices and the server in FL?

Training Efficiency and Communication Cost. The total time for pre-
training video-SSL in FL settings depends on the number of epochs during local
training on each client and the number of communication rounds between the
clients and the server. It is important to compute the number of communication
rounds necessary to achieve a target performance with FL video-SSL training in
order to find an optimal balance between the performance of video-SSL and FL
system resources.

3.2 Proposed Method

Based on the observations of the systematic study of the video-SSL approaches
in cross-device FL settings, we proposed a novel FL framework, FedVSSL, de-
signed specifically for video-SSL in FL environment. The key characteristics of
this framework are as follows: (1) Transceive only the backbone model param-
eters θbg between the server and the clients. (2) FedVSSL aggregation strategy
for pretraining video-SSL approaches in FL cross-devicce settings.

Transceive only Backbone Weights. Since each ci client model contains two
modules (f(θbci) and f(θpt

ci )), we analyse the characteristics of both modules and
hypothesize that it is beneficial to only upload and aggregate the parameters θb

of the backbone model at the server (see Table 4). The backbone module learns
hierarchical deep features from the local data, representing the role of encoder.
The classification head is more representative of local data distribution, which
learns data-oriented features. We argue that only aggregating the backbone parts
could increase generalization of the model, while retaining the classification head
and updating it locally could capture more characteristics of non-IID data from
clients. More evidence from Fig. 5 validates our hypothesis.
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FedVSSL Aggregation. The motivation behind proposing FedVSSL aggre-
gation is two folds: First, to integrate the FL aggregation strategies based on
weighted averaging under a common framework. Second, to induce the knowledge
from the past global models while performing model parameters aggregation.

After local pretraining at round r, the server collects the participating clients’
locally updated weights θbm, and the local gradients g(m)(r) from client m at
round r is computed as: g(m)(r) = θbm(r)− θbg(r − 1). The update rule for θbg of
the global model Fg for round r can then be stated as follows:

θbg(r) =
(
∑β

i=1 θ
b
g(r − i)) + θ̃bg(r)

β + 1
, (2)

where θ̃bg(r) = θbg(r−1)−ηs∆r and ηs is the server learning rate. The averaging is
performed over β+1 global models. Eq. 2 simply represents the stochastic weight
averaging (SWA) [16] of the global models. As [16] reported, simple averaging of
the multiple checkpoints of training models obtains better generalisation than
conventional training. The ∆r represents overall local gradients over m clients
computed from a weighted combination of different aggregation strategies. Here
we choose two aggregation strategies: FedAvg [29] and Loss [9], which aggre-
gate the client models based on the number of samples or local training loss
respectively. Then, ∆r can be written as follows:

∆r = α∆Loss
r + (1− α)∆FedAvg

r . (3)

The α in Eq. 3 controls the amount of the contribution of each aggregation
strategy. Eq. 2 is the generalized representation of our FedVSSL aggregation
rule. For example, setting β = 0 in Eq. 2 reduces the update rule to a weighted
combination of FedAvg and Loss. On the other hand, setting α = 0 or 1 reduces
the update rule to running mean of FedAvg or Loss, respectively. The overall
algorithm is summarised in Algo. 1.

4 Experiments and Results

In this section, we first describe our experiment setup in Sec. 4.1 & Sec. 4.2).
We conduct a systematic analysis of the behavior of video-SSL models in vanilla
FL settings in Sec. 4.3, followed by a discussion for the results of our proposed
FedVSSL in Sec. 4.4.

4.1 Datasets

For the pretraining stages of all video-SSL approaches, we utilize kinetics-400
(K400) dataset [21] with 219k training samples distributed among 400 action
classes. For downstream task, we utilize the UCF-101 [36] (UCF) dataset con-
taining 13, 320 video samples for 101 action classes, and HMDB-51 [25] (HMDB)
dataset with 7k video samples distributed among 51 action classes.
Kinectics-400 Non-IID. Each video sample in K400 comes from a different
source, which conforms to the definition of non-IID based on video source-level.
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Algorithm 1 Federated Video Self-supervised Learning (FedVSSL)

Input: R,M,N, nm, ηs, ηl, α, β
Output: θb

Central server does:

1: for r = 1,..., R do
2: Server randomly sample M clients.
3: for each m in M do
4: θbm(r), nm,Lpt

m = TrainLocally(m, θbg(r))

5: g(m)(r) = θbm(r)− θbg(r − 1)

6: ∆FedAvg
r =

∑M
m=1

nm∑m
m=1 nm

g(m)(r)

7: ∆Loss
r =

∑M
m=1

exp (−Lpt
(m)

)∑M
m=1 exp (−Lpt

(m)
)
g(m)(r)

8: ∆r = α∆Loss
r + (1− α)∆FedAvg

r

9: Update global model weights θ̃bg(r)← θbg(r − 1)− ηs∆r.

10: Compute θbg(r) =
(
∑β

i=1 θ̃bg(r−i))+θbg(r)

β+1
.

TrainLocally (m, θbg(r)):

1: for k = 1, ..., E do
2: {θbm, θptm}(k + 1)← SSL(θbg(k), θ

pt
m (k), ηl) based on Eq. 1.

3: Upload θbm, nm,Lpt
m to the server.

To make it more realistic, we generate the non-IID version of K400 based on
actual class-labels [29]. We randomly partition the dataset into 100 shards to
mimic the setting of having 100 disjoint clients participating in FL. Each client
contains 8 classes resulting in each client having 2285 samples on average. Note
that there is no overlap of samples between different clients.

4.2 Architecture and Implementation

Video-SSL Approaches. In this work, we consider three SOTA video-SSL
algorithms, all of which propose to solve different pretext tasks for video rep-
resentation learning. More specifically, VCOP [42] learns to determine the per-
mutation order of shuffled clips, Speed [2,43,5] learns to predict the playback
speed of videos, and CtP [39] predicts the positions and sizes of a synthetic
image patch in a sequence of video frames. For all video-SSL approaches, we
use R3D-18 [37] architecture as the backbone f(θb). The architecture choices
of prediction heads for different pretext tasks and downstream tasks follow the
settings in the original papers. It should be noted that our federated framework
is agnostic to different architectures and video-SSL approaches. We develop the
FL version of the video-SSL approaches considered in this work on top of Flower
[3] federated learning platform by incorporating various video-SSL algorithms
developed in MMCV framework [6,39]. Unless otherwise specified, we keep the
settings of the video-SSL approaches as provided by [39] during the pretraining
tasks and downstream tasks.
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Table 1: Action recognition accuracy (Top-1%) and video clip retrieval accuracy (Top-
1%, Top5%) on UCF and HMDB for three video-SSL methods. F-T represents fine-tune
and L-P stands for linear probe. ∆ represents the difference between centralized and
corresponding FL performance.“+” and “−” show % improvement and degradation
respectively. ∗ means the results are reproduced using the implementation in [39]

Action Recognition Video Clip Retrieval

UCF HMDB UCF HMDB

SSL Method F-T L-P F-T L-P R@1 R@5 R@1 R@5

VCOP* 71.29 24.93 38.56 13.53 15.52 28.26 8.11 22.22
VCOP(Fed) 69.26 20.00 33.27 12.22 13.72 24.85 6.41 19.94
∆ (-2.03) (-4.93) (-5.29) (-1.31) (-1.8) (-3.41) (-1.7) (-2.28)

Speed* 81.15 29.32 47.58 14.90 16.84 36.58 6.93 21.05
Speed(Fed) 73.16 35.63 38.43 21.57 21.97 41.61 10.98 28.30
∆ (-7.99) (+6.31) (-9.05) (+6.67) (+4.05) (+3.94) (+3.92) (+7.25)

CtP* 86.20 48.14 57.00 30.65 29.0 47.30 11.80 30.10
CtP(Fed) 81.95 46.13 49.15 28.63 29.29 48.90 13.66 32.42
∆ (-4.25) (-2.01) (-7.85) (-2.02) (+0.29) (+1.6) (+1.86) (+2.32)

FL Pretraining. We perform the FL pretraining of the video-SSL pretext-task
pt using Algo. 1. The local pretraining on each client lasts for E epochs per FL
round R, where we set E = 1 in our experiments. We set the total number of
rounds R to 540 to ensure that each client acquires sufficient participation during
FL pretraining. The selection of the number of E and R is based on our empirical
observations. Each round, we randomly select M = 5 clients from the pool of
100 clients to participate in training and each client trains its local model using
SGD optimizer without momentum. We set a constant learning rate of 0.01 for
CtP and Speed and 0.001 for VCOP. Weight decay is set to 10−4 and training
batch-size is set to 4. On the server side, in addition to our proposed method
FedVSSL, we consider three existing aggregation strategies including FedAvg,
Loss and FedU.

Downstream Tasks. For the fine-tuning stage of action recognition, we follow
the configuration in CtP framework [39]. The Fdtsk

is fine-tuned using the SGD
optimizer with an initial learning rate of 0.01, momentum of 0.9, and weight
decay of 5 × 10−4. The learning rate is decayed by a factor of 0.1 after 60 and
120 epochs, respectively. The batch-size is set 32, and the fine-tuning stage lasts
for 150 epochs. For linear probe, we keep the same settings as for the fine-tuning
of the whole network, except that we train only f(θdtsk) layer of Fdtsk

for 100
epochs. The learning rate is decayed by the factor of 0.1 after 60 and 80 epochs.
For the video clip retrieval task, we follow the approach described in Sec. 3.1.

4.3 Video-SSL in Vanilla FL Settings

Here we investigate the performance of video-SSL in vanilla FL settings against
the key factors listed in Sec.3.1.
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Table 2: Action recognition and video clip retrieval accuracies (%) on UCF and HMDB
for the federated CtP models pretrained with one local epoch per round. C represents
the number of clients, and Cpc stands for the number of classes per client

Fine-tuning Retrieval

UCF HMDB UCF HMDB

Method C/Cpc Data Top-1 Top-1 R@1 R@5 R@1 R@5

CtP(Fed.)

100/- IID 81.92 48.49 29.42 47.90 13.80 34.56
100/8 Non-IID 81.95 49.15 29.29 48.90 13.66 32.42
100/4 Non-IID 81.15 47.78 29.18 48.37 14.70 32.94

CtP(Cent.) - IID 86.2 57.00 29.00 47.30 11.80 30.10

Centralized vs. Federated Video-SSL. In this experiment, we draw a first
investigation for the performance of video-SSL approaches using FedAvg in cen-
tralized and vanilla FL settings with Non-IID video data. We report this com-
parison in terms of three downstream tasks, i.e, fine-tuning, linear probe, video
clip retrieval, on UCF and HMDB datasets (Table 1). First, CtP obtains the
best performance for all tasks in both centralized and FL settings. Second, when
the trained network is fine-tuned for the action recognition task, the central-
ized video-SSL approaches perform better compared to their corresponding FL
counterparts. However, the degradation in the performance is not drastic. We
conjecture that it is caused by the smoother and flatter manifold in the mod-
els in FL settings, which would be more challenging to fine-tune. Third, the
linear-probe results for action recognition show mixed results due to the fact
that only the classification head participates in the training. Finally, the video
clip retrieval results are more competitive with the FL version of Speed and CtP,
which achieve better performance than their centralized counterparts.

Given the fact that the video-SSL benefits from the large-scale datasets and
the performance degradation of the FL version of the video-SSL is acceptable
(even in the Non-IID case with FedAvg), it makes the FL a natural choice for
video-SSL approaches.

Performance with IID vs. Non-IID Data. Conventional FL methods are
designed to solve a supervised/semi-supervised learning task within an IID/Non-
IID data distribution based on the actual class-labels. To understand the impact
of data distribution on federated video-SSL training, we simulate IID and Non-
IID settings based on class-labels and compare the performance of downstream
task in Table 2. The Non-IID versions of K-400 are generated with two variations
of the distribution of the samples among 100 clients, with 4 and 8 classes per
client respectively. We report the fine-tuning and video clip retrieval accuracy
on UCF and HMDB, by pretraining CtP video-SSL approach on all settings.

One can see from Table 2 that pretraining the CtP video-SSL approach using
standard FedAvg with IID and different degrees of Non-IID levels achieve com-
paratively similar performance on the fine-tuning and video clip retrieval task.
This could be explained by the generation process of IID/Non-IID data based
the actual class-labels. The video-SSL methods learn representations by gener-
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Table 3: Video clip retrieval accuracies (%) and fine-tuning accuracies (%) on UCF
and HMDB for CtP video-SSL approach using various aggregation strategies. The SSL
pretraining is performed on K400 (Non-IID). Cent† represents the centralized training
for 27 epochs which equals to 540 rounds in our FL setting

Retrieval Fine-tuning

UCF HMDB UCF HMDB

Method R@1 R@5 R@1 R@5 Top-1 Top-1

Centralized 29.00 47.3 11.80 30.1 86.20 57.00

Centralized† 27.65 47.67 12.81 31.05 83.64 53.73

FedAvg (Baseline) 32.62 50.41 16.54 35.29 79.91 52.88
Loss-based 32.54 50.01 14.44 34.97 79.43 50.63
FedU 34.07 52.29 14.90 36.67 80.17 53.73

ating pseudo labels based on the pretext task it solves, which is independent of
actual class-labels. Hence, the IID/Non-IID data distribution has a slight impact
to the SSL model training. In addition, we find that there exists a degradation
in the fine-tuning performance of federated CtP video-SSL compared to its cen-
tralized counterpart. Interestingly, the FL version of CtP video-SSL approach
gives better video clip retrieval performance when compared to its centralized
counterpart with both IID and different degrees of Non-IID levels.

Performance of Aggregation Strategies. The aggregation method often
plays an important role towards superior performance of models trained in FL
environments. In this experiment, we investigate the impact of FL aggregation
strategies on the pretraining by evaluating the final performance of video-SSL
approaches in Non-IID FL settings. In Table 3, we show the performance of CtP
video-SSL approach on UCF and HMDB against a range of aggregation strate-
gies that include FedAvg [29], Loss [9], and FedU [46]. It can be observed that
FedAvg performs better on HMDB and obtains similar performance with Loss
method on UCF. Additionally, except for retrieval accuracy on HMDB, FedU
outperforms others on both video clip retrieval and fine-tuning mainly due to
its dynamic aggregation mechanism.

Loss Surface and Model Stability of Video-SSL in FL. To understand
why the federated video-SSL models gain higher retrieval accuracy than cen-
tralized models, we further analyze the loss landscape around the pretrained
model both in centralized and FL settings. To compute this, we utilize the filter
normalization method as proposed in [27]. The results are shown in Fig. 2 for
CtP video-SSL approach. We find that the loss landscape of model pretrained
with FedAvg is flatter than the model pretrianed with the centralized video-SSL.
The width of the optima is critically related to generalization, which enables the
model to converge in a point centered in this region [16,22,14]. This often leads
to slightly worse training loss but substantially better test accuracy.

We then explore whether such wider optima could increase model stabil-
ity against small perturbations. To achieve this, we perturb the weights of
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Fig. 2: Loss landscape of the final f(θb) pretrained in a centralized(left) and FL with
FedAvg(right) settings

Fig. 3: Top1% action retrieval accuracy on UCF and HMDB by adding perturbation
to all the weights of the pretrained f(θb) network. The perturbation is sampled from
a normal distribution N(0, 1) and multiplied by a factor k

the backbone pretrained with centralized and federated video-SSL approach.
The perturbations are sampled from a uniform normal distribution with zero
mean and unit variance, i.e., N (0, 1). We start with the perturbation level of
0 and incrementally increase the level of perturbation by a factor of 0.1, i.e.,
({N (0, 1) × x|0 ≤ x ≤ 0.5}). The results are shown in Fig. 3 for the top-1%
video clip retrieval accuracy for the centralized video-SSL approach and its cor-
responding FL counterparts, on UCF and HMDB datasets. One can see from
that as the level of perturbation is increased from 0 to 0.1 the top-1% accuracy
drops significantly for both centralized CtP video-SSL and its FL counterparts.
However, as the level for perturbation is further increased we find that the FL
versions of the video-SSL approach show good stability compared to its central-
ized counterpart on both datasets. Overall, the federated training boosts the
generalization and stability of video-SSL models.
Training Efficiency and Communication Cost. In this experiment, we an-
alyze the computational efficiency of pretraining CtP approach in both FL and
centralized settings. We find that our FL pretraining of CtP for 540 rounds, with
100 clients and 5% client sampling rate (in ideal scenarios), is equivalent to 27
epochs (30%) of centralized pretraining. This results in 62.5% of GPU time sav-
ing compared to the centralized pretraining of the CtP that lasts for 90 epochs.
Additionally, compared with the performance of centralized pretraining of CtP
for 27 epochs, our federated CtP model achieves significant boost in video clip
retrieval performance while providing competitive performance on fine-tuning
as shown in Table 3. We further show the number of communication rounds
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Fig. 4: Top 1% retrieval accuracy (%) w.r.t communication rounds for our proposed
FL methods on UCF(left) and HMDB (right). Our proposed methods require less than
200 rounds to reach the centralized target accuracy on both datasets

required by federated video-SSL models to achieve the centralized target video
clip retrieval accuracy. One can see from Fig. 4 that the FL model trained with
FedAvg requires less than 100 rounds to reach the centralized target accuracy
on UCF and HMDB datasets. Indeed, our proposed FedVSSL shows even better
better performance and convergence behaviour.

4.4 Results on FedVSSL

In this section, we investigate the performance of our proposed FVSSL method,
conduct ablation studies by varying α and β in Eq. 2 and Eq. 3, and report
the results on UCF and HMDB in Table 4. One can see that the performance
of all proposed methods are competitive, which demonstrates that the learned
representations are qualified for the downstream applications.

Fig. 5: Standard deviations of the L2 difference between the global model weights and
the locally trained model weights at each round of FL video-SSL pretraining with
FedAvg. Both backbone θb and prediction head θpt are aggregated on the server

First, all models trained with FedVSSL provide superior retrieval perfor-
mance. Concretely, (FedVSSL with α = 0.9, β = 0) we improve the video clip re-
trieval performance over FedAvg baseline by 2.88% (top1%) and 3.86% (top5%)
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Table 4: Video clip retrieval accuracies (%) and fine-tuning accuracies (%) on UCF101
and HMDB51 for CtP video-SSL approach using our proposed FedVSSL methods. The
SSL pretraining is performed on K400 (Non-IID)

Retrieval Fine-tuning Linear-probe

UCF HMDB UCF HMDB UCF HMDB

Method R@1 R@5 R@1 R@5 Top-1 Top-1 Top-1 Top-1

Centralized 29.00 47.3 11.80 30.1 86.20 57.00 48.14 30.65

FedAvg (Baseline) 32.62 50.41 16.54 35.29 79.91 52.88 45.31 31.44
FedVSSL(α = 0, β = 0) 34.34 51.71 15.82 36.01 79.91 52.94 47.95 31.12
FedVSSL(α = 1, β = 0) 34.23 52.21 16.73 38.30 79.14 51.11 47.90 29.48
FedVSSL(α = 0, β = 1) 35.61 52.18 16.93 37.78 79.43 51.90 47.66 30.00
FedVSSL(α = 1, β = 1) 35.66 52.34 16.41 36.93 78.99 51.18 48.93 31.44
FedVSSL(α = 0.9, β = 0) 35.50 54.27 16.27 37.25 80.62 53.14 50.36 32.68
FedVSSL(α = 0.9, β = 1) 35.34 52.34 16.93 37.39 79.41 51.50 50.30 32.42

on UCF, and 1.96% (top5%) on HMDB. We obtained 0.71% and 0.26% improve-
ment (top1%) in the category of fine-tuning on UCF and HMDB, respectively
compared to FedAvg baseline. In the category of Linear-probe, we obtained
5.05% and 1.24% improvement (top1%) on UCF and HMDB, respectively com-
pared to the FedAvg baseline. Second, the component of SWA (β = 1)in Fed-
VSSL has a distinct benefit on the improvement of retrieval performance. Third,
the top-1% retrieval accuracy of FedVSSL(α = 0, β = 0) outperforms the Fe-
dAvg baseline by 1.72% on UCF dataset, which highlights the benefits of only
updating backbone.

One can see from Fig. 5 that the standard deviation of the L2 distance for
the backbone model parameter is more consistent throughout the FL pretraining
compared to that of prediction model parameters. This indicates that the back-
bone weights cause less divergence in FL pretraining of video-SSL which may
provide significant efficiency and performance boost in the FL scenarios with
stringent communication budget.

5 Conclusions

In this paper, we presented the first systematic study on video-SSL for FL.
Our key findings include (1) the importance of aggregating just the backbone
network and that (2) non-IID definition based on class-labels bears no impact on
pretext training as they are not used by that task. Based on these findings, we
proposed FedVSSL, an aggregation strategy tailored to video. FedVSSL was able
to outperform the centralized SOTA for the downstream retrieval task by 6.66%
on UCF-101 dataset and by 5.13% on HMDB-51 using non-contrastive methods.
We hope this work will enable future research towards further combining FL and
SSL for video representation learning. These are complementary technologies
that can together harvest rich visual information from edge devices while still
preserving user privacy.
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