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1 Background

We briefly discuss some of existing self-supervised learning approaches that have
been used for the analysis in this paper.

RotNet: Rotation prediction, proposed by Gidaris et al. [11], has been one of
the most successful pretext tasks for the learning of useful semantic representa-
tions. In this approach, the network is trained to predict one of the K rotations
which was used for transforming the input image xi. The authors found that
K = 4 with T = {0◦, 90◦, 180◦, 270◦} produced the best results. Every image
xi is transformed using all four rotation transformations xt1i , x

t2
i , x

t3
i and xt4i ,

and the network is trained to predict t1, t2, t3 and t4, which are the rotation
angles used for transforming xi. The base encoder fθ is trained by minimizing
the following loss function L:

LRotNet =
1

B

B−1∑
i=0

1

K

K−1∑
k=0

ℓCE(Mθ(x
tk
i ), tk) (1)

Here, Mθ represents the network that takes as input rotated images xtki , and
outputs the softmax predictions over the four possible rotation angles.

SimCLR: The work by Chen et al. [3] presents a Simple Framework for Con-
trastive Learning of Visual Representations (SimCLR), which utilizes existing
architectures such as ResNet [13], and avoids the need for specialized architec-
tures and memory banks. SimCLR proposed the use of multiple data augmenta-
tions, and a learnable nonlinear transformation between representations and the
contrastive loss to improve the effectiveness of contrastive learning. The authors
find the following augmentations to be best suited for the contrastive learning
task - random crop and resize, random color jitter and random Gaussian blur.
These augmentations are applied serially to every image xi to generate two in-
dependent augmentations xa1i and xa2i , which are considered as positives in the
contrastive learning task. The 2(B − 1) augmentations of all other images in a
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batch of size B are considered as negatives. The network is trained by minimiz-
ing the normalized temperature-scaled cross entropy loss (NT-Xent) loss with
temperature T as shown in Eq.(2). The cosine similarity between two vectors a
and b is denoted as sim(a, b). The overall network formed by the composition of
the base encoder fθ and the projection network gθ is represented by Mθ.

LSimCLR = − 1

2B

B−1∑
i=0

2∑
m=1

log
exp(sim(Mθ(x

a1
i ),Mθ(x

a2
i ))/T )∑B−1

j=0

∑2
l=1 1[j ̸=i] exp(sim(Mθ(x

am
i ),Mθ(x

al
j ))/T )

(2)

BYOL: While prior approaches relied on the use of negatives for training,
Grill et al. [12] proposed Bootstrap Your Own Latent (BYOL), which could
achieve state-of-the-art performance without the use of negatives. The two aug-
mentations xa1i and xa2i are passed through two different networks - the base
network Mθ, and the derived network Mψ respectively. The weights of the base
network are updated using back-propagation, while the weights of the derived
network are obtained by computing a slow exponential moving average over the
weights of the base network. The base network is trained such that the represen-
tation of xa1i at its output can be used to predict the representation of the xa2i at
the output of the derived network, using a predictor network Pθ. The symmetric
loss that is used for training the base network is shown below:

LBY OL = − 1

2B

B−1∑
i=0

sim(Pθ(Mθ(x
a1
i )),Mψ(x

a2
i )) + sim(Pθ(Mθ(x

a2
i )),Mψ(x

a1
i ))

(3)

2 Eliminating false positives in self-supervised learning

As shown in Fig.1(b) of the main paper, two random augmentations of a given
image may not always be similar to each other. The use of very small crops
increases the likelihood of obtaining augmentations which may be unrelated to
each other. This leads to false positives in instance-similarity based learning
approaches. In Table-2 of the main paper, we use Grad-CAM [27] based saliency
maps to select crops such that mean saliency score of the cropped image is greater
than that of the full image. We describe this method in more detail below.

Mean-saliency based cropping: We denote the saliency map of an image
using G(x), which is a probability map indicating the importance of each pixel
in the image. In order to select rectangular crops having high saliency score,
we first calculate the mean probability score P (x) for an image x of dimension
W ×H as follows:

P (x) =
1

W ·H

W∑
i=0

H∑
j=0

Gi,j(x) (4)

For selecting a rectangular crop from the image, we randomly sample the top
left corner coordinates (l,m), width w, and height h from the valid range. These
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values can be used to obtain a rectangular crop xa1 . We formulate the saliency
score of the crop xa1 as follows:

P (xa1) =
1

w · h

l+w∑
i=l

m+h∑
j=m

Gi,j(x) (5)

The sampled crop is accepted only if P (xa1) > P (x). We repeatedly sample
until a valid crop is found, and restrict to a maximum of 10 tries. If no valid
crop is found, we use a random crop. We observe that 10 tries are sufficient to
find valid crops in most cases and random cropping is used for very few images.

Computational Budget: As shown in Table-2 of the main paper, with 50
epochs of training, the accuracy on BYOL baseline is 63.64%, which increases to
66.72% with the use of supervised saliency maps. However, this method assumes
the availability of a network which is pre-trained on a relevant dataset, which
may not always hold true. Hence, the computational budget for training this
reference network needs to be considered too. We use fully supervised network
trained for 90 epochs as the reference model for generation of saliency maps.
Therefore, the total budget for the BYOL baseline is 140 epochs (50 + 90). As
shown in Table-6 of the main paper, the accuracy obtained by training the BYOL
baselines for 100 epochs is 71.02% which is 4.3% higher than the model that is
trained for 50 epochs using saliency maps, with an effective training budget of
140 epochs. This shows that while the use of saliency maps from a pre-trained
network helps improve accuracy, it is not a practical option in cases where a
model that is pre-trained on a related dataset is not available a priori.

3 Details on Datasets

We present our analysis and results across the following datasets: CIFAR-10,
CIFAR-100 [19] and ImageNet-100 [28], which is a 100-class subset of ImageNet
[7]. We do not present our main results on the full ImageNet dataset due to
computational limitations. However, we show the scalability of our approach to
ImageNet on a short training schedule of 30-epochs. Details of these datasets
are presented below:
CIFAR-10: CIFAR-10 [19] is a 10 class dataset comprising of 50, 000 images in
the training set and 10, 000 images in the test set. The dataset consists of RGB
images of dimension 32 × 32. The images in the train and test sets are equally
distributed across all classes.
CIFAR-100: CIFAR-100 [19] dataset consists of 50, 000 images in the training
set and 10, 000 images in the test set, equally distributed across 100 classes.
The dimensions and number of channels of images in CIFAR-100 is the same as
CIFAR-10.
ImageNet: ImageNet [7] is a 1000-class dataset consisting of around 1.2 million
images in the training set and 50, 000 images in the validation set. We consider
the validation set as the test set, since the true test set is held private. The
dataset consists of RGB images of dimension 224× 224.
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ImageNet-100: ImageNet-100 is a 100-class subset of the ImageNet dataset.
We consider the same 100 class subset that was used by Tian et al. [28].

4 Details on Training hyperparameters

We consider the following baselines for our experiments: SimCLR [3], BYOL [12],
SimSiam [4] and SwAV [2]. Since these papers primarily demonstrate results on
the ImageNet dataset, using larger architectures and longer training schedules,
we perform extensive hyperparameter search to obtain strong results for the
baselines on the datasets considered. We use the ResNet-18 [13] architecture for
all experiments other than the ImageNet-1k runs, where ResNet-50 was used.
The dimension of features before the last fully-connected classification layer is
512, which is smaller than that of ResNet-50, where the dimension is 2048.
We fix the batch size to be 512 in all our experiments. We discuss details on
hyperparameter tuning for obtaining strong baselines in Section-4.1, and describe
the same for the proposed method in Section-4.2.

4.1 Details on the Baseline Implementation

SimCLR: For the SimCLR [3] baseline on CIFAR-10 and CIFAR-100, we per-
form a hyperparameter search for the learning rate, weight decay and the tem-
perature used in the loss. We tune the learning rate in the range of 0.1 to 1 with
a step size of 0.1, and the temperature in the range of 0.1 to 0.5 with a step size
of 0.1. For weight decay we search over the range { 5× 10−4, 1× 10−4, 1× 10−5,
1× 10−6 }. Finally, we use a learning rate of 0.5, weight decay of 1× 10−4 and
a temperature of 0.2 for all our experiments. Following the official implementa-
tion [3], we use cosine learning rate schedule with a warm-up of 10 epochs. For
the projection head, we use a 2 layer MLP with the hidden layer consisting of
512 nodes. The output is a 128-dimensional vector. We use batch normalization
layers [15] in the projection head. For ImageNet-100, we use the implementation
and tuned hyperparameters from the repository solo-learn [6].

BYOL: For BYOL [12] baselines on CIFAR-10 and CIFAR-100, we perform
a search for the learning rate and weight decay in the same manner as described
in the paragraph above. Additionally we tune the momentum τ of the target
network in BYOL [12] from the values { 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999 }.
Finally, we use a learning rate of 0.8 and weight decay of 1×10−4 for CIFAR-10
and CIFAR-100. We tune the learning rate for ImageNet-100 in the range 0.4 to
0.7 with a step size of 0.1. We finally use a learning rate of 0.6 and a weight decay
of 1 × 10−4 for ImageNet-100. We use τ of 0.95, 0.85 and 0.95 for CIFAR-10,
CIFAR-100 and ImageNet-100 respectively.

SimSiam: For the SimSiam [4] baselines, we use the implementation from
the repository [14], and perform a hyperparameter search for the learning rate,
weight decay and the number of projection layers used in the loss. We tune the
learning rate in the range of 0.03 to 0.1 with a step size of 0.01, and additionally
try 0.2 as well. For weight decay we search over the range { 6× 10−4, 5× 10−4,
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4× 10−4, 3× 10−4, 1× 10−4, 1× 10−5, 1× 10−6 }. For the number of projection
layers, we consider two values, 2 and 3. Finally, for CIFAR10, we use a learning
rate of 0.07, weight decay of 4× 10−4 and number of projection layers as 2. For
CIFAR100, we use a learning rate of 0.05, weight decay of 5× 10−4 and number
of projection layers as 3. Following the official implementation [4], we use the
cosine learning rate schedule with a warm-up of 10 epochs. For the projection
head, the hidden layer is set to 2048 nodes and output is a 2048-dimensional
vector. For the prediction head, the hidden layer has 512 nodes and the output
is again a 2048-dimensional vector. We use batch normalization layers in the
projection and prediction heads similar to the official implementation [4].

SwAV: We use the code and hyperparameters from the official implementa-
tion [2]. For CIFAR-10, we search for the optimal number of prototypes over the
values {10, 30, 50, 70, 90, 100, 120, 150}, ϵ over {0.01, 0.03} and queue over {0,
38, 384}. we finally set the number of prototypes to 100 without using a queue,
and set ϵ to 0.03. Since CIFAR-10 images are small in size (32x32), we do not
use the multi-crop strategy. We use the same settings for CIFAR-100 as well.
For ImageNet-100, we scale the default number of prototypes from the official
code [2] by a factor of 10 to 300, based on the scaling of number to classes from
1000 to 100. We use search for queue length in the range {0, 384, 1920, 3840}
and set it to 384 finally. For the ImageNet-1k runs, we skip the use of multi-crop
augmentations to speed up the training.

4.2 Details on the Proposed Implementation

We use the same hyperparameters as the respective baselines for the implemen-
tation of the proposed method, and additionally tune only the value of λ (Eq.1
of the main paper), which is the weighting factor used for the rotation loss. We
use a 2 layer MLP for the rotation prediction task and use batch normalization
for the hidden layer. For finding the best setting of λ, we tune for 1/(2 ·λ) in the
range 1 to 10 with step size of 1, and for 2 ·λ in the range 0 to 1 with a step size
of 0.1. In order to minimize computational overheads, we use the same value of
λ as ImageNet-100 on ImageNet-1k as well.

For SimCLR, we use 2 · λ as 1 for CIFAR-10 and CIFAR-100, and 0.1 for
ImageNet-100. For BYOL, we use 1/(2 · λ) as 5 for CIFAR-10 and CIFAR-100,
and 6 for ImageNet-100. For SimSiam, we set the value of 2 ·λ to 0.1 for CIFAR-
10 and 0.2 for CIFAR-100. For SwAV, we set the value of 2·λ to 0.5 for CIFAR-10
and CIFAR-100, and 0.1 for ImageNet-100 and ImageNet-1k.

4.3 Training Details of Linear Evaluation

The linear evaluation stage consists of training a linear classification layer on top
of the frozen backbone network. We do not update the batch statistics in this
stage. For linear evaluation on CIFAR-10 and CIFAR-100, we do not apply any
spatial augmentations to the images during training. We use the SGD optimizer
with momentum of 0.9. We train for 100 epochs with a batch size of 512. We
use a learning rate of 1.0 which is the best setting chosen from the range { 0.1,
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0.5, 1.0, 1.5, 2.0 }. The same settings are used for ImageNet-100 BYOL linear
evaluation as well.

For SimSiam linear evaluation, we apply Random cropping and horizontal
flipping. We use the SGD optimizer with momentum over 100 epochs using a
batch size of 512, learning rate of 30.0 and momentum of 0.9, as recommended
by the authors [4]. Cosine scheduler with decay is employed without any warmup
for the training.

On ImageNet-100, we use the settings from the repository solo-learn [6] for
the linear evaluation of SimCLR [3]. For linear evaluation of SwAV models on
ImageNet-100 and ImageNet-1k, we use the settings from their official repository
[2], and use 30 epochs of training on ImageNet-1k.

We use the same hyperparameters for the linear evaluation of the proposed
approach and the respective baselines.

4.4 Training Details of Semi-supervised learning

We follow the semi-supervised training settings from [2, 20] for both 1% and
10% labels. Specifically, we train for 20 epochs with a batch size of 256. For the
setting of 1% labels, we use a learning rate of 0.02 for the backbone and 5.0
for the linear layer. For the setting of 10% labels, we use a learning rate of 0.01
for the backbone and 0.2 for the linear layer. We decay the learning rates by a
factor of 0.2 at epochs 12 and 16 in both the settings. We do not use weight
decay during the training.

5 Ablation Experiments

In this section, we present additional experiments and results to highlight the
significance of various aspects of the proposed method.

Table 1: Rotation Angles: Ablation experiments to show the impact of the
rotation set (T ) used in the proposed approach. K-Nearest Neighbor (KNN)
classification accuracy (%) with K=200 and Linear evaluation accuracy (%) on
the CIFAR-100 dataset are reported for the baseline (BYOL [12]) and variations
in the proposed approach (BYOL + rotation).

Rotation Set (T ) |T | KNN Linear

ϕ (BYOL [12]) 0 54.37 60.67
{0◦, 180◦} 2 58.03 66.21
{90◦, 270◦} 2 53.86 62.96
{0◦, 90◦} 2 56.41 65.24
{0◦, 270◦} 2 56.29 65.04
{0◦, 90◦, 180◦, 270◦} 4 58.41 67.03
{45◦, 135◦, 225◦, 315◦} 4 57.60 65.50
{0◦, 45◦, ..., 270◦ 315◦} 8 57.54 67.25
{0◦, 30◦, ..., 300◦ 330◦} 12 55.43 63.61
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5.1 Impact of Variation in Rotation Angles

In the proposed method, we transform every input image using a rotation trans-
formation t(.) which is randomly sampled from the set T = {0◦, 90◦, 180◦, 270◦}.
We present results by varying the number of rotation angles in the set T with
BYOL [12] as the base approach in Table-1. While the use of 8 rotation angles
results in the best results, we use 4 rotation angles (which results in marginally
lower accuracy after linear evaluation) due to the simplicity of implementation,
since rotation by multiples of 90◦ does not require additional transformations
such as cropping and resizing. The use of two rotation angles with T = {0◦, 180◦}
leads to a drop of 0.82% in linear evaluation accuracy when compared to the
proposed method of using 4 rotation angles. However, this setting is still 5.54%
better than the BYOL baseline. Therefore, the surprisingly simple task of pre-
dicting whether an image is in the correct orientation, or turned upside down is
sufficient to boost the performance of the baseline method significantly. In the
two-angle prediction task, excluding the 0◦ rotation angle with T = {90◦, 270◦}
leads to a significant drop of 3.25% when compared to using T = {0◦, 180◦}.
We further note that using rotation transformations that are uniformly spaced
(T = {0◦, 180◦}) leads to better performance when compared to the use of
T = {0◦, 90◦} or T = {0◦, 270◦}.

These experiments show that the level of difficulty of the auxiliary task plays
a crucial role in the representations learned. The task should neither be too diffi-
cult (12 rotation angles), nor should it be too easy (2 rotation angles). Moreover,
since the test images would have 0◦ rotation angle, it helps to include this as
one of the classes in T .

Table 2: Effect of number of layers shared with the Rotation Task:
Ablation experiments to show the impact of number of layers shared with the
rotation task in the proposed approach. K-Nearest Neighbor (KNN) classification
accuracy (%) with K=200 and Linear evaluation accuracy (%) on the CIFAR-100
dataset are reported for the baseline (BYOL [12]) and variations in the proposed
approach (BYOL + rotation).

Layers shared with Rotation Task KNN Linear

None (BYOL [12] baseline) 54.37 60.67
First Convolutional layer (fθ) 50.36 52.50

+ Block - 1 (fθ) 50.98 52.84
+ Block - 2 (fθ) 51.75 54.85
+ Block - 3 (fθ) 52.77 58.31
+ Block - 4 (fθ) 58.29 66.06
+ Projection network (gθ) 58.41 67.03

5.2 Impact of Number of Shared Layers across Tasks

In the proposed approach, we share the base encoder fθ and the Projection net-
work gθ between the instance-similarity task and the rotation task. We perform
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experiments to study the impact of varying the number of shared layers between
the two tasks. The results of these experiments on the CIFAR-100 dataset with
BYOL [12] as the base method are presented in Table 2. The ResNet-18 ar-
chitecture consists of a convolutional layer followed by 4 residual blocks. As an
example, for the case where only Block-1 is shared between the two tasks, we
replicate the remaining part of fθ and gθ separately for the the rotation task.
Thus in this case, the rotation task only impacts Block-1 of the final base en-
coder fθ. As shown in Table 2, increasing the number of shared blocks results in
better performance. In fact, sharing only the first few layers leads to a degrada-
tion in performance when compared to the BYOL baseline. This indicates that
the rotation task indeed helps improve the convergence of the overall network,
and is not merely helping with learning better filters in the initial layers, as was
the case in RotNet [11] training.

Table 3: Robustness to Image Augmentations: Ablation experiments to
show the impact of color jitter augmentation on the baseline (BYOL [12]) and
proposed method (BYOL + Rotation). K-Nearest Neighbor (KNN) classification
accuracy (%) with K=200 and Linear evaluation accuracy (%) on the CIFAR-10
dataset are reported. The proposed method is significantly more robust to the
absence of color jitter augmentation.

KNN Linear

BYOL [12] 86.56 89.30
BYOL (without Color Jitter) 82.21−4.35 85.90 −3.40

BYOL + Rotation 89.80 91.89
BYOL + Rotation (without Color Jitter) 88.52−1.28 91.28 −0.61

5.3 Robustness to Image Augmentations

BYOL [12] is known to be more robust to image augmentations when compared
to contrastive learning methods such as SimCLR [3]. The authors claim that
although color histograms are sufficient for the instance-similarity task, BYOL
is still able to learn additional semantic features for the image even without
color jitter. We compare the impact of removing the color jitter augmentation
on the baseline (BYOL) and the proposed approach (BYOL + Rotation) on
CIFAR-10 dataset in Table-3. We observe that addition of rotation task boosts
the robustness to such augmentations even further. The absence of color jitter
leads to a drop of 3.4% in linear evaluation accuracy of BYOL, whereas the
drop in accuracy for the proposed method without color jitter is only 0.61%,
which is significantly lower. This makes the proposed method suitable for fine-
grained image classification tasks as well, where the network needs to rely on
color information for achieving good performance.

5.4 Exploring Different Loss Formulations for the Rotation Task

The proposed approach combines Cross-Entropy (CE) loss for the rotation task
with various instance-similarity based tasks as shown in Eq.1 of the main pa-
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Table 4: Exploring Different Loss Formulations for the Rotation Task:
Ablation experiments to show the impact of different loss formulations on the ro-
tation task. K-Nearest Neighbor (KNN) classification accuracy (%) with K=200
and Linear evaluation accuracy (%) on the CIFAR-10 dataset are reported. We
additionally report the Rotation Task Accuracy (%) obtained by freezing the
base encoder fθ and training a 2-layer MLP for the rotation classification task.

KNN Linear Rotation Acc (fθ)

BYOL Baseline [12] 86.56 89.30 73.40
Ours (Classification with CE Loss) 89.80 91.89 93.73
Classification with SupCon [16] Loss 88.05 90.19 81.86
Minimizing cosine similarity between Rotation Augmentations 86.84 88.95 77.27
BYOL + Rotation Augmentation 74.32 79.70 66.61
Ours (BYOL + Rotation) + Rotation Augmentation 84.49 87.75 94.24

per. We explore the use of different loss formulations for the rotation task with
BYOL [12] as the base method on the CIFAR-10 dataset in Table-4. We first
replace the CE loss for rotation with SupCon [16] loss, where all images with a
similar rotation angle are treated as positives, while the remaining images in the
batch are treated as negatives. This results in a significant drop of 1.7% in the
Linear evaluation accuracy. We observe a larger drop of 2.94% when the CE loss
is replaced with cosine similarity between two unique rotation augmentations
sampled from the transformation set T = {0◦, 90◦, 180◦, 270◦}. While the three
approaches of minimizing CE loss, SupCon loss and cosine similarity between
rotation augmentations seek to cluster similarly rotated images together and re-
pel others, we find large differences in the representations learned. This shows
that explicitly enforcing fixed categories in the auxiliary task helps in building a
global semantic representation which is reinforced across training batches. This
is exclusively achieved in the minimization of CE loss since it considers specific
rotation based categories.

We study the impact of adding rotations from the set T = {0◦, 90◦, 180◦, 270◦}
as augmentations in the BYOL training pipeline. Contrary to the proposed ap-
proach, this would encourage representations that are invariant to rotation. This
leads to a large drop of 9.6% when compared to the BYOL baseline. This is con-
sistent with the observations by Chen et al. [3] that rotation as an augmentation
is not helpful in learning good representations. By including the rotation classi-
fication task in addition to this in the training objective, the accuracy improves
by 8.05%, although it is still lower than the BYOL baseline due to the inclusion
of rotation as augmentations which is contrasting to the rotation classification
objective.

We further compare the rotation sensitivity of representations at the output
of the base encoder fθ. Similar to the experiments in Section-5.3 of the main
paper, we freeze the network till the fθ and train a rotation task classifier over
this using a 2-layer MLP head. We measure the rotation task accuracy, which
serves as an indication to the rotation sensitivity of the base network. We observe
that the trend in accuracy on the linear evaluation task is similar to the rotation
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task accuracy, indicating that rotation-covariant representations are better for
downstream tasks. While the use of rotation augmentation along with rotation
task prediction achieves a very high rotation accuracy, its performance on the
contrastive task is only 64.34%, which is significantly lower than the baseline and
the proposed methods (Ref. Table-3 in the main paper). Therefore, the accuracy
on linear evaluation task is also lower than these methods.

6 Reduction in Noise during training

To further demonstrate how the well-posedness of the rotation task reduces noise
during the training, we plot the Signal-to-Noise ratio (SNR) of the gradients.
For this, we follow Mitrovic et al. [23] and at each iteration, we compute the
ratio of the exponential moving average of mean and variance of the gradients,
and average it across all the parameters to obtain the SNR. Fig-1 shows the
progression of SNR during training on CIFAR-10 with SimSiam [4] as the base
method. We find that our method indeed improves the SNR during training by
providing a noise-free supervisory signal and hence facilitates the learning of
representations in an efficient and effective way.

Fig. 1: Plot of SNR during SimSiam training on CIFAR-10 dataset. The use of rotation
task (SimSiam+Ours) reduces the noise in the gradients, leading to faster convergence.

7 Transfer Learning

In this section, we report results using a ResNet-50 architecture with a 30-
epoch training schedule. We perform the pretraining across 4 Nvidia Tesla V100
GPUs. We do not use multi-crop strategy in order to reduce the computational
overheads. For all the ImageNet-1k runs, we do not perform additional hyper-
parameter tuning for the proposed approach, and use the same value of λ that
was best in the SwAV ImageNet-100 runs (2 · λ = 0.1). Using the linear evalu-
ation training code and hyperparameters from the official SwAV repository for
30 epochs on the ImageNet-1k dataset, we achieve 54.9% accuracy using the
SwAV baseline, and 57.3% accuracy using the proposed method, resulting in a
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gain of 2.4% (Table-5). This shows that the proposed approach generalizes well
to large-scale datasets and larger model capacities as well.

Table 5: Transfer Learning (Classification): Performance (%) after linear
evaluation on different datasets with a ResNet-50 backbone trained using SwAV
[2] and the proposed approach.

ImageNet CIFAR-10 CIFAR-100 Flowers Caltech Aircraft DTD Cars Food Pets SUN VOC Avg

SwAV [2] 54.90 86.22 64.18 83.53 80.91 38.78 69.79 31.65 59.41 70.73 52.48 76.33 64.08
SwAV + Ours 57.30 87.85 66.94 85.78 84.18 42.09 69.68 32.52 59.46 71.27 53.25 76.70 65.59

Classification:We evaluate the generalization of the learned representations
to other datasets by training a linear classifier on the pretrained backbone after
freezing the weights of the backbone, as reported by Caron et al. [2]. We report
transfer learning results on CIFAR-10 [19], CIFAR-100 [19], Oxford 102 Flowers
[24], Caltech-101 [10], FGVC Aircraft [22], DTD [5], Stanford Cars [18], Food-
101 [1], Oxford-IIIT Pets [25], SUN397 [30] and Pascal VOC2007 [9] datasets,
as is common in literature [17, 3, 8]. We use the code, hyperparameter tun-
ing strategy and validation splits from the official repository of Ericsson et al.
[8] for obtaining results on the SwAV baseline. For the evaluation of the pro-
posed method, we use the best hyperparameters obtained for baselines, in order
to highlight the gains obtained using the proposed approach more clearly. We
achieve better performance across most of the datasets, and similar performance
as the baseline on the DTD dataset [5]. This is possibly because the DTD dataset
is composed of textures only, and the images are rotation invariant. Therefore,
learning representations that are covariant to rotation does not help in this case.
Overall, we obtain an average improvement of 1.51% across all datasets.

Table 6: Transfer Learning (Object Detection): Performance (AP, AP50
and AP75) on Pascal VOC [9] dataset for the task of Object Detection using
Faster RCNN [26] FPN [21] with a ResNet-50 backbone that is pretrained using
SwAV [2] and the proposed approach. Pascal VOC07+12 trainval dataset is used
for training and VOC07 test is used for evaluation. We consider two settings for
evaluation: first with the ResNet-50 backbone being frozen, and second with the
backbone being updated during training (Finetune).

Method
VOC (Frozen) VOC (Finetune)

AP AP50 AP75 AP AP50 AP75

SwAV [2] 44.10 74.54 45.00 43.80 74.46 45.07
SwAV + Ours 45.12 75.37 46.67 45.19 75.17 46.67

Object Detection: We evaluate the generalization of the learned repre-
sentations to the task of Object Detection on the Pascal VOC dataset [9] using
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Faster RCNN [26] with Feature Pyramid Network [21] as the backbone. Pas-
cal VOC07+12 trainval dataset is used for training and VOC07 test is used for
evaluation. We consider two settings for evaluation: first with the ResNet-50
backbone being frozen, and second with the backbone being updated during
training (Finetune). The training is done using the detectron2 framework [29]
and their hyperparameters, as used by Ericsson et al. [8]. As shown in Table-
6, we obtain consistent gains across the metrics AP, AP50 and AP75 in both
evaluation settings.

8 Additional Results on ImageNet

In this section, we show additional results of the proposed method on Ima-
geNet using the ResNet-50 architecture. Table-7 shows the model performance
for longer training epochs, highlighting that the proposed approach can indeed
scale to a longer training regime as well. We also achieve consistent gains of
around 2.5% over the SwAV baselines for 30 and 50 epoch runs with and with-
out multicrop, and across different batch sizes as shown in Table-8.

Table 7: IN-1K: Improvements ob-
tained on longer training epochs

#Epochs Method Linear Acc (%)

35 SwAV + Ours 59.5
50 SwAV + Ours 61.9
100 SwAV + Ours 64.3

Table 8: IN-1K: Performance across
different settings

Method 30 ep, B256 50 ep, B1024
w/o Multicrop with Multicrop

SwAV 54.9 65.8
SwAV + Ours 57.3 68.3
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