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Abstract. Data augmentation is an important technique to improve
data efficiency and to save labeling cost for 3D detection in point clouds.
Yet, existing augmentation policies have so far been designed to only
utilize labeled data, which limits the data diversity. In this paper, we
recognize that pseudo labeling and data augmentation are complemen-
tary, thus propose to leverage unlabeled data for data augmentation to
enrich the training data. In particular, we design three novel pseudo-
label based data augmentation policies (PseudoAugments) to fuse both
labeled and pseudo-labeled scenes, including frames (PseudoFrame), ob-
jects (PseudoBBox), and background (PseudoBackground). PseudoAug-
ments outperforms pseudo labeling by mitigating pseudo labeling er-
rors and generating diverse fused training scenes. We demonstrate Pseu-
doAugments generalize across point-based and voxel-based architectures,
different model capacity and both KITTI and Waymo Open Dataset. To
alleviate the cost of hyperparameter tuning and iterative pseudo label-
ing, we develop a population-based data augmentation framework for 3D
detection, named AutoPseudoAugment. Unlike previous works that per-
form pseudo-labeling offline, our framework performs PseudoAugments
and hyperparameter tuning in one shot to reduce computational cost.
Experimental results on the large-scale Waymo Open Dataset show our
method outperforms state-of-the-art auto data augmentation method
(PPBA) and self-training method (pseudo labeling). In particular, Au-
toPseudoAugment is about 3× and 2× data efficient on vehicle and
pedestrian tasks compared to prior arts. Notably, AutoPseudoAugment
nearly matches the full dataset training results, with just 10% of the
labeled run segments on the vehicle detection task.

1 Introduction

3D object detection from LiDAR point cloud data is a core component of au-
tonomous driving. Building accurate 3D object detection systems requires vast
quantities of labeled scenes with accurate 3D bounding box annotations. While
unlabeled LiDAR data is readily available, labeling itself is costly, e.g., 6.4 hours
of LiDAR data contains more than 10 million human labeled 3D boxes [58]. Be-
cause of this, an effective way to increase the data efficiency for model training
would be very appealing.
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Fig. 1: AutoPseudoAugment is more data efficient than auto data aug-
mentation and self-training methods. Data augmentation only (PPBA [8]),
self-training (Pseudo labeling [4]) and our method (AutoPseudoAugment) are
evaluated using 3D detection AP at Level 1 difficulty on the validation split of
the Waymo Open Dataset [58]. Using 10% of labeled run segments, AutoPseu-
doAugment is about 3× data efficient as PPBA and Pseudo label method on the
vehicle class and 2× on the pedestrian class. AutoPseudoAugment is nearly 10×
and more than 5× data efficient compared to the supervised (no augmentation)
vehicle and pedestrian baselines.

Data augmentation represents an effective way to increase data efficiency
for labeled data. Data augmentations for 3D detection generally come in two
forms: global augmentations like scene rotations, or local augmentations like
ground truth augmentation, where crops of ground truth objects from the train-
ing set are inserted into the scene. Pasting ground truth objects into the scene
has been shown to be extremely effective on various 3D detection datasets
[64,25,8,66,70,65,30].

However, these augmentation techniques are typically limited to the labeled
training data. A simple way to incorporate unlabeled data into training is pseudo
labeling, but naively applying existing 3D data augmentation policies to pseudo
labeled frames has an intrinsic limitation, i.e., pseudo labeled frames contain nu-
merous false positive/negative bounding boxes and points. Several recent studies
on 3D pseudo labeling [4,44] have tried to use large-capacity teacher models to
mitigate this issue, but the intrinsic pseudo-labeling errors persist. Here, we seek
to an alternative approach: mitigating the pseudo labeled errors by new data aug-
mentation policies.

Another challenge is how to effectively combine labeled and unlabeled data
via data augmentation. Previous approaches treat pseudo-labeled frames as
a whole and do not recognize the compositional nature of 3D point clouds
scenes [4,44]. This limits the diversity of training data. A simple way to fuse la-
beled and pseudo-labeled frame is to generalize the existing copy-pasting object
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Fig. 2: Visualization of PseudoAugments. PseudoAugments contain three
new data augmentation policies: PseudoFrame, PseudoBBox, and PseudoBack-
ground. PseudoFrame replaces the labeled frame with a pseudo-labeled frame
and drops points of low-confidence bounding boxes in the pseudo-labeled frames.
PseudoBBox pastes high-confidence bounding boxes and corresponding point
clouds from a pseudo-labeled frame to a labeled frame. PseudoBackground re-
moves all points within bounding boxes in a pseudo-labeled frame, and replaces
the background point clouds in the labeled frame with the background point
clouds of the pseudo-labeled frame. The augmented frames are used as labeled
frames during training.

data augmentation to leverage unlabeled objects. Interestingly, we observe that
only pasting objects between labeled and pseudo-labeled frames is not enough
[64,25,8,66,70,65,30], because we miss out the diverse background scenes in the
pseudo labeled dataset. Especially for 3D point clouds, more than 90% of the
points are backgrounds, which provide critical ingredients for 3D detectors to
learn to detect objects in new scenarios. Thus, it is necessary to develop a set
of data augmentation policies that take advantage of both foreground objects
and background points in the pseudo labeled frames along with labeled frames to
generate combinatorial number of point clouds.

In this work, we propose a set of data augmentation policies tailored for
pseudo labeled data, named PseudoAugments. As shown in Figure 2, our Pseu-
doAugments contain three new data augmentation policies: PseudoFrame re-
moves low confidence points, PseudoBBox pastes pseudo objects onto labeled
scenes, and PseudoBackground swaps the background point clouds between la-
beled and pseudo-labeled scenes. All our augmentations allow pseudo-labeling
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uncertainty, and only make use of points of frame, object, and background with
high-confidence. The three new PseudoAugments significantly increase the diver-
sity of training data by enabling a combinatorial number of new fused training
scenes, including 1) ground truth objects on pseudo labeled background scenes,
2) pseudo labeled objects on ground truth background scenes, and 3) pseudo
labeled objects on pseudo labeled background scenes, which greatly enrich the
diversity of training data.

Based on PseudoAugments, we develop an auto data augmentation frame-
work named AutoPseudoAugment to learn the best augmentation policies. Our
AutoPseudoAugment is based on population-based training (PBT) and online
search for the best augmentation policies at different training stages. On top
of PBT, AutoPseudoAugment also uses the top-performing models in previous
generations as an ensemble of teachers to pseudo label unlabeled data, which
further boost the quality of pseudo labeled data without the need of training a
separated set of high-capacity teacher models [4,44]. AutoPseudoAugment also
extends PBT beyond simple hyperparameter tuning by introducing population-
based distillation and creates a virtuous cycle between students and teachers,
where good teachers in previous generations improves the quality of student
models, which become better teachers to pseudo label for future generations.

Our main contribution can be summarized as follows:
1. PseudoAugments: unifying data augmentation and pseudo label-

ing. We identify data augmentation and pseudo labeling are complementary
and introduce PseudoFrame, PseudoBBox, PseudoBackground data aug-
mentation policies to take advantage of the composability of unlabeled 3D
point clouds while mitigating errors.

2. AutoPseudoAugment: efficient one-shot framework for PseudoAug-
ment. Our framework extends PBT by introducing population-based dis-
tillation. AutoPseudoAugment does auto hyperparameters search and self-
training in one-shot, which reduces the training cost.

3. Extensive experimental evaluations. We demonstrate PseudoAugments
generalize to different network architectures, model sizes, and datasets. In
addition, AutoPseudoAugment outperforms both state-of-the-art auto data
augmentation method (PPBA [8]) and pseudo labeling [4]. In particular,
leveraging unlabeled data, AutoPseudoAugment requires 10% of labeled run
segments to achieve similar performance as PPBA training on 30% of run
segments and nearly matches the model performance trained on all labeled
data without data augmentation, shown in Figure 1.

2 Related Work

2.1 Data augmentation

Data augmentation has been widely adopted to improve the performance of mod-
els trained with supervised learning, such as image classification[55,10,60,49,29,13,67],
2D object detection[23,14], image segmentation[46,38,48,15], point cloud classi-
fication and detection[70,64,7,30,39,51,34,8,18,50,28,31,9,68].
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Due to the number of hyperparameters introduced by using a suite of data
augmentations during training, designing a strong augmentation policy for a
given task and dataset requires extensive experimentation. Automated data
augmentation algorithms [33,45,11,12,35,24] were proposed to search data aug-
mentation policies. Recently, PointAugment [34] and PPBA [8] introduced au-
tomated data augmentation for point clouds, which showed strong empirical
results.

Unlike existing data augmentation methods, which only operates on labeled
data, our PseudoAugments are designed to improve the quality of pseudo labeled
data and generate combinatorially diverse scenes by fusing labeled and pseudo
labeled frames. Different from automated data augmentation frameworks, in
particular population-based data augmentation [24,8], our AutoPseudoAugment
framework enables hyperparameters tuning and self-training in one-shot. It re-
duces the training cost especially for iterative self-training [63] and outperformed
the state-of-the-art data augmentation framework for 3D point clouds, shown in
Table 4.

2.2 Self-training

Self-training [36,63,6,4], also referred to as pseudo-labeling [32], aims to learn
from a combination of labeled and unlabeled data. In self-training, a trained
teacher network is used to predict labels (pseudo labels) on unlabeled data,
and a student model is later trained on the combination of the original labeled
examples and the new pseudo-labeled examples. Self-training has been applied to
a wide variety of tasks, including classification [63,56,1], semantic segmentation
[40,6,62,22], object detection [47,57,71,4], speech recognition [41,27].

Different from prior works on pseudo labeling for 3D point cloud [4,44,61],
where unlabeled frames are used as a whole, our PseudoAugments enables com-
binatorial new training data by fusing labeled and unlabeled frames. In this
work, we aim to demonstrate simple PseudoAugment policies are effective and
general methods, while advanced techniques such as IoU-based filtering [61],
part&shape-aware data augmentation [68,9], and randering-based method [18]
could further improve the quality of PseudoAugments.

2.3 Object Detection for Point Clouds

There exists a large collection of different architectures for performing 3D Object
Detection. The majority of methods [7,66,30,70,64,19,16] discretize the space into
either a 2D (Birds eye view) or 3D grid, and perform either 2D or 3D convolutions
on this grid. Some methods alternatively opt to work with the range image
view, performing convolutions on the spherical LiDAR image [37,2,17]. There
also exists a third class of methods, that opt to learn features directly from
the raw point cloud [43,39,54,42], along with a handful of techniques that blend
approaches [69,52,53,59]. Because our method is architecture-agnostic, we view
these innovations as complimentary, as our method should benefit current and
future architectures.
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3 Methods

In this section, we first motivate PseudoAugment policies and explain their de-
signs, then we detail the AutoPseudoAugment framework including our overall
data augmentation search process and how this interacts with these PseudoAug-
ment policies. A summary of the algorithm can be found in Algorithm 1.

Algorithm 1 AutoPseudoAugment contains two new elements: population-
based distillation and PseudoAugments.

Input: data and label (A,B) and unlabeled data C
Init: set training step t = 0, total training steps N , generation step K, randomly initialize M
models with random PseudoAugment hyperparameters θ.
while t ̸= N do

if mod(t,K) == 0 then
# Population based distillation
Select the top N models in the previous generation to pseudo label unlabeled data C and

store into a pseudo database which contains unlabeled data and pseudo label (C,D)
# Standard progressive PBT exploitation and exploration
Update hyperparameters θ and model parameters based on PBT [26,8]

else
# Model trained with PseudoAugment policies
Independently train M models in parallel while using the pseudo database (C,D) to augment

the training data (A,B) through PseudoAugment policies.
end if

end while

3.1 PseudoAugments

The primary goal of PseudoAugments is to generate more diverse training data
by fusing pseudo-labeled and labeled frames, while reducing misclassified points
and objects in pseudo-labeled frame. We proposed three new data augmentation
polices which corresponds three different ways of utilizing pseudo-labeled data:
PseudoFrame, PseudoBBox, PseudoBackground.

PseudoFrame. PseudoFrame extends the self-training approach, where a
pseudo-labeled frame is used as if a labeled frame during training. Unlike [4],
where pseudo bounding boxes with low prediction confidence are dropped to
suppress false positive bounding boxes, PseudoFrame augments pseudo-labeled
frames by truncating point clouds within those low confidence pseudo bounding
boxes, shown in Figure 2. In fact, pseudo labeling is suboptimal compared to
PseudoFrame, regardless of what the confidence threshold is, e.g., setting a high
threshold will introduce false negative points in the scenes while setting a low
threshold will lead to additional false positive pseudo-labeled bounding boxes in
the scenes. PseudoFrame resolves this challenge by simply dropping point clouds
in confusing (low confidence) pseudo boxes, which increases the effective quality
of pseudo-labeled data, Figure 4, and leads to higher quality student models,
Table 1. The PseudoFrame policy is simple and contains only two hyperparam-
eters: the probability of applying this policy (range [0, 1]), and the threshold
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Fig. 3: Schematic diagram of AutoPseudoAugment. AutoPseudoAug-
ment extends the idea of population-based data augmentation by introducing
population-based distillation. Population-based distillation is done at the end
of each generation, where we select top-performing models (green and grey
hexagons) in previous generations as an ensemble of teachers to pseudo label
unlabeled data. The pseudo-labeled frames are stored in a pseudo database,
which are used to augment input point clouds in the next generation of training.
In practice, we follow the recommendations of PPBA [8] and only explore up
to three augmentation policy choices per generation, with exploration rate 0.8.
More details on population based data augmentation can be found in [24,8].

of the classification confidence score for both dropping bounding boxes as well
points (range [0.5, 1]).

Though PseudoFrame can leverage unlabeled data and increase the effective
quality of pseudo-labeled data, the labeled frames and pseudo-labeled frames
are still trained independently. To further increase the diversity of the training
data, we introduce two more data augmentation policies, i.e., PseudoBBox and
PseudoBackground, to fuse labeled frames and pseudo-labeled frames, which
introduce combinartorial number of new training data.

PseudoBBox. Unlike pasting ground truth objects from the labeled frames
[64,8,39,30], PseudoBBox is designed to introduce diverse pseudo objects into a
training example while reducing the likelihood of pasting false positive points as
objects, shown in Figure 2. PseudoBBox fuses pseudo-labeled frames and labeled
frames by pasting pseudo-labeled foreground objects onto labeled scenes. The
PseudoBBox policy contains three parameters: the probability of applying this
policy (range [0, 1]), the number of objects that will be added (range [0, 20]),
and the threshold of the classification confidence score (range [0.5, 1]) required
for an object to be inserted into a scene.



8 Z. Leng et al.

To align pasted objects to the new background scene, we adjust the Z value
based on an estimate of the ground plane’s Z coordinate 1. We oversample 10×
pseudo objects and reject pseudo objects that overlap with any other pseudo
objects and existing ground truth objects in the scene, then sample from the
reminding pseudo objects and paste the predefined number of pseudo objects
into the scene. If the pasted objects overlap with background points, we will
remove background points.

PseudoBackground. Perhaps surprisingly, the background point clouds in
unlabeled data contain important ingredients for generating diverse fused scenes,
which are not recognized before. Simply swapping the background point clouds
in labeled frames and unlabeled frames, we can generate diverse fused training
scenes with ground truth objects on top of background point clouds from pseudo-
labeled scenes. Different from PseudoFrame and PseudoBBox, we aggressively
reject both true negative and false negative points in point clouds by removing all
points within pseudo bounding boxes with object classification confidence scores
above 0.1, and use reminding points as the background point clouds. Thus, the
PseudoBackground is simple and contains only one hyperparameter, i.e., the
probability of applying this operator (range [0, 1]). We align the ground plane
of the new pseudo background point cloud with the existing point cloud and
reject pseudo background point clouds when overlapping with bounding boxes,
following the process described above for PseudoBoundingBox.

3.2 AutoPseudoAugment

AutoPseudoAugment is a data augmentation framework designed for efficient
hyperparameter tuning while applying PseudoAugments in one shot, shown in
Algorithm 1.

Population-based distillationMotivated by the recent success of population-
based augmentation [24,8], we apply PBT to find the optimal hypperparame-
ters in PseudoAugments. However, traditionally, hyperparameter tuning and
self-training are decoupled. Especially for iterative self-training [63], tuning the
hyperarameters for the student model in each iteration will incur significant
computation cost. To mitigate this challenge, we propose population-based dis-
tillation, where we take advantage of the models in previous generations as an
ensemble of teachers to pseudo label unlabeled data, shown in Figure 3.

Unlike PBT, where past generation model checkpoints are discarded when
training the current generation, we recycle and use the top N model check-
points in the previous generation as teachers. Because the previous generation
checkpoints are trained with different schedules of data augmentation policies,
they naturally form a diverse set of teachers. Thus, population-based distillation
achieves both hyperparameter tuning and ensemble distillation at once.

In addition to our three new PseudoAugment policies PseudoFrame, Pseu-
doBBox, and PseudoBackground, we adopt the full suite of data augmentations

1 We estimate this with linear regression of the bottom center of the foreground ground
truth or pseudo-labeled objects. If less than 3 bounding boxes are in the scene, we
use the histogram of point clouds Z coordinate to estimate the ground plane.
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used by PPBA [8]. In order to further increase the diversity of our training data,
we apply our three PseudoAugment policies before we apply other geometric-
based data augmentations, allowing pseudo-label augmented scenes to be fur-
ther augmented by other common data augmentations. Our final order of aug-
mentations that could potentially be applied (given the choices of the policy)
are: PseudoFrame, PseudoBoundingBox, PseudoBackground, RandomRotation,
WorldScaling, GlobalTranslateNoise, FrustumDropout, FrustumNoise, Random-
DropLaserPoints.

In this section, we extensively evaluate PseudoAugments policies and Au-
toPseudoAugment framework using voxel-based PointPillars model 2 [30] and
point-based StarNet model 2 [39] on KITTI [20] and Waymo Open Dataset [58].

For the following experiments, we train two separate models to detect vehicles
and pedestrians and adopt the same training setting as prior works [39,8,4]. To
study the data efficiency, we create a smaller training set consisting of 10%, 30%
and 50% of the run segments from the Waymo Open Dataset training set to use
as our labeled dataset, while using the remaining run segments as an unlabeled
dataset. We want to highlight that 10% of the Waymo Open Dataset contains
a considerable amount of 3D labeled bounding boxes (more than 1 million)
which is on par with other full training dataset such as KITTI, NuScenes, and
Argoverse dataset [21,3,5]. For hyperparameter tuning on Waymo Open Dataset,
we create a random subsampling of the validation set, using 10% of examples
(4109 samples) as mini-val and use Level 1 difficulty average precision (AP) as
our objective value.

4 Experiments

4.1 PseudoAugments helps quality and diversity

In this section, we show PseudoAugments reduce the errors in pseudo labeled
scenes via PseudoFrame and can generate diverse fused scenes when applying
PseudoBBox and PseudoBackground, which outperform pseudo labeling method
for both vehicle and pedestrian detection tasks. We follow the implementation in
[4] and train teacher models on 10% of the training run segments using random
Z rotation and random flip Y data augmentation for 150 epochs. We use the
teacher models to pseudo label the reminding 90% of the training run segments
and remove pseudo-labeled bounding boxes with classification score below 0.5.
When training the student models, we use 1:1 ratio of labeled and pseudo labeled
scene in each mini batch. Since the training data is increased 10×, we train the
student model for 10× steps to take advantage of the additional pseudo labeled
data, results shown in Table 1.

PseudoFrame improves data quality. PseudoFrame augments the pseudo
labeled scenes by removing point clouds in not so confident pseudo bounding
boxes. Here, we remove bounding boxes and corresponding point clouds with

2 Code for both models are available at https://github.com/tensorflow/
lingvo/tree/master/lingvo/tasks/car under Apache License 2.0.
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Setup Effects Vehicle L1 AP Pedestrian L1 AP

Supervised (Teacher) 49.6 53.9

Pseudo labeling [4] 50.7 (+1.1) 56.7 (+2.8)
PseudoFrame only (Ours) Reducing errors 51.1 (+1.5) 57.2 (+3.3)
PseudoBBox only (Ours) Fusing scenes 53.4 (+3.8) 57.0 (+3.1)
PseudoBackground only (Ours) Fusing scenes 51.9 (+2.3) 57.7 (+3.8)
All PseudoAugments (Ours) Reducing errors + fusing scenes 54.3 (+4.7) 58.4 (+4.5)

Table 1: PseudoAugments improve upon Pseudo labeling method.
PseudoAugments reduce errors in the pseudo-labeled scenes by dropping low-
confidence points, and improves data diversity by introducing fused pseudo-
labeled scenes. Supervised PointPillars models are trained on 10% run segments
and used as teachers. Pseudo labeling drops pseudo-labeled bounding boxes
below confidence threshold 0.5, while PseudoFrame augments pseudo-labeled
scenes by dropping both bouding boxes and point clouds within those bound-
ing boxes below threshold 0.5. The improvements from PseudoAugments are
additive. Introducing PseudoBBox and PseudoBackground further enrichs the
training data, which leads to better student models. 3D detection Level 1 AP
are evaluated on the Waymo Open Dataset validation set.
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Fig. 4: PseudoFrame improves quality of pseudo labeled point clouds.
Precision and recall are defined based on whether a point is inside labeled/pseudo
labeled vehicle or pedestrian bounding boxes. Vanilla pseudo labeling approach
only adds pseudo bounding boxes if the prediction confidence is higher than
0.5, but keeps all the false-negative points; In contrast, our PseudoFrame also
drops points in low-confidence bounding boxes, thus reducing false negatives and
improving precision-recall of pseudo labeled frames.

classification confidence score below 0.5. As shown in Figure 4, simply removing
those point clouds is an effective data augmentation to increase the prevision-
recall of pseudo labeled points. PseudoFrame improves the quality of student
models (+0.4 on Vehicle AP and +0.5 on Pedestrian AP) compared to Pseudo
labeling, shown in Table 1.

PseudoBBox and PseudoBackground increase diversity. PseudoB-
Box and PseudoBackground increase the diversity of the training scenes by fus-
ing pseudo labeled and labeled scenes, as shown in Figure 2. To find the optimal
hyperparameters, we randomly sample 16 different combinations of hyperparam-
eters from the search space detailed in subsection 3.1. Introducing fused scenes
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further improves the quality of student models (+3.2 on Vehicle AP and + 1.2
on Pedestrian AP) compared to only applying PseudoFrame data augmenta-
tion, Table 1, which shows the benefit of PseudoBBox and PseudoBackground
is additive.

4.2 Generalization of PseudoAugments

In the previous section, we demonstrate PseudoAugments improves upon pseudo
labeling method on PointPillars models. In this section, we show PsueodAug-
ments generalizes to different model sizes and architectures. In addition to Point-
Pillars model, which is a voxel-based architecture [30], we evaluate PseudoAug-
ment on larger PointPillars models and point-based StarNet [39] models. We use
the same pseudo labeled data as in subsection 4.1, which is labeled by the super-
vised PointPillars models shown in Table 1. We show besides self-training using
the same model size and architectures, PseudoAugments enables self-training
from a smaller model to a larger model and across different architectures. Our
results show PseudoAugments lead to higher improvements compared to pseudo
labeling, Table 2. For the following experiments, we adopt the same training
settings as in subsection 3.1.

Setup Vehicle AP Pedestrian AP

Supervised 52.1 56.9

Pseudo labeling [4] 51.6 (-0.5) 57.8 (+0.9)
All PseudoAugments (Ours) 55.7(+5.5) 59.7 (+2.8)

(a) Pillars2X.

Setup Vehicle AP Pedestrian AP

Supervised 43.7 60.6

Pseudo labeling [4] 48.2 (+4.5) 63.5 (+2.9)
All PseudoAugments (Ours) 51.2 (+7.5) 64.7 (+4.1)

(b) StarNet models.

Table 2: PseudoAugments generalize to larger capacity models and dif-
ferent architectures. PseudoAugments outperform pseudo labeling on 10%
run segments using PointPillars [30], in Table 1, as teachers. (a) self-training
from PointPillars teachers to larger PointPillars models (Pillars2X) and (b)
self-training from PointPillars teachers to StarNet models [39]. Note that Pseu-
doAugments improve the vehicle detection quality of Pillars2X whereas pseudo
labeling is unable to. 3D detection Level 1 AP are evaluated on the Waymo
Open Dataset validation set.

Generalize to larger models. We double the channel numbers of every
convolution layers in the PointPillars model and denote it as Pillars2X. We train
Pillars2X on the same supervised 10% run segments as the supervised training
baseline, which has higher quality compared to the standard (1x) PointPillars,
shown in Table 2a. Interestingly, the pseudo labeling method failed to improve
the vehicle Pillars2X model when we use a weaker (1X) model as teacher (52.1
AP for supervised Pillars2X and 49.6 AP for supervised PointPillars on vehicle
detection). This indicates errors in pseudo labeled frames diminishe the benefit
of introducing unseen scenes to diversify the training data. Whereas, applying
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PseudoAugments overcomes this limitation and leads to significant improvement
(+4.1 on Vehicle AP and + 1.9 on Pedestrian AP) compared to pseudo labeling.

Generalize to different architectures. Unlike voxel-based PointPillars,
StarNet is a point-based 3D detector and learns feature representations directly
from raw point clouds. Our results show, using PointPillars model as teacher,
PseudoAugments significantly improves quality of the StarNet student models
(+3.0 on Vehicle AP and + 1.2 on Pedestrian AP) compared to pseudo labeling
method Table 2b. This shows PseudoAugments are model agnostic and outper-
form pseudo labeling method when self-training between very different model
architectures.

4.3 Generalize to KITTI dataset

In this section, we show PseudoAugments is a general method that is effetive on
significantly different datasets. Different from Waymo Open Dataset [58], KITTI
[20] dataset was collected in different cities and has different point and object
density per frame. Here, we follow the common practice and split the KITTI
dataset in half, i.e., one used for training and the other half used for validation.
We randomly select 10% of the training frames as a mini training split, while
removing labels on the rest 90% of the training frames. We train PointPillars
teacher models on the mini training split with random flip and random world
scaling data augmentations. Our results, in Table 3, show using PseudoAugments
consistently outperform pseudo labeling on detecting objects at all difficulties.

Setup Vehicle (E/M/H) Ped&Cyc (E/M/H)

Supervised (Teacher) 55.6/49.2/46.1 46.3/33.4/30.2

Pseudo labeling [4] 64.3/51.4/49.0 49.3/35.9/32.6
All PseudoAugments (Ours) 65.5/56.5/53.7 55.2/40.8/37.5

Table 3: PseudoAugments generalize to KITTI dataset. PseudoAugments
outperform pseudo labeling on 10% KITTI training frames using PointPillars [30]
as teachers. 3D detection APs for easy, moderate, and hard (E/M/H) objects
are evaluated on the KITTI validation set.

4.4 AutoPseudoAugment improves data efficiency

In previous sections, we demonstrate PseudoAugments are strong data augmen-
tation methods that improves upon pseudo labeling. In this section, we show
AutoPseudoAugment leverages PseudoAugments and further advances state-of-
the-art auto data augmentation methods for 3D point clouds (PPBA) [8].

When the models are trained on 10% labeled run segments, we use gener-
ation step 1000 for both PPBA and AutoPseudoAugment. On 30% and 50%
run segments, we increase the generation step to 2000. Even though AutoPseu-
doAugment introduces additional PseudoAugment policies compared to PPBA,
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we use the same number of tuners (population size 16) for AutoPseudoAugment
and PPBA. We follow the other training settings in [8]. At the end of each gen-
eration, we select the top 10 models in previous generations with L1 AP above
0.35 as ensemble of teachers to pseudo label unlabeled data.

AutoPseudoAugment outperforms both Pseudo labeling and PPBA
methods Our AutoPseudoAugment framework subsumes both the auto data
augmentation and pseudo labeling, which takes advantage of additional unla-
beled data while tuning hyperparameters online. More importantly, PseudoAug-
ments generate high-quality fused scenes, which greatly increases the diversity of
the training data. As shown in Table 4, AutoPseudoAugment outperforms both
PPBA and Pseudo labeling on 10%, 30%, and 50% labeled run segments.

To estimate the data efficiency, we train PointPillars models without data
augmentation on 10%, 20%, 30%, 50% and 100% of training run segments, shown
in Figure 1. According to this metric, our AutoPseudoAugment at 10% run seg-
ments (56.7 AP) is almost 10× more data efficient on the vehicle class, which
nearly matches the model trained with 100% labeled data (57.2 AP). On pedes-
trian class, AutoPseudoAugment at 10 % run segments (60.3 AP) shows 5× data
efficient and suprasses no augmentation baseline model trained on 50 % of the
run segments (60.0 AP), shown in Figure 1.

Setup Type of data AutoML
Vehicle

10 % 30 % 50 %
AP (L1/L2) APH (L1/L2) AP (L1/L2) APH (L1/L2) AP (L1/L2) APH (L1/L2)

PPBA [8] Labeled only ✓ 50.2/43.4 49.7/42.9 56.0/48.7 55.5/48.2 60.9/53.0 60.4/52.6
Pseudo labeling [4] Labeled+Unlabeled 50.7/43.9 50.2/43.5 57.8/50.2 57.3/49.8 59.8/52.0 59.3/51.6
AutoPseudoAugment Labeled+Unlabeled+Fused ✓ 56.7/49.2 56.3/48.8 61.3/53.5 60.9/53.1 63.0/55.1 62.5/54.6

Setup Type of data AutoML
Pedestrian

10 % 30 % 50 %
AP (L1/L2) APH (L1/L2) AP (L1/L2) APH (L1/L2) AP (L1/L2) APH (L1/L2)

PPBA [8] Labeled only ✓ 58.5/50.3 45.7/39.2 61.9/53.7 49.4/42.7 67.1/58.6 54.6/47.5
Pseudo labeling [4] Labeled+Unlabeled 56.7/48.5 36.7/31.6 64.9/56.2 48.4/41.8 68.2/59.3 54.5/47.2
AutoPseudoAugment Labeled+Unlabeled+Fused ✓ 60.3/52.1 48.3/41.7 66.5/57.8 55.1/47.7 69.6/60.8 58.9/51.4

Table 4: AutoPseudoAugment is more data efficient than SOTA auto
data augmentation method (PPBA) and self-training method (Pseudo
labeling). AuotoPseudoAugment outperforms both PPBA and Pseudo labeling
when trained on 10%, 30%, and 50% of the labeled training data. For vehicles,
with 10% labeled run segments, AutoPseudoAugment achieves about 6 better
L1 AP than others, and matches the quality of 30% labeled run segments for
PPBA and Pseudo labeling. 3D detection Level 1 and 2 detection AP and APH
of PointPillars model are evaluated on the Waymo Open Dataset validation set.

4.5 Each PseudoAugment is effective.

Previous sections show the benefit of PseudoAugments are additive to Pseudo
labeling and PPBA. In this section, we train PointPillars models on 10% run
segments with only one data augmentation to tease apart the contribution of
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No Aug
Common data augmentations PseudoAugments (Ours)

RotateZ FlipY GTBBox PseudoBBox PseudoBackground PseudoFrame

Vehicle 41.4 45.5 (+4.1) 44.4 (+3.0) 44.7 (+3.3) 46.4 (+5.0) 43.0 (+1.6) 45.6 (+4.2)
Pedestrian 49.1 52.7 (+3.6) 52.0 (+2.9) 50.4 (+1.3) 50.3 (+1.2) 52.2 (+3.1) 49.8 (+0.7)

Table 5: Comparing PseudoAugments with common data augmenta-
tions. PointPillars models are trained with only one data augmentation method
on 10% of the labeled run segments. 3D detection Level 1 AP on Waymo Open
Dataset validation set are reported.

each PseudoAugment. As a reference, we also show the performance of common
data augmentation policies such as random global Z rotation, random global
Y rotation, and ground truth bounding box data augmentations [64,8,39,30].
Compared to common data augmentation methods, standalone PseudoAugment
achieves comparable improvements, shown in Table 5.

PseudoBBox introduces diverse foreground objects.Unlike using ground
truth bounding boxes, PseudoBBox leverages unseen objects in unlabeled data
to enrich the training data. On vehicle detection tasks, PseudoBBox significantly
outperforms ground truth bounding box (GTBBox) augmentation (+1.7 AP),
which highlights the importance of using unseen objects in unlabeled data.

PseudoBackground is important. Interestingly, we observe that utiliz-
ing the background point clouds in unlabeled data is important, especially for
pedestrian detection. Taking advantage of the unseen backgrounds (PseudoBack-
ground + 3.1 AP) is even more effective to improve model quality compared to
using unseen object (PseudoBBox +1.6 AP) for detecting pedestrian.

5 Conclusion

Despite many prior works on data augmentation for 3D point clouds, data
augmentation was mostly based on labeled data. In this paper, we propose
to use unlabeled point clouds to augment training data and introduce Pseu-
doAugments, which utilizes unlabeled point clouds to improve 3D detection.
PseudoAugments mitigate intrinsic errors in pseudo labeled scenes while intro-
ducing diverse training data by fusing labeled and pseudo labeled scenes. We
perform extensive studies and comparisons to show that PseudoAugments gen-
eralize to different architectures, model sizes, and datasets and demonstrate that
AutoPseudoAugment framework outperforms existing state-of-the-art data aug-
mentation method PPBA [8] and pseudo labeling [4] at various ratio of labeled
and unlabeled data.
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