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1 Discussion

Analysis of attention formulation The attention module is designed to en-
hance the fusion of the cost volumes from different views. Therefore, it is straight-
forward to use view-wise attention (VA) as a guidance for fusion. However, VA
ignores depth-wise associations, which is critical for reducing depth ambiguity in
cost volumes. Therefore, the proposed epipolar Transformer utilizes depth-wise
attention (DA) to fuse cost volumes, which highlights the matched depth bin
and surpasses irrelevant ones. To demonstrate the effectiveness of DA, we com-
pare DA with VA on DTU. Specifically, the overall score of DA (0.313) relatively
improves the baseline (0.323) by 3.1%, which validates that the relation across
depth hypotheses is more beneficial for depth prediction.

The novelty compared with MVS2D [8] (i) MVS2D uses epipolar attention
module to implicitly embed depth information into 2D feature maps. In contrast,
our epipolar Transformer leverages depth-wise attention to fuse 3D cost volumes,
which explicitly maintains the importance of each depth hypothesis and makes
depth prediction more tractable. (ii) MVS2D introduces additional trainable
linear maps to transform features before cross attention, while the proposed
epipolar Transformer learns data-dependent associations without introducing
learnable parameters. We further compare model performance and efficiency on
DTU. Specifically, MVSTER (0.303@0.17s) shows comparable efficiency with
MVS2D (0.342@0.13s). Besides, MVSTER relatively improves the overall score
by 11.4%, which demonstrates that explicit usage of 3D depth-wise attention is
beneficial for depth prediction.

2 Additional Implementation Details

Network Architecture of Feature Extractor We use a four-stage Feature
Pyramid Network (FPN) [5] to extract image features, and the detailed param-
eters with layer descriptions are summarized in Table 1. For Deformable Con-
volutional Networks (DCN) [3] and Atrous Spatial Pyramid Pooling (ASPP) [2]
that are used in the ablation study of our main text, the network parameters
are listed in Table 2.
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Table 1. The detailed parameters of FPN, where S denotes stride, and if not specified
with *, each convolution layer is followed by a Batch Normalization layer (BN) and a
Rectified Linear Unit (ReLU).

Stage Description Layer Description Output Size

- Input Images H × W × 3

FPN Stage 1 Conv2D, 3 × 3, S1, 8 H × W × 8

FPN Stage 1 Conv2D, 3 × 3, S1, 8 H × W × 8

FPN Stage 1 Inner Layer* Conv2D, 1 × 1, S1, 64 H × W × 64

FPN Stage 1 Output Layer* Conv2D, 1 × 1, S1, 8 H × W × 8

FPN Stage 2 Conv2D, 5 × 5, S2, 16 H/2 × W/2 × 16

FPN Stage 2 Conv2D, 3 × 3, S1, 16 H/2 × W/2 × 16

FPN Stage 2 Conv2D, 3 × 3, S1, 16 H/2 × W/2 × 16

FPN Stage 2 Inner Layer* Conv2D, 1 × 1, S1, 64 H/2 × W/2 × 64

FPN Stage 2 Output Layer* Conv2D, 1 × 1, S1, 16 H/2 × W/2 × 16

FPN Stage 3 Conv2D, 5 × 5, S2, 32 H/4 × W/4 × 32

FPN Stage 3 Conv2D, 3 × 3, S1, 32 H/4 × W/4 × 32

FPN Stage 3 Conv2D, 3 × 3, S1, 32 H/4 × W/4 × 32

FPN Stage 3 Inner Layer* Conv2D, 1 × 1, S1, 64 H/4 × W/4 × 64

FPN Stage 3 Output Layer* Conv2D, 1 × 1, S1, 32 H/4 × W/4 × 32

FPN Stage 4 Conv2D, 5 × 5, S2, 64 H/8 × W/8 × 64

FPN Stage 4 Conv2D, 3 × 3, S1, 64 H/8 × W/8 × 64

FPN Stage 4 Conv2D, 3 × 3, S1, 64 H/8 × W/8 × 64

FPN Stage 4 Inner Layer* Conv2D, 1 × 1, S1, 64 H/8 × W/8 × 64

FPN Stage 4 Output Layer* Conv2D, 1 × 1, S1, 64 H/8 × W/8 × 64

Network Architecture of Light-Weight 3D CNN An UNet [6] structured
3D CNN is applied for cost volume regularization at each stage, where the kernel
size 3×3×3 is partially replaced with 3×3×1 in MVSTER for a more efficient
pipeline. Apart from the input cost volume size, the network architectures are
the same for each stage in the cascade structure, so we only report the detailed
parameters of the 4th stage in Table 3.

3 Additional Ablation Study

Ablation Study on Hyperparameters We conduct an ablation study on loss
weight λ and temperature parameter te. As shown in Table 4, λ = 3× 10−4 is a
proper loss weight for jointly optimizing monocular depth estimation and multi-
view stereo. As shown in Table 5, MVSTER produces a finer depth map when
slowly increasing te, and the network shows best reconstruction performance on
DTU when te = 2.



MVSTER 3

Table 2. The detailed parameters of DCN and ASPP, where S denotes stride, and D
denotes dilation parameter for ASPP.

Stage Description Layer Description Output Size

DCN Stage 1 DCN2D, 3 × 3, S1, 8 H × W × 8

DCN Stage 2 DCN2D, 3 × 3, S1, 16 H/2 × W/2 × 16

DCN Stage 3 DCN2D, 3 × 3, S1, 32 H/4 × W/2 × 32

DCN Stage 4 DCN2D, 3 × 3, S1, 64 H/8 × W/8 × 64

ASPP Stage 1 Conv2D, 3 × 3, S1, D{1,6,12}, 8 H × W × 8

ASPP Stage 2 Conv2D, 3 × 3, S1, D{1,6,12}, 16 H/2 × W/2 × 16

ASPP Stage 3 Conv2D, 3 × 3, S1, D{1,6,12}, 32 H/4 × W/2 × 32

ASPP Stage 4 Conv2D, 3 × 3, S1, D{1,6,12}, 64 H/8 × W/8 × 64

Table 3. The detailed parameters of 3D CNN, where S denotes stride, and if not
specified with *, each convolution layer is followed by a Batch Normalization layer
(BN) and a Rectified Linear Unit (ReLU).

Stage Description Layer Description Output Size

- Input Cost Volume H × W × 4 × 8

UNet Stage 1 Conv3D, 3 × 3 × 1, S1, 8 H × W × 4 × 8

UNet Stage 1 Conv3D, 3 × 3 × 1, S2, 16 H/2 × W/2 × 4 × 16

UNet Stage 1 Conv3D, 3 × 3 × 3, S1, 16 H/2 × W/2 × 4 × 16

UNet Stage 1 Inner Layer TransposeConv3D, 3 × 3 × 1, S2, 8 H × W × 4 × 8

UNet Stage 1 Output Layer* TransposeConv3D, 3 × 3 × 3, S1, 8 H × W × 4 × 8

UNet Stage 2 Conv3D, 3 × 3 × 1, S2, 32 H/4 × W/4 × 4 × 32

UNet Stage 2 Conv3D, 3 × 3 × 3, S1, 32 H/4 × W/4 × 4 × 32

UNet Stage 2 Inner Layer TransposeConv3D, 3 × 3 × 1, S2, 16 H/2 × W/2 × 4 × 16

UNet Stage 3 Conv3D, 3 × 3 × 1, S2, 64 H/8 × W/8 × 4 × 64

UNet Stage 3 Conv3D, 3 × 3 × 3, S1, 64 H/8 × W/8 × 4 × 64

UNet Stage 3 Inner Layer TransposeConv3D, 3 × 3 × 1, S2, 32 H/4 × W/4 × 4 × 32

4 Point Cloud Visualizations

We visualize point cloud reconstruction results of DTU [1], ETH3D [7] and
Tanks&Temples [4] in Fig. 1, Fig. 2 and Fig. 3, respectively. MVSTER shows its
robustness on scenes with varying input image resolutions and depth ranges.
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Fig. 1. Point clouds on DTU [1] reconstructed by MVSTER.
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Fig. 2. Point clouds on ETH3D [7] reconstructed by MVSTER.
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Fig. 3. Point clouds on Tanks&Temples [4] reconstructed by MVSTER.
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Table 4. Ablation study on loss weight λ.

λ Acc.↓ Comp.↓ Overall↓ EPE↓ e1 ↓ e3 ↓

1 × 10−2 0.361 0.312 0.337 1.56 16.47 8.32

1 × 10−3 0.354 0.287 0.321 1.33 15.01 7.26

3 × 10−4 0.350 0.276 0.313 1.31 14.98 7.27

1 × 10−4 0.354 0.275 0.314 1.32 14.97 7.28

Table 5. Ablation study on temperature parameter te.

λ Acc.↓ Comp.↓ Overall↓ EPE↓ e1 ↓ e3 ↓

0.5 0.354 0.279 0.317 1.33 15.09 7.52

1.0 0.353 0.279 0.314 1.33 15.03 7.47

2.0 0.350 0.276 0.313 1.31 14.98 7.27

3.0 0.353 0.274 0.314 1.31 14.89 7.08
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