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1 Supplementary Materials

In this section, we show that maximizing the conditional distribution of an up-
date to a hypothesis is equivalent to maximizing the joint likelihood in Sec. 1.1.
We evaluate ablations of our approach to validate the use of coordinate ascent vs
gradient ascent and MST vs sequential loop in Tab. 1. To test the quality of our
SLAM and SfM baselines, we also ran them with more image frames (narrower
baseline) in Fig. 1. We show per-category evaluations to compare performance
across seen and unseen categories of CO3D in Tab. 2. We provide a visualization
of how to interpret the relative rotations in Fig. 2 and discuss the coordinate
system in which we compute relative rotations in Fig. 3. We discuss the learned
symmetry modes as well as some failure modes in Fig. 4. As a proof of concept,
we use our energy-based predictor on a deformable object (cat) in Fig. 5. We
include architecture diagrams for our energy-based pairwise pose predictor in
Fig. 6 and the direct pose predictor baseline in Fig. 7. Finally, we show qualita-
tive comparisons between our approach and the correspondence-based baselines
on randomly selected sequences on both seen and unseen categories in Fig. 8 and
Fig. 9 respectively.

1.1 Derivation of Conditional Distribution for Coordinate Ascent

Given our pairwise conditional probabilities, the joint distribution over a set of
rotations can be computed as:

P
(
{Ri}Ni=1 | {Ii}Ni=1

)
∝ P

(
{Ri, Ii}Ni=1

)
= α exp

 ∑
(i,j)∈P

f(Ri→j , Ii, Ij)

 (1)

where P = {(i, j) | (i, j) ∈ [N ]× [N ], i ̸= j}.
We are searching for the most likely set of rotations {R1, . . . , RN} under this

joint distribution given images {I1, . . . , IN}. For each iteration of coordinate
ascent, we have our current most likely set of rotations {R1, . . . , RN} and wish
to update Rk. If we fix all {Ri}i ̸=k, the only terms in P that can change are
the ones involving k, and the rest can be folded into a scalar constant. Thus,
searching for the rotation Rk that maximizes the overall likelihood is equivalent
to finding the most likely hypothesis under P

(
R′

k | {Ri}ki=1, {Ii}Ni=1

)
:

logP (R′
k | {Ri}i ̸=k, {Ii}i) =

∑
(i,j)∈P

f(Ri→j , Ii, Ij) + C1 (2)

=
∑
i ̸=k

(f(Ri→k′ , Ii, Ik) + f(Rk′→i, Ik, Ii)) + C2 (3)

This simplifies each iteration of coordinate ascent from a O(N2) sum to a O(N)
sum.
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Acc @ 30◦ 3 5 10 20

Ours (Sequential) 0.50 0.48 0.42 0.39
Ours (MST) 0.52 0.50 0.47 0.43
Ours (Grad. Asc.) 0.52 0.51 0.49 0.47
Ours (Coord. Asc.) 0.59 0.58 0.59 0.59

Table 1: Ablations on Seen Categories in CO3D (Random Sequence Sub-
sampling). One way to convert a set of relative pose predictions to a coherent set
of joint poses is by naively linking them together in a sequence (Sequential). We find
that greedily linking them by constructing a maximum spanning tree (MST) performs
slightly better since it incorporates that most confident relative rotation predictions.
To make better use of our energy-based relative pose predictor, we tried directly run-
ning gradient ascent initialized from the MST solution and maximizing energy using
ADAM (Grad. Asc.). Because the loss landscape is non-smooth, we observe that it does
not deviate much from the MST solution. We found the scoring-based block coordinate
ascent (Coord. Asc.) to be the most effective.
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Fig. 1: Evaluation of correspondence-based approaches on large image sets
(on “Seen Categories” Split). We evaluate the DROID-SLAM [4] and COLMAP
(with SuperPoint features and SuperGlue matching) baselines on much longer image
sequences (N=30, 40, 50). We verify that these approaches, which rely on correspon-
dences between images, can achieve good performance when the cameras baselines are
narrow. Nonetheless, the poor performance at N < 20 suggests that there is a rich
space for improving camera pose estimation in the low data regime, which is the set-
ting that we target in our work.



3

Acc. @ 30° (%)
Category 3 5 10 20

S
ee
n
C
a
te
g
o
ri
es

Apple 59 60 62 61
Backpack 63 58 59 57
Banana 67 54 63 55
Baseballbat 100 67 70 73
Baseballglove 48 56 56 55
Bench 69 75 68 66
Bicycle 62 61 63 62
Bottle 59 57 60 60
Bowl 80 75 77 80
Broccoli 55 54 51 51
Cake 46 47 47 54
Car 67 71 70 62
Carrot 60 64 63 65
Cellphone 69 78 72 69
Chair 53 55 55 56
Cup 55 56 54 51
Donut 52 44 51 51
Hairdryer 58 56 58 54
Handbag 66 63 62 61
Hydrant 72 73 68 70
Keyboard 72 73 74 74
Laptop 88 87 89 89
Microwave 56 65 55 58
Motorcycle 59 60 62 61
Mouse 68 70 69 67
Orange 52 52 51 49
Parkingmeter 22 27 23 22

Acc. @ 30° (%)
Category 3 5 10 20

S
ee
n
C
a
te
g
o
ri
es

Pizza 50 57 57 55
Plant 46 47 49 51
Stopsign 42 49 47 47
Teddybear 47 52 49 48
Toaster 76 75 71 73
Toilet 76 80 75 77
Toybus 63 70 72 71
Toyplane 43 57 48 51
Toytrain 81 73 75 75
Toytruck 71 69 68 68
Tv 78 83 87 86
Umbrella 58 60 54 55
Vase 58 55 55 51
Wineglass 51 46 46 47

Seen Mean 61 62 61 61

U
n
se
en

C
a
te
g
o
ri
es

Ball 45 41 43 44
Book 51 49 49 47
Couch 42 58 39 35
Frisbee 55 49 40 38
Hotdog 58 61 50 49
Kite 28 23 27 24
Remote 64 58 65 66
Sandwich 37 41 41 42
Skateboard 56 64 64 65
Suitcase 59 61 67 63

Unseen Mean 49 51 48 48

Table 2: Per-category Evaluation on CO3D with Random Sequence Sam-
pling. We find that rotationally symmetric objects (e.g. apple, orange, wineglass) tend
to be challenging. We were surprised to find that bowls worked well, likely because the
bowls in the CO3D dataset tend to have a lot of texture or even stickers. Objects
with distinctive shapes (e.g. toilet, laptop) tend to be easier to orient. Note that some
object categories have few instances for both training and testing (e.g. baseballbat,
parkingmeter).
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Fig. 2: Interpreting Relative Rotations using a 2-Sphere. Given “Image 1”, we
show how “Image 2” would have appeared given different relative rotations. (a), (b),
and (c) show relative rotations with 60°, 120°, and 180° yaw respectively. (d) and (e)
show relative rotations with 45° and -45° pitch respectively. (f) shows a relative rotation
with just roll. (g) shows a relative rotation with all three components. We use a view-
aligned coordinate system (See Fig. 3) when computing relative rotations. Inspired
by [2], we visualize the SO(3) by projecting rotations onto a 2-sphere, with the x-axis
representing yaw, y-axis representing pitch, and color representing roll.
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Fig. 3: View-aligned vs Object-centric Coordinate System. We compute rela-
tive rotations in a coordinate system (red axes on left) aligned with the camera (red
wireframe on left). Relative rotations aligned to the camera viewpoint can always be
computed without reasoning about the object’s alignment with respect to the camera.
While possibly more intuitive, relative rotations in the object coordinate system (blue
axes on left) must be defined with respect to a canonical object pose and thus cannot
be computed in general. On the right, we visualize a 60° yaw relative rotation from
Image 1 in the view-aligned coordinate system (red) and object-centric coordinate sys-
tem (blue).
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Fig. 4: Learned Pairwise Distributions on Seen Categories (Test Set). Here we
visualize the learned pairwise distributions for various pairs of images. Top left: The
images correspond to opposite sides of the apple, so the relative pose is ambiguous. Our
approach predicts a rotationally symmetric band of possible rotations. Top middle: The
images have sufficient overlap such that the relative rotation is unambiguous and our
method predicts a single mode for the apples. Top right: For rectangular objects such
as microwaves, our approach often predicts 4 modes corresponding to each of the 90
degree rotations. Bottom left: Our approach predicts 2 modes for the bicycle because
the first viewpoint is challenging. Bottom-middle: Clashing foreground and background
textures can be a challenge for our pairwise predictor. Even though the relative pose
should be unambiguous, our method places low probability on the correct pose although
it does recognize the rotational symmetry of the cup category. Bottom-right: Unusual
object appearances is another failure mode of our method, which defaults to placing
high probability mass on the identity matrix. Our method does recognize the rotational
symmetry of the cake category.
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Fig. 5: Deformable Objects. Existing SfM and SLAM pipelines often make assump-
tions about rigidity or appearance constancy in order for bundle adjustment to con-
verge. Our method has no such requirements and can be run even on deformable
objects. While the ground truth poses for these images of a cat are unknown, the rela-
tive rotation of the camera w.r.t the cat is roughly -90 degrees yaw with negative pitch
while the relative rotation of the camera w.r.t. the couch has no pitch or yaw but some
roll in the clockwise direction (green). Although our training data does not include
dynamic or deformable objects, our network outputs plausible modes.
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Fig. 6: Architecture Diagram for our Pairwise Energy Predictor. We use a
ResNet-50 [1] with anti-aliasing [5] as our feature extractor. We directly apply positional
encoding (8 bases) [3] to the elements of the 3 × 3 rotation matrix. We concatenate
the image features and positionally encoded rotations into a feature vector (2048 +
2048 + 2 · 8 · 9), which we feed into an MLP that predicts energy (corresponding to
unnormalized log probability).
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Fig. 7: Architecture Diagram for our Direct Pairwise Rotation Predictor. For
the direct rotation regression baseline, we still input the concatenated image features
(2048+ 2048). To make the baseline more competitive, we increase the capacity of the
MLP to have 6 layers and a skip connection. The network predicts the 6-D rotation
representation [6].
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Fig. 8: Randomly selected Qualitative Results for Seen Categories.
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Fig. 9: Randomly selected Qualitative Results for Unseen Categories.
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