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Abstract. Supervised multi-view stereo (MVS) methods have achieved
remarkable progress in terms of reconstruction quality, but suffer from
the challenge of collecting large-scale ground-truth depth. In this pa-
per, we propose a novel self-supervised training pipeline for MVS based
on knowledge distillation, termed KD-MVS, which mainly consists of
self-supervised teacher training and distillation-based student training.
Specifically, the teacher model is trained in a self-supervised fashion us-
ing both photometric and featuremetric consistency. Then we distill the
knowledge of the teacher model to the student model through proba-
bilistic knowledge transferring. With the supervision of validated knowl-
edge, the student model is able to outperform its teacher by a large
margin. Extensive experiments performed on multiple datasets show our
method can even outperform supervised methods. Code is available at
https://github.com/megvii-research/KD-MVS.

1 Introduction

The task of multi-view stereo (MVS) is to reconstruct a dense 3D presentation
of the observed scene using a series of calibrated images, which plays an impor-
tant role in a variety of applications, e.g. augmented and virtual reality, robotics
and computer graphics. Recently, learning-based MVS networks [44,45,11,7,6,21]
have obtained impressive results. However, supervised methods require dense
depth annotations as explicit supervision, the acquisition of which is still an
expensive challenge. Subsequent attempts [18,39,38,42,14] have made efforts to
train MVS networks in a self-supervised manner by using photometric consis-
tency [18,4], optical flow [39] or reconstructed 3D models [14,42].

Though great improvement has been made, there is a significant gap in either
reconstruction completeness or accuracy compared to supervised methods.

In this paper, we propose a novel self-supervised training pipeline for MVS
based on knowledge distillation [13], named KD-MVS. The pipeline of KD-MVS
mainly consists of (a) self-supervised teacher training and (b) distillation-based
student training. In the self-supervised teacher training stage, the teacher model
is trained by enforcing both the photometric consistency [18] and featuremet-
ric consistency between the reference view and the reconstructed views, which
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Fig. 1: Visualized performance comparisons of state-of-the-art MVS methods on
(a) Tanks and Temples benchmark [19] and (b) DTU dataset [2].

can be obtained via homography warping according to the estimated depth.
Unlike the existing self-supervised MVS methods [18,42,4] that use only photo-
metric consistency, we propose to use the internally extracted features to utilize
the featuremetric consistency, which is different from the externally extracted
features-based loss, e.g. perceptual loss [16]. We analyze and show that the pro-
posed internal featuremetric loss is more suitable for MVS and is able to help
the self-supervised teacher model yield relatively complete and accurate depth
maps.

The distillation-based student training stage consists of two main steps: the
pseudo probabilistic knowledge generation and the student training. We first
use the teacher model to infer raw depth maps on unlabeled training data
and perform cross-view check to filter unreliable samples. We then generate
the pseudo probability distribution of the teacher model by probabilistic encod-
ing. The probabilistic knowledge can be transferred to the student model by
forcing the predicted probability distribution of the student model to be simi-
lar to the pseudo probability distribution. As a result, the student model can
surpass its teacher and even outperform supervised methods. Extensive experi-
ments on DTU dataset [2], Tanks and Temples benchmark [1] and BlendedMVS
dataset [46] show that KD-MVS brings significant improvement to off-the-shelf
MVS networks, even outperforming supervised methods, as is shown in Fig. 1. It
is worth noting that applying with CasMVSNet [11], KD-MVS ranks 1st among
all submitted methods on Tanks and Temples benchmark [1].

Our main contributions are four-fold as follows:

- We propose a novel self-supervised training pipeline named KD-MVS based
on knowledge distillation.

- We design an internal featuremetric consistency loss to perform robust self-
supervised training of the teacher model.

- We propose to perform knowledge distillation to transfer validated knowledge
from the self-supervised teacher to a student model for boosting performance.

- Our method ranks 1st among all submitted methods (including supervised
methods) on Tanks and Temples benchmark [1] and also achieves state-of-
the-art performance on DTU [2] dataset and BlendedMVS [46] dataset.
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2 Related Work

2.1 Learning-based MVS

Supervised MVS Learning-based methods for MVS have achieved impressive
reconstruction quality. MVSNet [44] transforms the MVS task to a per-view
depth estimation task and encodes camera parameters via differentiable homog-
raphy to build 3D cost volumes, which will be regularized by a 3D CNN to obtain
a probability volume for pixel-wise depth distribution. However, at cost volume
regularization, 3D tensors occupy massive memory for processing. To alleviate
this problem, some attempts [45,41,36] replace the 3D CNN by 2D CNNs and
a RNN and some other methods [11,48,3,43] use a multi-stage approach and
predict depth in a coarse-to-fine manner.

Self-supervised MVS The key of self-supervised MVS methods is how to make
use of prior multi-view information and transform the problem of depth predic-
tion into other forms of problems. Unsup-MVS [18] firstly handles MVS as an
image reconstruction problem by warping pixels to neighboring views with esti-
mated depth values. Given multiple images, MVS2 [4] predicts each view’s depth
simultaneously and trains the model using cross-view consistency. M3VSNet [14]
makes use of the consistency between the surface normal and depth map to en-
hance the training pipeline and JDACS [38] proposes a unified framework to im-
prove the robustness of self-supervisory signals against natural color disturbance
in multi-view images. U-MVS [39] utilizes the pseudo optical flow generated by
off-the-shelf methods to improve the self-supervised model’s performance. [42]
renders pseudo depth labels from reconstructed mesh models and continues to
train the self-supervised model.

2.2 Knowledge Distillation

Knowledge distillation [13] aims to transfer knowledge from a teacher model to a
student model, so that a powerful and lightweight student model can be obtained.
[25,35,29,34,26] consider knowledge at feature space and transfer it to the student
model’s feature space. Born-Again Networks (BAN) [8] trains a student model
similarly parameterized as the teacher model and makes the trained student
be a teacher model in a new round. The self-training scheme [37] generates
distillation labels for unlabeled data and trains the student model with these
labels. Probabilistic knowledge transfer (PKT) [28,27] trains the student model
via matching the probability distribution of the teacher model. Since labeled data
are not required to minimize the difference of probability distribution, PKT can
also be applied to unsupervised learning. In this work, we are inspired by PKT
and offline distillation [30,47,15,24,20] and propose to transfer the response-based
knowledge [10] by forcing the predicted probability distribution of the student
model to be similar to the probability distribution of the teacher model in an
offline manner.
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Fig. 2: Overview of KD-MVS. The first stage is self-supervised teacher training.
The second stage is distillation-based student training, including pseudo proba-
bilistic knowledge generation and student training.

3 Methodology

In this section, we elaborate the proposed training framework as illustrated in
Fig. 2. KD-MVS mainly consists of self-supervised teacher training (Sec. 3.1) and
distillation-based student training (Sec. 3.2). Specifically, we first train a teacher
model in a self-supervised manner by using both the photometric and featuremet-
ric consistency between the reference view and the reconstructed views. We then
generate the pseudo probability distribution of the teacher model via cross-view
check and probabilistic encoding. With the supervision of the pseudo probabil-
ity, the student model is trained with distillation loss in an offline distillation
manner. It is worth noting that the proposed KD-MVS is a general pipeline
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for training MVS networks, it can be easily adapted to arbitrary learning-based
MVS networks. In this paper, we mainly study KD-MVS with CasMVSNet [11].

3.1 Self-supervised Teacher Training

In addition to conventional photometric consistency [18] used in self-supervised
MVS, we propose to use internal features and featuremetric consistency as an
additional supervisory signal. Both the photometric and featuremetric consis-
tency are obtained by calculating the distance between the reference view and
the reconstructed views. The following is the introduction to view reconstruction
and loss formulation.

View Reconstruction Given a reference image I0 and its neighboring source
images {Ii}N−1

i=1 , the common coarse-to-fine MVS network (e.g. CasMVSNet [11])
extracts features for all N images at three different resolution levels (1/4, 1/2,

1), denoted as {F1/4
i ,F

1/2
i ,Fi}N−1

i=0 , and estimates the depth maps at these three

corresponding levels, as D
1/4
0 , D

1/2
0 and D0.

Taking F0 and D0 as an example, the warping between a pixel p at the
reference view and its corresponding pixel p̂i at the i-th source view under
estimated depth d = D0(p) is defined as:

p̂i = Ki[Ri(K
−1
0 pd) + ti], (1)

where Ri and ti denote the relative rotation and translation from the reference
view to the i-th source view. K0 and Ki are the intrinsic matrices of the refer-
ence and the i-th source camera. According to Eq. (1), we are able to get the

reconstructed images Îi and features Îi corresponding to the i-th source view.
Fig. 4 shows a photometric warping process from the i-th source view to the
reference view.

Loss Formulation Our self-supervised training loss consists of two components:
photometric loss Lphoto and featuremetric loss Lfea. Following [18], the Lphoto

is based on the ℓ-1 distance between the raw RGB reference image and the
reconstructed images. However, we find that the photometric loss is sensitive
to lighting conditions and shooting angles, resulting in poor completeness of
predictions. To overcome this problem, we use the featuremetric loss to construct
a more robust loss function. Given the extracted features {Fi}N−1

i=0 from the

feature net of MVS network, and the reconstructed feature maps F̂i generated
from the i-th view, our featuremetric loss between F̂i and F0 is obtained by:

L(i)
fea = ∥F̂i − F0∥. (2)

It is worth noting that we put forward to use the internal features extracted
by the internal feature net of the online training MVS network instead of the
external features (e.g. extracted by a pre-trained backbone network [16]) to
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Fig. 3: Visualized examples of RGB colors (photometric) and extracted features
(featuremetric). Dimension reduction of features is done by PCA. Features in (b)
are extracted by a pre-trained ResNet-18 [12] and those in (c) are the features of
the online training MVS network. Pretrained backbones tend to neglect the pixel-
wise differences within intra-class regions while the online training MVS network
is able to extract locally distinguishable features, which are more beneficial to
downstream feature matching.

compute featuremetric loss. Our insight is that the nature of MVS is multi-view
feature matching along epipolar lines, so the features are supposed to be locally
discriminative. The pre-trained backbone networks, e.g. ResNet [12] and VGG-
Net [32], are usually trained with image classification loss, so that their features
are not locally discriminative. As shown in Fig. 3, we compare the features
extracted by an external pre-trained backbone (ResNet [12]) and by the internal
encoder of the MVS network during online self-supervised training. These two
options lead to completely different feature representation and we study it in
Sec. 4.4 with experiments.

To summarize, the final loss function for self-supervised teacher training is

LS =
1

|V|
∑
p∈V

N−1∑
i=1

(λfeaL(i)
fea + λphotoL(i)

photo), (3)

where V is the valid subset of image pixels. λfea and λphoto are the two manually
tuned weights, and in our experiments, we set them as 4 and 1 respectively. For
coarse-to-fine networks, e.g. CasMVSNet, the loss function is applied to each of
the regularization steps.
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Fig. 5: Cross-view check.

3.2 Distillation-based Student Training

To further stimulate the potential of the self-supervised MVS network, we adopt
the idea of knowledge distillation and transfer the probabilistic knowledge of the
teacher to a student model. This process mainly consists of two steps, namely
pseudo probabilistic knowledge generation and student training.

Pseudo Probabilistic Knowledge Generation We consider the knowledge
transfer is done through the probability distribution as is done in [15,30,35].
However, we face two main problems when applying distillation in MVS. (a)
The raw per-view depth generated from the teacher model contains a lot of
outliers, which is harmful to training student model. Thus we perform cross-view
check to filter outliers. (b) The real probabilistic knowledge of the teacher model
cannot be used directly to train the student model. That is because the depth
hypotheses in the coarse-to-fine MVS network need to be dynamically sampled
according to the results of the previous stage, and we cannot guarantee that the
teacher model and student model always share the same depth hypotheses. To
solve this problem, we propose to generate the pseudo probability distribution
by probabilistic encoding.

Cross-view Check is used to filter outliers in the raw depth maps, which are
inferred by the self-supervised teacher model on the unlabeled training data.
Naturally, the outputs of the teacher model are per-view depth maps and the cor-
responding confidence maps. For coarse-to-fine methods, e.g. CasMVSNet [11],
we multiply confidence maps of all three stages to obtain the final confidence
map and take the depth map in the finest resolution as the final depth prediction.

We denote the final confidence map of reference view as C0 and the final
depth prediction as D0, the depth maps of source views as {Di}N−1

i=1 . As is
illustrated in Fig. 5, considering an arbitrary pixel p0 in the reference image
coordinate, we cast the 2D point p0 to a 3D point P0 with the depth value
D0(p0). We then back-project P0 to i-th source view and obtain the point pi in
the source view. Using its estimated depth Di(pi), we can cast the pi to the 3D
point Pi. Finally, we back project Pi to the reference view and get p̂0,i. Then the
reprojection error at p0 can be written as eireproj = ∥p0−p̂0,i∥. A geometric error
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eigeo is also defined to measure the relative depth error of P0 and Pi observed

from the reference camera as eigeo = ∥D̃0(P0) − D̃0(Pi)∥/D̃0(P0), where the

D̃0(P0) and D̃0(Pi) are the projected depth of P0 and Pi in the reference view.
Accordingly, the validated subset of pixels with regard to the i-th source view is
defined as

{p0}i = {p0|C0(p0) > τconf, e
i
reproj < τreproj, e

i
geo < τgeo}, (4)

where τ represents threshold values, we set τconf, τreproj and τgeo to 0.15, 1.0
and 0.01 respectively. The final validated mask is the intersection of all {p0}i
across N -1 source views. The obtained {D̃0(Pi)}N−1

i=0 and validated mask will be
further used to generate the pseudo probability distribution.

Probabilistic Encoding uses the {D̃0(Pi)}N−1
i=0 to generate the pseudo probability

distribution Pp0
(d) of depth value d for each validated pixel p0 in reference view.

We model Pp0
as a Gaussian distribution with a mean depth value of µ(p0) and

a variance of σ2(p0), which can be obtained by maximum likelihood estimation
(MLE):

µ(p0) =
1

N

N−1∑
i=0

D̃0(Pi), σ2(p0) =
1

N

N−1∑
i=0

(
D̃0(Pi)− µ(p0)

)2
. (5)

The µ(p0) fuses the depth information from multiple views, while the σ2(p0) re-
flects the uncertainty of the teacher model at p0, which will provide probabilistic
knowledge for the student model during distillation training.

Student Training With the pseudo probability distribution P , we are able to
train a student model from scratch via forcing its predicted probability distri-
bution P̂ to be similar with P . For the discrete depth hypotheses {dk}Dk=0, we
obtain their pseudo probability {P (dk)}Dk=0 on the continuous probability dis-
tribution P and normalize {P (dk)}Dk=0 using SoftMax, taking the result as the
final discrete pseudo probability value. We use Kullback–Leibler divergence to
measure the distance between the student model’s predicted probability and the
pseudo probability. The distillation loss LD is defined as

LD = LKL(P ||P̂ ) =
∑

p∈{pv}

(
Pp − P̂p

)
log

(
Pp

P̂p

)
, (6)

where {pv} represents the subset of valid pixels after cross-view check.

In experiments, we find that the trained student model also has the potential
of becoming a teacher and further distilling its knowledge to another student
model. As a trade-off between training time and performance, we perform the
process of knowledge distillation once more. More details can be found in Sec. 4.4.
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Table 1: Quantitative results on DTU evaluation set [2] (lower is better). Sup.
indicates whether the method is supervised or not.

Method Sup. Acc. Comp. Overall

Gipuma [9] - 0.283 0.873 0.578
COLMAP [31] - 0.400 0.664 0.532

MVSNet [44] ✓ 0.396 0.527 0.462
AA-RMVSNet [36] ✓ 0.376 0.339 0.357
CasMVSNet [11] ✓ 0.325 0.385 0.355
UCS-Net [3] ✓ 0.338 0.349 0.344

Unsup MVS [18] ✗ 0.881 1.073 0.977
MVS2 [4] ✗ 0.760 0.515 0.637
M3VSNet [14] ✗ 0.636 0.531 0.583
JDACS [38] ✗ 0.571 0.515 0.543
Self-supervised-CVP-MVSNet [42] ✗ 0.308 0.418 0.363
U-MVS+MVSNet [39] ✗ 0.470 0.430 0.450
U-MVS+CasMVSNet [39] ✗ 0.354 0.354 0.354

Ours+MVSNet ✗ 0.424 0.426 0.425
Ours+CasMVSNet ✗ 0.359 0.295 0.327

4 Experiments

4.1 Datasets

DTU dataset [2] is captured under well-controlled laboratory conditions with
a fixed camera rig, containing 128 scans with 49 views under 7 different light-
ing conditions. We split the dataset into 79 training scans, 18 validation scans,
and 22 evaluation scans by following the practice of MVSNet [44]. BlendedMVS
dataset [46] is a large-scale dataset for multi-view stereo and contains objects
and scenes of varying complexity and scale. This dataset is split into 106 train-
ing scans and 7 validation scans. Tanks and Temples benchmark [19] is a public
benchmark acquired in realistic conditions, which contains 8 scenes for the in-
termediate subset and 6 for the advanced subset.

4.2 Implementation Details

At the phase of self-supervised teacher training on DTU dataset [2], we set the
number of input images N = 5 and image resolution as 512 × 640. For coarse-
to-fine regularization of CasMVSNet [11], the settings of depth range and the
number of depth hypotheses are consistent with [11]; the depth interval decays
by 0.25 and 0.5 from the coarsest stage to the finest stage. The teacher model is
trained with Adam for 5 epochs with a learning rate of 0.001. At the phase of
distillation-based student training, we train the student model with the pseudo
probability distribution for 10 epochs. Model training of all experiments is carried
out on 8 NVIDIA RTX 2080 GPUs.
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(a) CasMVSNet (b) U-MVS (c) Ours (d) Ground Truth

Fig. 6: Comparison of reconstructed results with the supervised baseline [11] and
the state-of-the-art self-supervised method U-MVS [39] on DTU test set [2].

4.3 Experimental Results

DTU Dataset We evaluate KD-MVS, applied to MVSNet [44] and CasMVS-
Net [11] on DTU dataset [2]. We set N = 5 and input resolution as 864× 1152
at evaluation. Quantitative comparisons are shown in Tab. 1. Accuracy, Com-
pleteness and Overall are the three official metrics from [2]. Our method out-
performs all self-supervised methods by a large margin and even the supervised
ones. Fig. 6 shows a visualization comparison of reconstructed point clouds. Our
method achieves much better reconstruction quality when compared with the
baseline network and the state-of-the-art self-supervised method.

Tanks and Temples Benchmark We test our method on Tanks and Temples
benchmark [19] to demonstrate the ability to generalize on varying data. For a
fair comparison with state-of-the-art methods, we fine-tune our model on the
training set of the BlendedMVS dataset [46] using the original image resolution
(576× 768) and N = 5. More details about the fine-tuning process can be found
in supp. materials. Similar to other methods [11,39], the camera parameters,
depth ranges, and neighboring view selection are aligned with [45]. We use im-
ages of the original resolution for inference. Quantitative results are shown in
Tab. 2 and Tab. 3, and the qualitative comparisons ares shown in Fig. 7. When
applied on CasMVSNet [11], our method ranks 1st among all submitted methods
(including supervised methods) on intermediate set of Tanks and Temples online
benchmark [19] by Mar. 5, 2022.
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Table 2: Quantitative results on the intermediate set of Tanks and Temples
benchmark [1]. Sup. indicates whether the method is supervised or not. Bold
and underlined figures indicate the best and the second best results.

Method Sup. Mean Family Francis Horse L.H. M60 Panther P.G. Train

COLMAP [31] - 42.14 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04
ACMM [40] - 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48
AttMVS [22] - 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06

MVS2 [4] ✗ 37.21 47.74 21.55 19.50 44.54 44.86 46.32 43.38 29.72
M3VSNet [14] ✗ 37.67 47.74 24.38 18.74 44.42 43.45 44.95 47.39 30.31
JDACS [38] ✗ 45.48 66.62 38.25 36.11 46.12 46.66 45.25 47.69 37.16
Self-supervised-CVP-MVSNet [42] ✗ 46.71 64.95 38.79 24.98 49.73 52.57 51.53 50.66 40.52
U-MVS+CasMVSNet [39] ✗ 57.15 76.49 60.04 49.20 55.52 55.33 51.22 56.77 52.63

CasMVSNet [11] ✓ 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51
Vis-MVSNet [48] ✓ 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07
AA-RMVSNet [36] ✓ 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90
EPP-MVSNet [23] ✓ 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30

Ours+CasMVSNet ✗ 64.14 80.42 67.42 54.02 64.52 64.18 61.60 62.37 58.59

Table 3: Quantitative results on the advanced set of Tanks and Temples bench-
mark [1].

Method Sup. Mean Auditorium Ballroom CourtroomMuseum Palace Temple

COLMAP [31] - 27.24 16.02 25.23 34.70 41.51 18.05 27.94
ACMM [40] - 34.02 23.41 32.91 41.17 48.13 23.87 34.60

CasMVSNet [11] ✓ 31.12 19.81 38.46 29.10 43.87 27.36 28.11
AA-RMVSNet [36] ✓ 33.53 20.96 40.15 32.05 46.01 29.28 32.71
Vis-MVSNet [48] ✓ 33.78 20.79 38.77 32.45 44.20 28.73 37.70
EPP-MVSNet [23] ✓ 35.72 21.28 39.74 35.34 49.21 30.00 38.75

Ours+CasMVSNet ✗ 37.96 27.22 44.10 35.53 49.16 34.67 37.11

BlendedMVS Dataset We further demonstrate the quality of depth maps
on the validation set of BlendedMVS dataset [46]. The details of the training
process can be found in supp. materials. We set N = 5, image resolution as
512× 640, and apply the evaluation metrics described in [5] where depth values
are normalized to make depth maps with different depth ranges comparable.
Quantitative results are illustrated in Tab. 4. EPE stands for the endpoint error,
which is the average ℓ-1 distance between the prediction and the ground truth
depth; e1 and e3 represent the percentage of pixels with depth error larger than
1 and larger than 3.

4.4 Ablation Study

Implementation of Featuremetric Loss As analyzed in Sec. 3.1, we consider
the nature of the MVS is multi-view feature matching along epipolar lines, where
the features are supposed to be relatively locally discriminative. Tab. 5 shows the
quantitative results of different settings. Compared with using photometric loss
only, both internal featuremetric and external featuremetric loss can boost the
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F-score: 64.95 F-score: 80.42F-score: 76.37

F-score: 46.26 F-score: 54.02F-score: 24.98

(a) CasMVSNet (b) Self-supervised-CVP-MVSNet (c) Ours

Fig. 7: Comparison of reconstructed results with the supervised baseline Cas-
MVSNet [11] and the state-of-the-art self-supervised method [42] on Tanks and
Temples benchmark [19]. τ = 3mm is the distance threshold determined offi-
cially and darker regions indicate larger error encountered with regard to τ .

performance. And our proposed internal featuremetric loss shows superiority over
the external featuremetric loss with external features by a pre-trained ResNet.
It is worth noting that it is not feasible to adopt our featuremetric loss alone.
The reason is that the feature network is online trained within the MVS network
and thus applying featuremetric loss alone will lead to failure of training where
features tend to be a constant (typically 0).

Number of Self-training Iterations Given the scheme of knowledge distil-
lation via generating pseudo probability, we can iterate the distillation-based
student training for an arbitrary number of loops. Here we study the perfor-
mance gain when the number of iterations increases in Tab. 6. As a trade-off of
efficiency and accuracy, we set the number of iterations to be 2.

5 Discussion

5.1 Insights of Effectiveness

We attribute the effectiveness of KD-MVS to the following four parts. (a) The
first one is multi-view consistency as introduced in Sec. 3.2, which can be used
to filter the outliers in noisy raw depth maps. The remaining inliers are rela-
tively accurate and are equivalent to ground-truth depth to a certain extent.
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Table 4: Quantitative results towards
predicted depth maps on BlendedMVS
validation set [46] (lower is better).

Method Sup. EPE e1 e3
MVSNet [44] ✓ 1.49 21.98 8.32
CVP-MVSNet [43] ✓ 1.90 19.73 10.24
CasMVSNet [11] ✓ 1.43 19.01 9.77
Vis-MVSNet [48] ✓ 1.47 15.14 5.13
EPP-MVSNet [23] ✓ 1.17 12.66 6.20

Ours ✗ 1.04 10.17 4.94

Table 5: Ablation study on loss for
self-supervised training stage (teacher
model). Lfea and L∗

fea denotes feature-
metric loss by the internal feature en-
coder and by an external pretrained en-
coder (ResNet-18 [12]) respectively.

Lphoto L∗
fea Lfea Acc. Comp. Overall

✓ 0.489 0.501 0.495
✓ ✓ 0.477 0.441 0.459
✓ ✓ 0.457 0.399 0.428

Table 6: Ablation study on the num-
ber of iterations for distillation train-
ing. Note that we consider the number
of distillation rounds equal to the num-
ber of times fused depth is generated
and verified.

#round(s) Acc. Comp. Overall

1 0.387 0.334 0.361
2 0.359 0.295 0.327
3 0.357 0.298 0.327
4 0.358 0.297 0.328

Table 7: Ablation study on the main
factor of effectiveness. Mask indicates
whether to use the validated mask.
Depth indicates using ground truth
depth or validated depth. Loss indicates
which loss is used.

Mask Depth Loss Acc. Comp. Over.

(1) ✗ GT ℓ-1 0.358 0.346 0.352
(2) ✓ GT ℓ-1 0.352 0.334 0.343
(3) ✓ vali. ℓ-1 0.361 0.331 0.346
(4) ✓ vali. distill 0.359 0.295 0.327

(b) The probabilistic knowledge brings performance gain to the student model.
Compared with using hard labels such as ℓ-1 loss and depth labels, applying soft
probability distribution to student model brings additional inter-depth relation-
ships and thus reduces the ambiguity of noisy 3D points. (c) The validated depth
contains less perspective error than rendered ground truth labels. As shown in
the last row of Fig. 8 (marked with a red box), there are some incorrect values
in the ground-truth depth maps of DTU dataset [2] caused by perspective error,
which is harmful to training MVS models. (d) The validated masks of the teacher
model reduce the ambiguity of prediction by filtering the samples which are hard
to learn, benefiting the convergence of the model. We perform an ablation study
on these parts as shown in Tab. 7. (1) and (2) show that the validated mask is
helpful, (3) and (4) show that enforcing the probability distribution can bring
significant improvement. More details can be found in supp. materials.

5.2 Comparisons to SOTA Methods

U-MVS [39] leverages optical flow to compute a depth-flow consistency loss. To
get reliable optical flow labels, U-MVS trains a PWC-Net [33] on DTU dataset [2]
in a self-supervised manner, which costs additional training time and needs stor-
age space for the pseudo optical flow labels (more than 120GB).
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(a) RGB (b) GT depth (c) Rendered depth(d) Rendered error (e) Our depth (f) Our error

mean error: 
2.72mm

mean error: 
1.21mm

mean error: 
31.55mm

mean error: 
0.51mm

mean error: 
1.07mm

mean error: 
0.39mm

mean error: 
1.98mm

mean error: 
0.32mm

Fig. 8: Visualization of depth maps and errors. (a) RGB reference images; (b)
ground-truth depth maps; (c) rendered depth maps by [42]; (d) errors between
(b) and (c); (e) pseudo labels in KD-MVS; (f) errors between (b) and (e). We
apply the same mask on (b)(c)(e) for better visualization.

Self-supervised-CVP-MVSNet [42] renders depth maps from the recon-
structed meshes, which brings in error during Poisson reconstruction [17]. We
compare the rendered depth maps [42] and our validated depth maps in Fig. 8.

5.3 Limitations

- The quality of pseudo probability distribution highly depends on the cross-
view check stage and relevant hyperparameters need to be tuned carefully.

- Knowledge distillation is known as data-hungry and it may not work as
expected with a relatively small-scale dataset.

6 Conclusion

In this paper, we propose KD-MVS, which is a general self-supervised pipeline
for MVS networks without any ground-truth depth as supervision. In the self-
supervised teacher training stage, we leverage a featuremetric loss term, which
is more robust than photometric loss alone. The features are yielded internally
by the MVS network itself, which is end-to-end trained under implicit super-
vision. To explore the potential of self-supervised MVS, we adopt the idea of
knowledge distillation and distills the teacher’s knowledge to a student model
by generating pseudo probability distribution. Experimental results indicate that
the self-supervised training pipeline has the potential to obtain reconstruction
quality equivalent to supervised ones.
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