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A Baseline: Object Detector followed by Segmentation

In the main paper, we address how per-point instance masks can be learned
from bounding box annotations only. To show that this is a non-trivial task, and
that our proposed method generalizes beyond the weak supervision signal, we
present an additional baseline experiment. This baseline is an object detector
predicting bounding boxes and is trained on the given ground truth bounding
box annotations. Then, the instance masks are obtained by segmenting the points
inside each predicted bounding box into foreground and background. The baseline
implementation closely follows the implementation of our main model: using a
sparse convolutional network [2] we obtain deep learned features for each point in
the input point cloud. The learned point-features then vote for object bounding
box proposals. These steps are identical to the first part our main model shown
in Fig. 2 of the main paper. We then perform non-maximum-suppression (NMS)
to obtain object detection bounding boxes from the proposals. The final instance
masks are obtained from the predicted bounding boxes, which are segmented into
foreground and background based on the number of bounding boxes each point
is contained in. This is the same mechanism as described in the main paper to
obtain per-point supervision signals (Sec. 5, Eq. 2 in the main paper). By doing
so, it is guaranteed that the baseline is directly comparable with the proposed
weakly-supervised approach. Visual results, including the object detections are
shown in Fig. 1. Scores are shown in Tab. 1. Our proposed approach largely
outperforms this baseline (+11.8mAP50). In particular, this experiment shows
that learning instance masks from bounding box annotations alone is non-trivial,
and that our trained model is able to generalize beyond the weak training signal
obtained from the bounding box annotations.

B Per-Category Results

In this section, we show per-category results on the ScanNet validation and test
splits, and on S3DIS 6-fold cross validation, as summarised in Tab. 2, 3, 4 and
5. On ScanNet validation and S3DIS, we show also per-category scores for the
fully-supervised model trained with per-point instance labels.
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Baseline Method (Detector+Segmentation) Our Weakly-Supervised Box2Mask

Fig. 1: Qualitative comparison of the baseline (left) and our approach (right). For the
baseline, the outputs of the object detector and the subsequent foreground background
segmentations are shown. The baseline fails whenever two object bounding boxes are
intersecting (table top). While our Box2Mask is supervised with comparable labels
during training, it learns to generalize beyond these weak labels and infers the correct
instance masks for objects with intersecting bounding boxes (see chairs and table).

mAP mAP50 mAP25

Baseline (ours) 26.5 47.9 64.8
Box2Mask (ours) 39.1 (+12.6) 59.7 (+11.8) 71.8 (+7.0)

Table 1: Comparison of our approach to the baseline (object detector followed by
segmentation) on ScanNet validation set, trained with bounding box supervision only.
The results indicate that obtaining instance masks from bounding boxes is non-trivial
and that our training technique efficiently leverages weak bounding box annotations to
predict dense and accurate instance masks. This is further visualized in Fig. 1.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg.

Ours (mAP) 28.3 46.3 62.5 71.1 30.9 26.0 27.2 43.3 32.2 10.3 12.5 29.8 47.2 70.1 88.2 36.3 74.1 42.4 43.3
Ours (mAP@50%) 50.9 84.7 81.6 85.2 57.8 56.2 48.8 77.1 44.8 27.7 48.2 55.8 79.0 100 99.7 66.6 100 64.0 67.7
Ours (mAP@25%) 70.7 96.2 88.7 90.2 75.3 71.5 63.7 87.4 46.9 68.6 96.1 59.8 70.0 100 99.7 91.2 100 69.4 80.3

Table 2: Instance Segmentation on ScanNetV2 [3] Test Set. Trained only on
bounding boxes on training and validation splits, no per-point annotations used.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg.

Ours (mAP) 27.6 40.2 74.0 52.5 33.2 25.9 24.2 25.9 27.8 8.4 16.9 34.5 32.9 42.9 80.5 42.9 70.0 43.6 39.1
Ours (mAP@50%) 48.0 72.0 91.8 77.5 62.9 48.6 43.3 49.9 40.9 27.9 44.3 51.8 43.4 56.8 96.9 72.7 87.1 59.6 59.7
Ours (mAP@25%) 59.5 83.8 94.5 87.0 75.5 59.8 61.4 68.2 45.6 58.5 78.6 65.1 46.9 77.4 96.9 79.5 87.1 67.1 71.8

Table 3: Instance Segmentation on ScanNetV2 [3] Validation Set. Trained only
on bounding boxes on the training split, no per-point annotations used during training.

ceiling floor wall beam column window door table chair sofa bookshelf board clutter avg.

Ours (mPrec) 97.1 99.6 77.1 43.4 65.9 82.9 76.5 65.9 88.3 80.7 65.3 73.4 64.5 75.4
Ours (mRec) 68.3 95.6 64.1 63.2 66.6 83.9 88.4 55.5 69.7 68.6 50.6 69.1 58.0 69.4

Table 4: Instance Segmentation on S3DIS [1] 6-fold cross validation. Models
are trained fully supervised with per-point semantic instance annotations.
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ceiling floor wall beam column window door table chair sofa bookshelf board clutter avg.

Ours (mPrec) 96.8 99.2 76.4 46.9 54.1 68.1 72.9 59.9 87.6 76.8 67.5 70.4 62.7 72.3
Ours (mRec) 68.1 95.3 64.0 67.5 63.8 77.0 90.7 60.0 70.4 68.9 53.4 79.9 57.7 70.5

Table 5: Instance Segmentation on S3DIS [1] 6-fold cross validation. Models
are trained with only bounding box supervision, no per-point annotations used to train.

C Non-Maximum-Clustering (NMC) Algorithm

In Sec. 4 of the main paper, we introduced a clustering algorithm tailored specifi-
cally towards bounding box votes. The pseudo-code is below. Further, we analyse
the effect of the threshold parameter τ , which can be between 0 (all boxes in
single cluster) and 1 (each box is a separate cluster). In Fig. 2, we report mask
prediction scores on ScanNet validation, and find that τ ≈ 0.3 performs best.
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Fig. 2: Effect of parameter τ .

Algorithm 1: Non-Maximum-Clustering (NMC)

input : P = (B, score) // Set of bounding box votes and corresponding scores
output: Clustered bounding box votes.
Pcandidates ← P.sort (score) // Sort bounding box votes based on score
Results ← ∅
while Pcandidates ̸= ∅ do

Pr ← P.pop() // Pop the highest scoring proposal
cluster ← {p′ | IoU(pr.B, p′.B) > τ & p′ ∈ P } // Clustering with IoUs
Results ← Results ∪ {cluster} // Update the list of predictions
Pcandidates ← Pcandidates \ cluster // Remove the clustered votes from the

// list of representative candidates
end
return Results
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D Additional Qualitative Results

In Fig. 3, we show exemplary qualitative results of our method on the S3DIS
dataset [1]. We show the 3D input scene, our predicted instance masks learned
from weak bounding box annotations and the groundtruth instance masks as well
as the groundtruth bounding box annotations for comparison. In Fig. 4 and Fig. 5,
we show additional close-up qualitative results on the ScanNet dataset [3]. Besides
results of our weakly-supervised model, we also show results of the same model
fully-supervised with dense per-point labels. Notably, the predicted instance
segmentation masks of the two models hardly differ, indicating that bounding
box annotations are appropriate to train dense segmentation models.

Input Predicted Groundtruth Groundtruth
3D Scene Instance Masks Instance Masks Bounding Boxes

Fig. 3: Qualitative Instance Segmentation Results on S3DIS [1] Individual
instance masks are colored randomly and match the ground truth instance mask colors.
During training, only bounding box annotations are used (last column), per-point
instance masks (third column) are not used, and are shown here only for judging the
quality of the predicted instance masks (second column).
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Groundtruth Per-Point Instance Masks Groundtruth Bounding Boxes

Predictions from Per-Point Supervision Predictions from Bounding Box Supervision

Groundtruth Per-Point Instance Masks Groundtruth Bounding Boxes

Predictions from Per-Point Supervision Predictions from Bounding Box Supervision

Fig. 4: Qualitative Instance Segmentation Results on ScanNet [3] Individual
instance masks are colored randomly and match the ground truth instance mask colors.
Left: results from full per-point supervision. Right: weak bounding-box supervision.
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Groundtruth Per-Point Instance Masks Groundtruth Bounding Boxes

Predictions from Per-Point Supervision Predictions from Bounding Box Supervision

Groundtruth Per-Point Instance Masks Groundtruth Bounding Boxes

Predictions from Per-Point Supervision Predictions from Bounding Box Supervision

Fig. 5: Qualitative Instance Segmentation Results on ScanNet [3] Individual
instance masks are colored randomly and match the ground truth instance mask colors.
Left: results from full per-point supervision. Right: weak bounding-box supervision.
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E Bounding Box labels v.s. Full Point Labels

In this section, we analyse the question: “Is our initial point-to-box association
strategy (Eq. 2, main paper) enough to obtain the good performance of our
model?”

It is indeed correct, that this simple strategy can give good results (87% of
current fully-supervised state-of-the-art models). It would, however, be wrong
to assume that the differences between point and box labels are insignificant.
To clearly investigate this aspect, we quantitatively compare the quality of the
bounding box labels to the full point labels. Our bounding box labels achieve
70.4mAP (measured on ScanNet scenes) when evaluated against the full per-
point labels (which naturally define 100mAP). This is a performance gap of 30%.
The reason for this difference are the “undecided” points that fall into multiple
bounding boxes, Fig. 6. They are generally between two neighboring instances
and make up 13.5% of all points. It is specifically these points, that are crucial
for learning accurate and sharp masks of adjacent instances.

Then how is it possible that our method still achieves close to fully-supervised
scores? The reason is twofold: 1) We observe generalization beyond the weak
bounding box labels which enable precise masks on full instances (Fig. 1). During
training, the model sees a large variety of scenes where the correctly supervised
regions of objects outweigh the noisy ones. This likely allows our model to build
specific priors of full instance masks such that the model learns to generalize
beyond the weaker box labels.
2) Our novel algorithm for voting and clustering based on bounding boxes can
fully leverage the weak supervision. This is shown in Tab. 4 (main paper) where
our proposed bounding box approach largely outperforms prior center-based
approaches (+8mAP). This is the main factor enabling almost fully-supervised
performance.

Fig. 6: ●: Undecided Points
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