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Abstract. We present a method for transferring the artistic features of
an arbitrary style image to a 3D scene. Previous methods that perform
3D stylization on point clouds or meshes are sensitive to geometric
reconstruction errors for complex real-world scenes. Instead, we propose
to stylize the more robust radiance field representation. We find that the
commonly used Gram matrix-based loss tends to produce blurry results
lacking in faithful style detail. We instead utilize a nearest neighbor-based
loss that is highly effective at capturing style details while maintaining
multi-view consistency. We also propose a novel deferred back-propagation
method to enable optimization of memory-intensive radiance fields using
style losses defined on full-resolution rendered images. Our evaluation
demonstrates that, compared to baselines, our method transfers artistic
appearance in a way that more closely resembles the style image. Please see
our project webpage for video results and an open-source implementation:
https://www.cs.cornell.edu/projects/arf/.
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1 Introduction

Creating art in a specific style can require significant time and expertise. Extend-
ing an artwork to dimensions beyond the 2D image plane, such as time (in the
case of animation), or 3D space (in the case of sculptures or virtual environments),
involves further constraints and challenges. Hence, the styles employed by artists
when moving their work beyond a static 2D canvas are constrained by the effort
required to create a consistent visual experience.

We propose Artistic Radiance Fields (ARF), a new approach to transferring
the artistic features from a single 2D image to a full, real-world 3D scene that
yields high-quality, artistic free-viewpoint renderings. Our method converts a
photorealistic radiance field [33,1,4] reconstructed from multiple images of com-
plex, real-world scenes into a new, stylized radiance field that can be consistently
rendered from different viewpoints, as shown in Fig. 1. The quality of these
renderings is in contrast to that of prior 3D stylization work [16,14,34] that often
suffers from geometrically inaccurate reconstructions of point clouds or triangle
meshes and can lack style detail.

We formulate the stylization of radiance fields as an optimization problem: we
render images of the radiance fields from multiple viewpoints in a differentiable
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Fig. 1. We propose ARF, a new approach to 3D stylization. ARF takes a reconstructed
radiance field of a real scene (1st column) and converts it into an artistic radiance field
by matching features extracted from an input 2D style image (2nd column), leading to
high-quality stylized novel views (3rd-5th columns). Our approach produces consistent
results across viewpoints, as can be seen more clearly in the supplementary video.

manner, and minimize a content loss between the rendered stylized images and
the original captured images, and a style loss between the rendered images and
the style image. While prior methods [16,14,34] apply the commonly-used Gram
matrix–based style loss for 3D stylization, we observe that this type of loss leads
to averaged-out style details that degrade the quality of the stylized renderings.

This limitation motivates us to apply a novel style loss based on Nearest
Neighbor Feature Matching (NNFM) that is better suited to the creation of
high-quality 3D artistic radiance fields. In particular, for each feature vector in
the VGG feature map of a rendered image, we find its nearest neighbor (NN)
feature vector in the style image’s VGG feature map, and seek to minimize
the distance between these two feature vectors. In contrast to a Gram matrix
describing global feature statistics across the entire image, NN feature matching
focuses on local image descriptions, better capturing distinctive local details.
Coupled with our style loss, we also enforce a VGG feature-based content loss –
which balances stylization and content preservation – as well as a color transfer
technique that improves the color match between our final renderings and the
input style image.

One challenge is that volumetric radiance field rendering consumes significant
memory. Such rendering can often only regress sparsely sampled pixels during
training, and not the full images needed to compute VGG features used in many
style losses. We propose a practical innovation called deferred back-propagation
that allows us to perform optimization on high-resolution images. Deferred back-
propagation enables memory-efficient auto-differentiation of scene parameters
with image losses computed on full-resolution images (e.g., VGG-based style
losses) by accumulating cached gradients in a patch-wise fashion.
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We demonstrate that ARF can robustly transfer detailed artistic features
from diverse 2D style exemplars to a variety of complex 3D scenes, yielding
significantly better visual quality compared to prior methods, which tend to yield
over-smoothed and blurry stylized novel views (see Figures 4, 5, and 6). In our
user studies, our method is also consistently preferred over baselines.

In summary, our contributions are:

– A new radiance field-based approach to 3D scene stylization that can faithfully
transfer detailed style features from a 2D image to a 3D scene, and which
produces consistent stylized novel views of high visual quality.

– A finding that Nearest Neighbor Feature Matching (NNFM) loss better pre-
serves details in the style images than the Gram matrix–based loss commonly
used in prior 3D stylization work.

– A deferred back-propagation method for differentiable volumetric rendering,
allowing for computation of losses on full-resolution images while significantly
reducing the GPU memory footprint.

2 Related Work

In this section, we review related work to provide context for our work.

Image style transfer. Since Gatys et al. [11] introduced neural style transfer,
significant progress has been made towards image stylization [25,22], image
harmonization [50,29,41], color matching [44,43,28], texture synthesis [37,23,13]
and beyond [18]. These style transfer approaches leverage features extracted by a
pre-trained convolutional neural network (e.g., VGG-19 [40]) and optimize for a
set of loss functions (typically a content loss capturing an input photo’s features
and a style loss matching a style image’s feature statistics, e.g., as captured by a
Gram matrix). Depending on whether the style transfer is achieved via iterative
optimization or a single forward pass of a deep network, existing methods can be
categorized as optimization-based and feed-forward-based:

Optimization-based style transfer. Gatys et al. [11] perform style transfer
via iterative optimization to minimize content and style losses. Many follow-up
works [7,22,37,12,21,30,25,30] have investigated alternative style loss formulations
to further improve semantic consistency and high-frequency style details like
brushstrokes. Unlike style transfer methods that encode the statistics of style
features with a single Gram matrix, Chen and Schmidt [7], CNNMRF [22], Deep
Image Analogy [25] and NNST [20] propose to search for nearest neighbors and
minimize distances between features extracted from corresponding content and
style patches in a coarse-to-fine fashion. These methods achieve impressive 2D
stylization quality when provided with source and target images that share similar
semantics. Our approach draws inspiration from this line of work and is the
first to introduce nearest neighbor feature matching (NNFM) for 3D stylization.
Our NNFM loss is most similar to that proposed in [20] for 2D style transfer.
However, when stylizing 3D radiance fields, we find that we can achieve the
same level of stylistic detail more efficiently by only applying stylization at a
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single coarse scale (as opposed to coarse-to-fine) and by skipping the style image
augmentations (rotation and/or scaling) used in [22,20]. Compared with the
contextual loss [31], our NNFM loss is simpler and avoids the need for distance
and similarity normalizations.

Feed-forward style transfer. Rather than performing iterative optimization,
feed-forward approaches [17,2,9,36,45,39,24] train neural networks that can trans-
fer the style of an exemplar image to an input image using a single forward pass.
While fast, these methods often struggle to faithfully reproduce style details
like brushstrokes, and yield lower visual quality compared to optimization-based
techniques. In the pursuit of high-quality results, we did not pursue this direction
in our work.

Video style transfer. Stylizing a video by separately processing each frame
with a 2D style transfer method often leads to flickering artifacts in the resulting
stylized video. Video style transfer [38] methods address this problem by enforcing
an additional temporal coherency loss across frames [6,15,38,42]. Alternative
approaches rely on aligning and fusing style features according to their similarity
to content features [10,27] to maintain temporal consistency. Despite sharing the
similar challenge of consistency across views, stylizing a 3D scene is a distinct
problem from video stylization, because it requires synthesizing novel views while
maintaining style consistency, which is best achieved through stylization in 3D
world space rather than in 2D image space.

3D style transfer. 3D style transfer aims to transform the appearance of a 3D
scene so that its renderings from different viewpoints match the style of a desired
image. Prior methods represent real world scenes using point clouds [16,34] or
triangle meshes [46,32]. For example, Huang et al. [16] and Mu et al. [34] use
featurized 3D point clouds modulated with the style image, followed by a 2D CNN
renderer to produce stylized renderings. Yin et al. [46] create novel geometric and
texture variations of 3D meshes by transferring the shape and texture style from
one textured mesh to another. The performance of such methods is limited by
the quality of these point clouds or meshes, which frequently contain noticeable
artifacts when reconstructed from complex real-world scenes. In contrast, we
perform style transfer on radiance fields [33,26,48,49,5] which can more faithfully
reproduce the appearance of real world scenes. Work closely relevant to ours is
that of Chiang et al. [8], who use neural radiance fields as a scene representation
and apply pre-trained style hypernetworks for appearance stylization. However,
their method produces over-smoothed and blurry stylization results, and cannot
capture detailed structures in the style image such as brushstrokes, due to the
limitations of pre-trained feed-forward models. Our approach can more faithfully
capture distinctive details in the style exemplar while preserving recognizable
scene content.
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Fig. 2. Overview of our method. We first reconstruct a photo-realistic radiance field
from multiple photos. We then stylize this reconstruction using an exemplar style image
through the use of a nearest neighbor feature matching (NNFM) style loss. Once this
stylization is done, we can obtain consistent free-viewpoint stylized renderings. We
invite readers to watch the videos on our project page to better appreciate our results.

3 Background on Radiance Fields

NeRF [33] proposes neural radiance fields to model and reconstruct real scenes,
achieving photo-realistic novel view synthesis results. In general, the radiance
field representation can be seen as a 5D function that maps any 3D location x
and viewing direction d to volume density σ and RGB color c:

σ, c = RadianceField(x,d). (1)

This representation can be rendered from any viewpoint via differentiable volume
rendering, and hence can be optimized to fit a collection of photos capture from
multiple viewpoints, then later used to synthesize photo-realistic novel views.
We move beyond photo-realism and add an artistic feel to the radiance field by
stylizing it using an exemplar style image, such as a painting or sketch.

4 Stylizing Radiance Fields

Given a photo-realistic radiance field reconstructed from photos of a real scene, our
approach transforms it into an artistic one by stylizing the 3D scene appearance
with a 2D style image. We achieve this by fine-tuning the radiance field using a
novel nearest neighbor feature matching style loss (Sec. 4.1) that can transfer
detailed local style structures. We also introduce a deferred back-propagation
technique that enables radiance field optimization with full-resolution images
(Sec. 4.2) in the face of limited GPU memory. We apply a view-consistent color
transfer technique to further enhance visual quality (Sec. 4.3).
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4.1 Style transfer losses

Art often features unique visual details. For instance, Van Gogh’s The Starry
Night is characterized by long and curvy brushstrokes. Neural features produced
by pre-trained neural networks (like VGG) can effectively capture such details
and have been widely used for 2D style transfer. However, transferring such rich
visual details to 3D scenes using prior VGG-based style losses is a challenge, since
the style information measured by such losses are often based on global statistics
that do not necessarily capture local details accurately in a view-consistent way.

To address this issue, we propose to use the Nearest Neighbor Feature
Matching (NNFM) loss to transfer complex high-frequency visual details from
a 2D style image to a 3D scene (parameterized by a radiance field) in a way
that yields consistency across multiple viewpoints. In particular, let Istyle denote
the style image, and Irender denote an image rendered from the radiance field
at a selected viewpoint. We extract VGG feature maps Fstyle and Frender from
Istyle and Irender, respectively. Let Frender(i, j) denote the feature vector at pixel
location (i, j) of the feature map Frender. Our NNFM loss can be written as:

ℓnnfm(Frender,Fstyle) =
1

N

∑
i,j

min
i′,j′

D
(
Frender(i, j),Fstyle(i

′, j′)
)
, (2)

where N is the number of pixels in Frender, and D(v1,v2) computes the cosine
distance between two vectors v1,v2:

D(v1,v2) = 1− < v1,v2 >

∥v1∥2∥v2∥2
. (3)

In short, for each feature in Frender, ℓnnfm minimizes its cosine distance
(Eq. (3)) to its nearest neighbor in the style image’s VGG feature space (Fstyle).
The NNFM loss can also be viewed as a variant of the Chamfer distance for
comparing high-dimensional feature sets, similar to the Chamfer L1 distance
widely used for comparing 2D images and 3D point clouds.

Note that our loss does not rely on per-view global statistics. This grants
more flexibility to the optimization process and focuses it on adjusting local 3D
scene appearance to perceptually match patches of the style exemplar.

Controlling stylization strength. Using our NNFM loss alone can sometimes
lead to overly strong stylization, making the content harder to recognize. To
address this issue, we add an additional content-preserving loss penalizing the ℓ2
difference between the feature maps of rendered and content images:

ℓ = ℓnnfm(Frender,Fstyle) + λ · ℓ2(Frender,Fcontent), (4)

where λ is a weight controlling stylization strength: a larger λ better preserves
content, while a smaller λ leads to stronger stylization. Frender, Fstyle and Fcontent

are feature maps of a rendered image, the style image and a content image,
respectively; they are all extracted using exactly the same VGG feature extractor.
(See Sec. 4.4 for more detail.)
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Fig. 3. Illustration of deferred back-propagation. We first disable auto-differentiation
to render a full-resolution image, then compute the image loss (e.g., a style loss defined
by NNFM or by a Gram matrix), and cache its gradients with respect to pixel values
of the full-resolution image. Next, we back-propagate the cached gradients to scene
parameters and accumulate in a patch-wise manner: For each patch, we re-render
it with auto-differentiation enabled, and apply the chain rule to back-propagate the
corresponding cached patch gradients to scene parameters for accumulation. This way,
we correctly compute the gradients of a loss imposed on the full-resolution rendered
image with respect to the scene parameters, with the same GPU memory footprint of
rendering a single small patch differentiably.

4.2 Deferred back-propagation

We stylize a radiance field by minimizing our loss (Eqn. 4) imposed on images
rendered using differentiable volume rendering. Such rendering is very memory-
inefficient in practice, because the color of each pixel is composited from a large
number of samples along the corresponding ray. As a result, rather than rendering
a full-resolution image at each optimization step, many methods randomly sample
a sparse set of pixels for rendering. While such sparse pixel sampling is a reasonable
strategy when minimizing a loss computed independently per-pixel, such as an
ℓ1/ℓ2 loss, it does not work for complex CNN-based losses, such as our NNFM
loss or a Gram-matrix style loss, which require full-resolution renderings.

We propose a simple technique we call deferred back-propagation that can
directly optimize on full-resolution images, allowing for more sophisticated and
powerful image losses to be used in conjunction with radiance fields. As shown by
Fig. 3, we first render a full-resolution image with auto-differentiation disabled,
then compute the image loss and its gradient with respect to the rendered image’s
pixel colors, which produces a cached gradient image. Finally, in a patch-wise
manner, we re-render the pixel colors with auto-differentiation enabled, and
back-propagate the cached gradients to the scene parameters for accumulation.
In this way, gradient back-propagation is deferred from the full-resolution image
rendering stage to the patch-wise re-rendering stage, reducing the GPU memory
cost from that of rendering a full-resolution image to that of rendering a small
patch. While this technique is general, we apply it to our stylization task when
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optimizing our style loss, and also when optimizing the Gram-matrix loss in our
experimental comparisons (see Fig. 7).

4.3 View-consistent color transfer

While our style and content losses can perceptually transfer styles and preserve
the original content, we find they can lead to color mismatches between rendered
images and the style image. We devise a simple technique to address this issue that
leads to enhanced visual quality (see Fig. 7). We first recolor the training views
via 2D color transfer from the style image. These recolored images are used to pre-
optimize our artistic radiance field as initialization for our stylization optimization;
they are also used for our content preservation loss (Eq. 4). Additionally, after the
3D stylization process, we compute another color transfer transform on images
rendered to the training viewpoints, and apply this same color transform to the
color values produced from rendering the radiance fields.

For color transfer we adopt a simple affine transformation of colors in RGB
space, the parameters of which are estimated by matching color statistics of an
image set to those of an image. Specifically, let

{
ci
}m

i=1
be the set of all pixel

colors in an image set to be recolored, and let
{
si
}n

i=1
be the set of all pixel

colors of the style image. We analytically solve for an affine transformation A
such that E

[
Ac] = E

[
s
]
and Cov

[
Ac

]
= Cov

[
s
]
, i.e., the mean and covariance

of the color-transformed image set should match those of the style image. We
refer the readers to our supplemental document for derivation of A.

4.4 Implementation details

To represent a radiance field, our work primarily uses Plenoxels [47] for its fast
reconstruction and rendering speed. However, our framework is agnostic to the
radiance field representation. To demonstrate this flexibility, we also apply ARF
to stylize NeRF [33] and TensoRF [47] representations, and in each case achieve
high visual quality with faithful style transfer, as shown in Fig. 8.

During stylization, we fix the density component of the initial photorealistic
radiance field, and only optimize the appearance component when converting
to an artistic radiance field. We also discard any view-dependent appearance
modelling. To extract the feature maps Frender, Fstyle, and Fcontent in Eq. 4, we
use a pretrained VGG-16 network that consists of 5 layer blocks: conv1, conv2,
conv3, conv4, conv5. We use the conv3 block as the feature extractor, because we
empirically find that it captures style details better than the other blocks. We set
the content-preserving weight λ = 0.001 in Eq. 4 for all forward-facing captures,
and λ = 0.005 for all 360◦ captures. We refer the readers to our supplemental
document for more implementation details.

5 Experiments

We evaluate our method by performing both qualitative and quantitative com-
parisons to baseline methods. We show stylization results for various real-world
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scenes guided by different style images. Our experimental results show that
our method significantly outperforms baseline methods by generating stylized
renderings that are more faithful to the input style image, while maintaining
the recognizable semantic and geometric features of the original scene. We invite
readers to our project page for better assessment of 3D stylization quality.

Datasets. We conduct extensive experiments on multiple real-world scenes in-
cluding four forward-facing captures: Flower, Orchids, Horns, and Trex, from [33],
and seven 360◦ captures: Family, Horse, Playground, Truck, M60, and Train from
the Tanks and Temples dataset [19], as well as the Real Lego dataset from [1].
All scenes contain complex structures and intricate details that are difficult to
reconstruct with prior triangle mesh or point cloud-based methods. We also
experiment with a diverse set of style images including a neon tiger, Van Gogh’s
The Starry Night, sketches, etc., to test our method’s ability to handle a diverse
range of style exemplars.

Baselines. We compare our method to state-of-the-art methods [16,8] for 3D
style transfer quality. Specifically, Huang et al. [16] adopt point clouds featurized
by VGG features averaged across views as a scene representation, and transform
the pointwise features by modulating them with the encoding vector of a style
image for stylization. Chiang et al. [8] use implict MLPs as in NeRF++ [49] to
reconstruct a radiance field for a scene, then update the weights of the radiance
prediction branch using a hypernetwork that takes a style image as input. For both
methods, we use their released code and pre-trained models. We did not compare
to off-the-shelf video stylization methods, because prior work has demonstrated
that they are less competitive compared to 3D style transfer approaches [16,8].

Qualitative comparisons. We show visual comparisons between methods in
Fig. 4 (forward-facing captures) and Fig. 5 (360◦ captures). Visually, we see
that our results exhibit a better style match to the exemplar image compared to
the baselines. For instance, in the Flower scene in Fig. 4, our method faithfully
captures both the color tone and the brushstrokes of The Starry Night, while the
baseline method of Huang et al. [16] generates over-smoothed results without
detailed structures. Moreover, Huang et al. also fails to recover complex geometric
structures such as plant leaves due to inaccuracies in the reconstructed meshes.
In comparison, our method effectively reconstructs and preserves the geometric
and semantic content of the original scene, thanks to the more robust radiance
fields representation.

Chiang et al. [8] only transfers the overall color tone of the style image to the
scene and fails to recover the rich details that our method does. For example,
in the Family statue scene in Fig. 5, our method captures the subtle textural
details of the watercolor feather style image, and reproduces them in the stylized
renderings. In contrast, the method of Chiang et al. [8] generates blurry results
without such intricate structures, because their hypernetwork is trained on a
fixed dataset of style images and can fail to capture the details of an unseen style
input. Our method benefits from both the optimization-based framework as well
as our NNFM style loss, which greatly boost 3D stylization quality.
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We show additional results from our method in Fig. 6. Our method is robust
to different scenes with varying levels of complexity and generates consistently
superior results under a variety of styles.

User study. We also perform a user study to compare our method to prior work.
A user is presented with a sequence of stylization results, where for each result the
user is shown a style image, a video of the original scene, and two corresponding
stylized videos, one produced with our method and one by a baseline. The user is
then asked to select the result whose style better matches that of the given style
image. In total, we collected ratings covering 25 randomly selected (scene, style)
pairs. We divided the questions into 5 batches, each with 5 questions, and asked
a group of users to rate a randomly selected batch. We collected an average of
∼12 ratings for each individual pair. We found that users preferred our method
over the method of Huang et al. [16] 86.8% of the time, and over that of Chiang
et al. [8] 94.1% of the time. These results show a clear preference for our method.

Ablations. We perform ablation studies to justify our design choices. We first
compare our NNFM loss to the prior Gram matrix–based and CNNMRF losses.
As we can see from Fig. 7, our NNFM loss generates significantly better results
and more faithfully preserves the style details of the example images compared
to the other two losses. In Fig. 7, we also validate the necessity of the color
transfer stage. Without color transfer, the generated results tend to have different
color tones compared to the style image, leading to a degraded style match. Our
color transfer method effectively addresses this issue. Finally, we perform an
ablation of using the feature map at different layers of the VGG-16 network for
computing the NNFM loss. We find that our choice of the conv3 layer block
preserves stylistic details better than other layers. We refer the readers to our
supplemental document for the results of this ablation experiment, as well as an
ablation of using different color spaces for the color transfer method in Sec. 4.3.

Limitations. Our method has a few limitations. First, geometric artifacts, e.g.,
floaters, in the radiance fields can cause artifacts in both the photorealistic
and our stylized renderings. Such floaters can be removed by adding additional
regularizers on volume density to the loss during optimization [3,35]. Second,
although our artistic radiance fields can be rendered in real time once optimized,
a relatively time-consuming optimization procedure is still required for every
style image (∼3 mins for forward-facing captures, and ∼20 mins for 360 captures
on a single NVIDIA RTX 3090 GPU). Third, our reconstructed artistic radiance
fields do not support manual editing. Enabling artists to interactively edit them
is highly desirable for the sake of facilitating creativity.

6 Conclusion

We have presented a method to create artistic radiance fields from photorealistic
radiance fields given user-specified style exemplars. The reconstructed artistic
radiance fields can then be used to render high-quality stylized novel views that
faithfully mimic the input style image in terms of color tone and style details like
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Fig. 4. Comparison with the baseline method Huang et al. [16] on real-world forward-
facing data. Our stylized novel views contain significantly more faithful style details.
Additionally, Huang et al. [16] requires reconstructing meshes from images, an error-
prone process. Such errors can impact the quality of stylized novel views, as can be
seen in the leaves in the Flower and Orchids scenes, and in ceiling of Trex. In contrast,
our method, based on radiance fields, exhibits many fewer geometric artifacts.
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Fig. 5. Comparison with the baseline methods Huang et al. [16] and Chiang et al. [8]
on real-world Tanks and Temples data. Our results match both the colors and details
of the style image most faithfully, while preserving sharp and recognizable content.
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Fig. 6. Our method can generate compelling results for a wide range of (real-world
scene, style image) pairs. The leftmost image in each row is the style image, and the
rest are stylized novel views rendered from corresponding artistic radiance fields (two
novel views are shown for each artistic radiance field).
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Fig. 7. Ablation studies of color transfer and NNFM loss. Without color transfer, there
is a noticeable color mismatch between the synthesized views and the style image (shown
as insets in the first column). Replacing the NNFM loss with the commonly-used Gram
loss [11] leads to less compelling results with many more artifacts. Our NNFM loss also
generates more faithful 3D stylization results than the prior CNNMRF loss [22].

Fig. 8. Applicability across different radiance field representations. Our ARF method
is applicable to a variety of radiance fields representations, including Plenoxels [47],
NeRF [33] and TensoRF [4], in each case producing high-quality 3D stylization results.

brushstrokes. This enables an immersive experience of artistic 3D scenes. Key to
our method’s success is the proposed coupling of the nearest neighbor featuring
matching loss and view-consistent color transfer, rather than the commonly-used
Gram loss. We demonstrate that our method achieves superior 3D stylization
quality over baselines through evaluations across various 3D scenes and 2D styles.

Acknowledgements. We would like to thank Adobe artist Daichi Ito for helpful
discussions about 3D artistic styles.
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