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Abstract. We address multiview stereo (MVS), an important 3D vi-
sion task that reconstructs a 3D model such as a dense point cloud from
multiple calibrated images. We propose CER-MVS (Cascaded Epipolar
RAFT Multiview Stereo), a new approach based on the RAFT (Re-
current All-Pairs Field Transforms) architecture developed for optical
flow. CER-MVS introduces five new changes to RAFT: epipolar cost
volumes, cost volume cascading, multiview fusion of cost volumes, dy-
namic supervision, and multiresolution fusion of depth maps. CER-MVS
is significantly different from prior work in multiview stereo. Unlike prior
work, which operates by updating a 3D cost volume, CER-MVS oper-
ates by updating a disparity field. Furthermore, we propose an adaptive
thresholding method to balance the completeness and accuracy of the re-
constructed point clouds. Experiments show that our approach achieves
state-of-the-art performance on the DTU and Tanks-and-Temples bench-
marks (both intermediate and advanced set). Code is available at https:
//github.com/princeton-vl/CER-MVS.
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1 Introduction

Multiview stereo (MVS) is an important task in 3D computer vision. It seeks to
reconstruct a full 3D model, typically in the form of a dense 3D point cloud, from
multiple RGB images with known camera intrinsics and poses. It is a difficult
task that remains unsolved; the main challenge is producing a 3D model that is
not only accurate but also complete, that is, no parts should be missing and all
fine details should be recovered.

Many of the latest results of multiview stereo are achieved by deep networks.
In particular, many recent leading methods [42,32] are variants of MVSNet [34],
a deep architecture that consists of two main steps: (1) constructing a 3D cost
volume in the frustum of a reference view, by warping features from other views,
and (2) using 3D convolutional layers to transform, or “regularize”, the cost
volume before using it to predict a depth map. The resulting depth maps, one
from each reference view, are then combined to form a single 3D point cloud
through a heuristic procedure.

However, a drawback of MVSNet is that regularizing the 3D plane-sweeping
cost volume using 3D convolutions can be costly in terms of computation and
memory, potentially limiting the quality of reconstruction under finite resources.

https://github.com/princeton-vl/CER-MVS
https://github.com/princeton-vl/CER-MVS
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Subsequent variants [35] of MVSNet have attempted to address this issue by re-
placing 3D convolutions with recurrent sequential processing of 2D slices. Despite
significant empirical improvements, however, such sequential processing can be
suboptimal because the 3D cost volume does not have a natural sequential struc-
ture.

In this work, we propose CER-MVS, a new deep-learning multiview stereo
approach that is significantly different from existing methods. Like prior deep-
learning work on multiview stereo, CER-MVS predicts individual depth maps
and then fuses them, but differs significantly in how it predicts each depth map.
Given a reference view and multiple neighbor views, CER-MVS constructs a
3D cost volume for each neighbor view by computing the similarity between
each pixel in the reference view and pixels along the epipolar line, indexed by
increments of inverse depth (i.e. disparity) in the reference view. Then, the cost
volumes from all neighbor views are aggregated into a single cost volume. CER-
MVS uses a GRU to iteratively update a disparity field—the field that represents
pixel correspondence. Each update is generated by the GRU by sampling from
the aggregated cost volume using the current disparity field.

The key difference of CER-MVS from MVSNet and its variants lies in how
depth is predicted from the 3D cost volume. MVSNet updates (i.e. regularizes)
the 3D cost volume and predicts depth through a soft argmax on the updated
cost volume. In contrast, CER-MVS does not update the cost volume at all;
instead it iteratively updates a disparity field, which is used to retrieve values
from the cost volume. The final depth prediction is simply the inverted disparity
field. Updating a disparity field, which is less expensive than updating the cost
volume, can allow more effective use of finite computing resources.

CER-MVS builds upon RAFT [25], an architecture that estimates optical
flow between two video frames. Compared to RAFT, which cannot be directly
applied to multiview stereo, CER-MVS introduces five novel changes:

– Epipolar cost volume: RAFT constructs a 4D cost volume that compares all
pairs of pixels from two views, whereas we construct a 3D cost volume com-
paring each pixel in the reference view with pixels which are on the epipolar
line in a neighbor view and spaced by uniform increments of disparity.

– Cost volume cascading: Unlike RAFT, the size of our epipolar cost volumes
depends not only on the image resolution but also the number of disparity
increments. To reconstruct fine details, a large number of disparity incre-
ments is necessary, but can blow up GPU memory. To address this issue, we
introduce cascaded epipolar cost volumes, a novel design in the context of
RAFT. In particular, after a fixed number of RAFT iterations, we construct
additional finer-grained epipolar cost volumes centered around current dis-
parity predictions with finer increments of disparity, allowing reconstruction
of fine details with less memory.

– Multiview fusion of cost volumes: RAFT constructs a single cost volume
from two views, whereas CER-MVS constructs multiple cost volumes, one
for each neighbor of a reference view. The cost volumes are then aggregated
into a single volume through a simple averaging operator.
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Fig. 1: Overview of CER-MVS, which includes an architecture that constructs
cascaded epipolar cost volumes and performs recurrent iterative updates of dis-
parity (inverse depth) maps, with fusion of cost volumes from multiple views as
well as fusion of disparity maps of multiple resolutions.

– Dynamic supervision: RAFT uses exponentially decaying weights to add
up flow errors in each iteration. We also use such weights, but supervise a
dynamic combination of depth errors and disparity errors.

– Multiresolution fusion of depth maps: RAFT operates on a single resolution
of the input images, whereas CER-MVS applies the same network to predict
depth maps on multiple resolutions, and aggregate the depth maps into a
single high-resolution depth map through a simple but novel heuristic.

When stitching the depth maps into point clouds, a filtering algorithm is often
used, e.g., Dynamic Consistency Checking proposed in D2HC-RMVSNet [32].
However, a good balance of accuracy and completeness is required for high scores
on the evaluation metric, which is ignored by these algorithms. Therefore, we
propose an adaptive thresholding method built on top of [32].

We evaluate CER-MVS on two challenging benchmarks, DTU [2] and Tanks-
and-Temples [15]. On both benchmarks, CER-MVS achieves significant improve-
ments over the previous state of the art. On DTU, CER-MVS improves error
metric from 0.344 to 0.332. On Tanks-and-Temples, CER-MVS advances the
state of the art of the intermediate set from a mean F1 score of 61.68 to 64.82,
and the advanced set from 37.44 to 40.19.

2 Related Work

Classical MVS Classical methods [4,8,9,23,26,12] essentially formulate multi-
view stereo as an optimization problem, which seeks to find a 3D model that is
most compatible with the observed images. The compatibility is typically based
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on some hand-designed notion of photo-consistency, assuming that pixels that
are projections of the same 3D point should have similar appearance. Often
photo-consistency alone does not sufficiently constrain the solution space, and
the optimization objective can also include shape priors, which make additional
assumptions about what shapes are likely. To solve the optimization problem,
a concrete classical algorithm usually consists of a particular 3D representation
(e.g. polygon meshes, voxels, or depth maps) and a optimization procedure to
compute the best model under that representation. The different combinations
of photo-consistency measures, shape priors, 3D representations, and optimiza-
tion procedures give rise to a large variety of algorithms. For more details, we
refer the reader to excellent surveys of these algorithms by Seitz et al. [24] and
by Furukawa and Hernández [7].

One family of classical MVS methods [44,23,9,28,30,22] is based on the Patch-
Match [3] algorithm, which enables efficient dense matching of pixels across
views. PatchMatch methods have proved very effective and have demonstrated
highly competitive performance. In particular, Xu and Tao [30] introduced the
ACMP algorithm, which, among other enhancements, incorporates planar priors
and has achieved competitive results on Tanks-and-Temples.

Learning-based MVS Unlike classical algorithms, our approach is learning-based.
Existing learning-based MVS methods either use learning to improve parts of
a classical pipeline such as PatchMatch [39,11,40,41], or develop end-to-end ar-
chitectures [14,13,34,35,5,19,31,10,33,38,29,37,6,32,42]. A common step in exist-
ing end-to-end architectures is the construction of a 3D cost volume (or fea-
ture grid) through some differentiable geometric operations. Then, this 3D cost
volume undergoes further updates, often through 3D convolutions, before be-
ing transformed into the final 3D model in some particular representation such
as voxels [14,13], depth maps [34,35,19,31,10,33,38,29,37,6,32,42,21,27], or point
clouds [5].

The main difference between our approach and existing works is that al-
though we also construct a 3D cost volume, we do not update it. Instead, we
update an inverse-depth field that is used to iteratively index from the 3D cost
volume to produce 2D feature maps. Our approach thus avoids the costly op-
erations of updating a 3D volume and focuses limited computing resources on
refining the depth maps directly.

Difference from RAFT-Stereo RAFT-Stereo [18] is a deep architecture for rec-
tified stereo which is also based on the optical flow network RAFT. Our work
differs significantly from RAFT-Stereo. RAFT-Stereo cannot be used for mul-
tiview stereo, because it only works with 2 rectified views whereas we need to
handle an arbitrary number of unrectified views. RAFT-Stereo only needs to
produce a single depth map, whereas we need to produce a point cloud fused
from many views. Although both are based on RAFT, we extend RAFT in very
different ways due to the different task setup: e.g. epipolar cost volumes, multi-
view cost volume aggregation, adaptive point cloud fusion are all unique to our
method, and not present in RAFT-Stereo.
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3 Approach

This section describes the detailed architecture and pipeline of CER-MVS, as
shown in Fig. 1. Given a reference view and a set of neighbor views, we first
extract features using a set of convolutional networks. Features are then used
to build a collection of cost volumes. We then predict a depth map through
recurrent iterative updates, followed by the fusion of multiresolution depths.
Finally, depth maps from all references views are fused and stitched to produce
a final point cloud.

3.1 Cost Volume Construction

Image Features We need to extract image features from both reference views and
neighbor views before using them to construct the cost volumes. In addition,
the iterative update unit, to be introduced later, needs context features from
reference views. We extract these image features using convolutional encoders

following RAFT: RH×W×3 → RH/2k×W/2k×Df , where k and Df are hyperpa-
rameters that control the feature resolution and dimension (See Sec. 4.1 and the
supplemental material for more details).

Epipolar Cost Volume After extracting feature maps {fi, i = 0, ..., N +1}, where
f0 is the reference view and others are neighbor views, each with resolution
(Df , Hf ,Wf) = (Df , H/2k,W/2k), we construct a 3D cost volume by computing
the correlation of each pixel in the reference view with pixels along its epipolar
line in a neighbor view. Specifically, for a pixel in the reference view, we back-
project it to D 3D points with disparity (inverse depth) uniformly spaced in the
range from 0 to dmax (after proper scaling as described in Sec. 4.1), reproject
the 3D points to the epipolar line in the neighbor view, and use differentiable
bilinear sampling to retrieve the features from the neighbor view. This procedure
outputs a volume C ∈ RN×Hf×Wf×D.

Like RAFT, we compute a stack ofCP of multiscale cost volumes by repeated

average-pooling, i.e., CP = {C0,C1, ...,CL−1} where Cl ∈ RN×Hf×Wf×D/2l , for
l = 0, ..., L− 1.

Cost Volume Cascading Unlike RAFT, the size of an epipolar cost volume de-
pends on not only the image resolution but also the number of disparity values
sampled. A dense sampling of a large number of disparity values effectively in-
creases the resolution of the cost volume along the depth dimension and can
help reconstruct fine details. However, using a large number of disparity values
can take too much GPU memory. To address this issue, we introduce a cascade
design. The basic idea is to construct additional cost volumes that are finer-
grained along the disparity dimension and centered around the current disparity
predictions.

Concretely, after T1 iterative updates, we create a new stack of cost volumes

Cf
P = {Cf

0,C
f
1, ...,C

f
L−1}, Cf

l ∈ RN×Hf×Wf×Df/2l , l = 0, ..., L − 1, where Df is
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the number of disparity values uniformly sampled centered around the current
prediction of disparities with smaller increments than those used in the initial
stack of cost volumes. Specifically, the value of Df is determined by 2L−1 ∗ R,
where R is a hyperparameter that controls the size of the neighborhood described
in Sec. 3.2. The factor 2L−1 is needed to allow repeated pooling. In this work we
use up to 2 stages in our experiments, but the design can be trivially extended
to more stages.

It is worth noting that cost volume cascading has been used in prior MVS
work [10,33], but it is a novel design in the context of a RAFT-like architecture,
which differs significantly from prior MVS work in that the cost volumes are not
updated and are only used as static lookup tables.

3.2 Iterative Updates

The iterative updates follow RAFT in overall structure. We iteratively update a
disparity field d ∈ RHf×Wf initialized to zero. In each iteration, the input to the
update operator includes a hidden state h ∈ RHf×Wf×Dh , the current disparity
field, the context features i ∈ RHf×Wf×Dh from the reference view, as well as
per-pixel features retrieved from the cost volumes using the current disparity
field. The output of the update operator includes a new hidden state and an
increment to the disparity field.

Multiview Fusion of Cost Volumes Different from RAFT, in multiview stereo we
need to consider multiple neighbor views. For each pixel in the reference view, we
generate one correlation feature vector against each neighbor view. Given such
feature vectors from multiple neighbor views, we take the element-wise mean as
the final vector. The intuition behind this operator is that mean value is more
robust as the number of neighbor views can vary in test time.

To generate the correlation feature vector for each pixel against a single
neighbor view, we perform the same lookup procedure as RAFT. Given the
current disparity estimate for the pixel and the stack of cost volumes CP =
{C0,C1, ...,CL−1} against the neighbor views, we retrieve, from each cost vol-
ume, correlation values corresponding to a local 1D integer grid of length R
centered around the current disparity. This is repeated for each level of the
stack, and the values from all levels are concatenated to form a single feature
vector.

Update Operator We use a GRU-based update operator to propose a sequence
of incremental updates to the disparity field.

First, we extract features from the current disparity estimate dt. The feature
vector is formed by subtracting the disparity of each pixel by its 7x7 neighbor-
hood, then reshaping the result into a 49-dimensional vector. This operation has
the effect of making the feature vector invariant to the disparity field up to a
shift factor, since the retrieved vector only depends on relative disparity between
neighboring pixels.
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Second, because we have a cascade of cost volumes and our update operator
accesses different cost volumes at different stages of the cascade, the operator,
while still recurrent, should be given the flexibility to behave somewhat differ-
ently for different stages of the cascade. Thus, we modify the weight tying scheme
of RAFT such that some weights are tied across all iterations while others are
tied only within a single stage of the cascade. Specially, we tie all weights across
iterations except the decoder layer that decodes a disparity update from the
hidden state of the GRU. The weights of the decoder layer are tied only within
each stage of the cascade.

Third, RAFT uses upsampling layers for final predictions of flow field, whereas
we do not use any upsampling layer.

The update equations are as follows, with a 2-stage cascade with T1 iterations
for stage 1.

xt = [Encoderd(dt),Encoderc(c), i] (1)

zt = σ (Conv3×3 ([ht−1,xt] ,Wz)) (2)

rt = σ (Conv3×3 ([ht−1,xt] ,Wr)) (3)

h̃t = tanh (Conv3×3 ([rt ⊙ ht−1,xt] ,Wh)) (4)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5)

∆dt =

{
Decoder1(ht), t ≤ T1

Decoder2(ht), t > T1
(6)

Here i is the context features, and Encoderc is an encoder the transforms the
correlation features using two convolution layers (see the supplemental material
for details).

3.3 Multiresolution Depth Fusion

To construct fine details, it generally helps to operate at high resolution, but
the available GPU memory limits the highest resolution the network can access,
especially during training with large mini-batches. One approach to get around
this limit is to apply the network to a higher resolution during inference, which
is the common approach adopted in prior works.

However, we find that while using a higher resolution during inference can
help, an even better approach is to apply the same network on two input reso-
lutions, the “low” resolution W × H used to train the network and the higher
resolution 2W × 2H, and combine the two disparity maps LR and HR to form
a fused disparity map MR with a control parameter t:

dMR =

{
dHR, if|d−1

LR − d−1
HR| < t ∗ d−1

LR

dLR, otherwise
(7)

That is, if the low resolution prediction and high resolution prediction are sim-
ilar at a pixel, we use the high resolution prediction; otherwise we use the low
resolution prediction. This is motivated by the observation that low resolution
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predictions are more reliable in term of texture-less large structures such as
planes, whereas high resolution predictions are more reliable in terms of fine
details, which do not tend to deviate drastically from low resolution predictions.
Note that as the control parameter t varies from 0 to infinity, dMR varies from
dLR to dHR.

3.4 Adaptive Point Cloud Stitching

As a last step, the depth maps from the reference views are stitched together
to form a single point cloud. We use an adaptive thresholding approach based
on Dynamic Consistency Checking (DCC) proposed in D2HC-RMVSNet [32].
DCC hard-codes two thresholds t1 and t2 for reprojection errors, however, we
use the thresholds kt1 and kt2 where k is different for each scene to ensure a fixed
percentage, p% of all pixels pass through consistency test. And p is optimized
through the validation set.

3.5 Supervision

We supervise our network with a loss consisting of two parts. The first part
measures the L1 error of the predicted disparity against the ground truth at
each iteration, with exponentially increasing weights for later iterations. This
part enables faster training of all disparity ranges regardless of outliers at the
beginning. The second part of the loss is similar to the first part except that (1)
it measures the error of depth (i.e. inverted disparity) so as to be more aligned
with point cloud evaluation, and that (2) the error is capped at a constant κ so
as to prevent outliers from dominating the loss.

Given the predicted disparity in each iteration be dt, t = 1, ..., T1 + T2 and
ground truth disparity dgt, the combined loss is defined as follows:

L1 =

T1+T2∑
t=1

γT1+T2−t ∥dgt − dt∥1 (8)

L2 =

T1+T2∑
t=1

γT1+T2−t min(
∥∥d−1

gt − d−1
t

∥∥
1
, κ) (9)

L = (1− w) · L1 + w · L2 · λ (10)

where γ controls the weights across iterations and λ makes the two parts have
roughly the same range. The parameter w balances the two parts and changes
from 0 to 1 linearly as training progresses to focus more on the depth error, e.g.
for a total number of 16 training epochs, w would be 0.5 when 8 epochs are
finished.
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Table 1: Implementation hyperparameters
Training dataset DTU BlendedMVS

Native resolution (H,W ) (1200, 1600) (1536, 2048)

# neighbor views 10 8

# training epochs 15 16

Feature map downsize ratio 4

Feature map dimension 64

Cost volume stack size L 3

Retrieved neighborhood size R 11

Cascaded stages 2

Max disparity dmax 0.0025

Disparity increment in stage 1 dmax / 64

Disparity increment in stage 2 dmax / 320

# GRU iterations in each stage 8

Batch size 2

Loss parameter λ = 2.8× 10−6, κ = 100, γ = 0.9

Test dataset DTU Tanks-and-Temples

Native resolution (H,W ) (1200, 1600)
(1080, 1920)

or (1080, 2048)

# Neighbor views
for native resolution input

10 15

# Neighbor views
for 2 × native resolution input

10 25

Multires fusion
threshold t

0.02 0.02

Resolution
for point cloud stitching

native resolution 1/2 native resolution

Adaptive thresholding
parameter p

0.25 0.25

Table 2: Results on DTU test
set

DTU mean distance (mm)
Acc. Comp. Overall

COLMAP [23] 0.400 0.664 0.532
MVSNet [34] 0.396 0.527 0.462
D2HC-MVSNet [32] 0.395 0.378 0.386
Point-MVSNet [5] 0.342 0.411 0.376
Vis-MVSNet [42] 0.369 0.361 0.365
AA-RMVSNet [27] 0.376 0.339 0.357
CasMVSNet [10] 0.325 0.385 0.355
EPP-MVSNet [21] 0.413 0.296 0.355
CVP-MVSNet [33] 0.296 0.406 0.351
UCSNet [6] 0.338 0.349 0.344
LANet [43] 0.320 0.349 0.335

Ours 0.359 0.305 0.332

4 Experiments

4.1 Implementation Details

We evaluate our models on two datasets, DTU and Tanks-and-Temples. On
DTU, we train on its training split of DTU and evaluate on its test split, which
was suggested by Yao et al. [34] and followed by most authors. On Tanks-and-
Temples, we train on the BlendedMVS dataset [36], following the practice of
prior work [34,32,21]. For all datasets, during training we use the native image
resolutions after some random cropping and scaling as input to the network and
other details on the hyperparameters are given in Table 1.

To pair neighbor views with reference views, we use the same method as
MVSNet [34]. In BlendedMVS, which is used for training only, the scenes have
large variations in the range of depth values, we scale each reference view, along
with its neighbor views, so that its ground-truth depth has a median value 600
mm. When we evaluate on Tanks-and-Temples, due to lack of ground-truth and
noisy background, we scale each reference view, along with its neighbor views,
so that its minimum depth of a set of reliable feature points (computed by
COLMAP [23] as in MVSNet [34]) is 400 mm. To stitch the predicted depth
maps from multiple reference views, we simply scale back each depth map to its
original scale.
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(a) scan1 (b) scan4 (c) scan9

(d) scan10 (e) scan11 (f) scan12

Fig. 2: Visualization of results on DTU (test set).

(a) Family (Intermediate) (b) Francis (Intermediate) (c) Horse (Intermediate)

(d) Lighthouse (Intermedi-
ate)

(e) M60 (Intermediate) (f) Auditorium (Advanced)

(g) Ballroom (Advanced) (h) Courtroom (Advanced) (i) Museum (Advanced)

Fig. 3: Visualization of results on Tanks-and-Temples.
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Table 3: Results on Tanks-and-Temples
intermediate advanced

Method mean Fam. Franc. Horse Light. M60 Pan. Play. Train mean Audi. Ballr. Courtr. Museum Palace Temple

COLMAP [23] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.7 41.51 18.05 27.94
MVSNet [34] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 - - - - - - -
Point-MVSNet [5] 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06 - - - - - - -
CVP-MVSNet [33] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 - - - - - - -
UCSNet [6] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 - - - - - - -
LANet [43] 55.70 76.24 54.32 49.85 54.03 56.08 50.82 53.71 50.57 - - - - - - -
Altizure-SFM, PCF-MVS [16] 55.88 70.99 49.60 40.34 63.44 57.79 58.91 56.59 49.40 35.69 28.33 38.64 35.95 48.36 26.17 36.69
CasMVSNet [10] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
ACMM [28] 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 34.02 23.41 32.91 41.17 48.13 23.87 34.60
ACMP [30] 58.41 70.30 54.06 54.11 61.65 54.16 57.60 58.12 57.25 37.44 30.12 34.68 44.58 50.64 27.20 37.43
Altizure-HKUST-2019 [1] 59.03 77.19 61.52 42.09 63.50 59.36 58.20 57.05 53.3 37.34 24.04 44.52 36.64 49.51 30.23 39.09
DeepC-MVS [17] 59.79 71.91 54.08 42.29 66.54 55.77 67.47 60.47 59.83 34.54 26.30 34.66 43.50 45.66 23.09 34.00
Vis-MVSNet [42] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 33.78 20.79 38.77 32.45 44.20 28.73 37.70
AttMVS [20] 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06 31.93 15.96 27.71 37.99 52.01 29.07 28.84
D2HC-MVSNet [32] 60.13 77.36 57.74 45.74 63.39 63.30 57.82 60.71 54.99 - - - - - - -
AA-RMVSNet [27] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90 - - - - - - -
EPP-MVSNet [21] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75

Ours 64.82 81.16 64.21 50.43 70.73 63.85 63.99 65.90 58.25 40.19 25.95 45.75 39.65 51.75 35.08 42.97

4.2 Main Results

DTU The results on the DTU benchmark are presented in Table 2. Our method
achieves the best overall score, which is an average completeness and accuracy [2].
Visualizations of sample reconstructions on DTU are shown in Fig. 2.

Tanks-and-Temples On the Tanks-and-Temples intermediate set, we achieve
state of the art performance, as shown in Table 3. Notably, the model is trained
on the BlendedMVS dataset without finetuning on Tanks-and-Temples except
for some test-time hyperparameter selection using the validation set, as described
in Table 1. This indicates a good generalization ability of our approach. A visu-
alization of some results is shown in Fig. 3, from which we can see that many
reconstructed scenes look reasonably accurate, detailed, and complete, but there
is still substantial room for improvement, especially on low-texture planar re-
gions.

4.3 Ablations

We show our ablation experiments on Tanks-and-Temples official training set
(used as validation set) in a restricted setting where we only train the model on
BlendedMVS for 2 epochs but keep everything else the same as in Table 1.

Cost Volume Cascading We study the effect of cost volume cascading on mem-
ory consumption. In Fig. 4, we plot the GPU memory usage versus F1-score
on Tanks-and-Temples validation set for (1) a series of cascaded model (with
different disparity increments in the first stage), annotated by a single number
(2) its non-cascaded counterpart, which matches the first-stage disparity resolu-
tion used in the cascaded model and has equal total GRU iterations, annotated
by a 2-tuple. We train all models as described in Sec. 4.1 and finally chose the
cascaded model (64, 320) for long-time training and benchmarking. It uses 44
disparity values with an increment of dmax/320 in the second stage, and uses
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Fig. 4: Memory usage of cascaded v.s. non-cascaded model. The label for cas-
caded models means coarse and fine disparity increments (larger number means
smaller increments), and the label for non-cascaded models means the single
disparity increment.

64 values with a coarser increment dmax/64 in the first stage to cover the entire
disparity range from 0 to dmax. For the non-cascaded model, because it needs to
fill the entire disparity range from 0 to dmax, it needs significantly more memory
as the disparity resolution increases. We see from Fig. 4 that cascading produces
significant savings of memory. Note the reported memory is the peak memory
reported by the command ”nvidia-smi”.

Table 4: Ablation on supervision
Method F1-score

(1) Truncated L1 depth loss N/A

(2) L1 disparity loss 66.79

(3) Average of (1) and (2) 67.32

(4) Proposed dynamic loss 67.36

Table 5: Ablation of neighbor view
number

Mean F1-score (%)
# Neighbor views

in 2× native resolution
5 15 25

# Neighbor views
in

native resolution

5 62.62 66.42 67.27
15 62.73 66.48 67.36
25 62.66 66.37 67.27

Dynamic Supervision In Table 4, we show our model trained with different loss
supervision. Among them, the truncated L1 depth loss does not help the model
to start up; and L1 disparity loss has inferior performance; while the proposed
dynamic loss is marginally better than the direct average of L1 depth loss and
L1 disparity loss.
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Number of Neighbor Views During inference, our network can use a different
number of neighbor views than in training. In table 5, we study the effect of
changing the number of neighbor views during inference. In particular, we study
how this number can be chosen differently for the two resolutions we use to pre-
dict depth maps. As the results on the validation set show, the best combination
is 15 views for native resolution prediction and 25 views for 2 × native resolution
prediction. And these are the numbers we use on the test set.

Table 6: Ablation of aggrega-
tion options
Aggergation option Mean F1-score (%)

max 57.77

max + mean 65.37

std 59.90

std + mean 66.85

mean 67.36

Table 7: Ablation of adaptive thresholding
Controlled percentage p% 15% 20% 25% 30% 35%

Mean F1-score (%) 66.83 67.31 67.36 67.11 66.60

Fixed threshold k 1 1.5 2 2.5 3

Mean F1-score (%) 65.33 66.10 66.33 66.32 66.13

Aggregation of Cost Volumes Here in Table 6 we study the effect of aggregation
options different from our simple averaging including both one-channel and two-
channel ones. It shows that taking the mean is the best.

Adaptive Thresholding To strike a balance between accuracy and completeness
scores, we use adaptive thresholding method and search for the best parameter
p. The results are in Table 7 in comparison with results from fixed thresholds.
We see that our adaptive thresholding approach is significantly better than fixed
thresholding.

Table 8: Ablation of multiresolution fusion
Multi-resolution
with control threshold t

0
=native input

0.01 0.02 0.04
∞

=2×native input

Mean F1-score (%) 64.38 68.47 68.49 68.39 68.08

Weighted average with w
0

=native input
0.25 0.5 0.75

1
=2×native input

Mean F1-score (%) 64.38 65.30 66.55 67.51 68.08

Multiresolution Fusion of Depth Maps An important part of CER-MVS is the
multiresolution fusion of depth maps. Different from previous components, its
effect is most obvious on our final model trained for 16 epochs. We report the
following results on the validation sets of Tanks-and-Temples: (1) Different con-
trol parameter t, and (2) simple weighted average of native input results and 2
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× native input results with weight w . We see from Table 8 that our novel fusion
approach is significantly better than all the other approaches.

Table 9: Comparison of running time and memory cost

Method
# Neighbor
views

Input
Resolution

Output
Resolution

Times per
view (ms)

Mem.
(GB)

CasMVSNet

4
(1056,
1920)

(1056, 1920) 792.2 9.5
Vis-MVSNet (528, 960) 864.2 4.5
PatchmatchNet (1056, 1920) 317.7 3.2
EPP-MVSNet (528, 960) 522.2 8.2
Ours (264, 480) 664.4 3.0
Ours (2112,

3840)
(528, 960)

1754.5 7.0
Ours 25 7611.3 22.6

4.4 Memory and Runtime

The computational cost of CER-MVS is compared with other methods in Table
9. When using similar resolution and numbers of views, the time and memory
cost of our method is comparable to others.

5 Conclusion

We have proposed CER-MVS, a new approach based on the RAFT architecture
developed for optical flow. CER-MVS introduces five new changes to RAFT:
epipolar cost volumes, cost volume cascading, multiview fusion of cost volumes,
dynamic supervision, and multiresolution fusion of depth maps, as well as adap-
tive thresholding to construct point clouds. Experiments show that our approach
achieves state-of-the-art performance on challenging benchmarks.

Acknowledgments: This work is partially supported by the National Science
Foundation under Award IIS-1942981.
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