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Appendix

A Implementation Details

In this section, we provide more details about our network implementation.

A.1 Network Settings

We use the same ResNet-18 for initial feature extractor as that in LoFTR, which
outputs feature maps in two resolution, 1

8 and 1
2 . The 1

8 feature map is passed
into our transformer-based network for updating, while the 1

2 is used in fine
matches coordinates refinement. For dual-softmax in coarse matching, we adopt
a learnable temperature which is initialized as 10.

We use four GLA blocks to update features. For hierarchical attention, we
fix the coarsest feature maps in resolution H0,W0, where (H0,W0) = (15, 20)
for indoor settings and (H0,W0) = (36, 36) for outdoor settings.

A.2 Flow Regression

As stated in Sec. 3.4, we use an MLP to regress auxilary flow map in each GLA
block. Given D-dimensional feature in pixel, we use MLP with shape (D,64,4)
to regress a 4-dimensional feature f . For corresponding coordinates ux, uy, We
normalize the first two values with sigmoid function and recover them to the
range of image resolution. For the standard variance σx, σy, we regress the last
two values as their logarithm. Formally,

[ux, uy] = Sigmoid(f [: 2]) ∗ [H,W ], [σx, σy] = exp(f [2 :]) (1)

where H,W are image height and width.

A.3 Training Details

For both indoor and outdoor training, we adopt the same muti-step training
strategy as that in officially released LoFTR code. More specifically, the learning
rate is linearly warmed-up in this first epoch and then halved every two or three
epochs. The learning rate curve is illustrated in Fig. 1.

A.4 Visual Localization Details

We refer to hierachical localization pipeline (https://github.com/cvg/Hierarchical-
Localization) to perform viusal localization experiments on Aachen Day-Night
and InLoc datasets.

For Aachen Day-Night, we first triangulate reference models by using only
coarse matches across images. We then generate fine level matches between query
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Fig. 1. Learning rate curve across iterations.

images and database images, where the database images are taken as left images,
so that the fine level matches can be registered to triangulated 3D tracks.

For InLoc dataset, we directly generate fine level matches between query and
database images, where the 2D match points on reference images are projected
to 3D space through the provided depth map. We omit image pairs with fewer
than 25 matches.

A.5 Some Effective Designs

We provide ablations for some additional useful designs in our network: (1)
learnable temperature for softmax at each level. (2)Convolution-based FFN. (3)
Normalized positional encoding when testing resolution differs from training
resolution. An ablation study for these techniques is provided in Tab. 1 and
Tab. 2.

Learnable Temperature. As stated in Sec. 3.4, message Mf ,Mm,M c are
computed from different levels of feature maps through global or local attention,
where softmax are applied to tokens in different numbers. A concern about
softmax is the that the number of tokens largely affect the final distribution. To
balance the impact of different token number in global/local attention, we adopt
three learnable temperature parameters τf , τm, τc for softmax in fine, medium
and coarse level features respectively.

Convolutional FFN. As shown in Sec. 3, our networks is fully based on cross
attention for cross-view message passing, while self attention is absent. Deviat-
ing from common practice that employs self attention for intra-image message
passing, we find in our experiment that adopting 3 × 3 convolution in FFN to
replace self attention and MLP-based FFN leads to better overall performance.

Normalized Positional Encoding. Positional encoding (PE) in LoFTR is
defined as,
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PEi(x, y) =


sin(wk · x), i = 4k

cos(wk · x), i = 4k + 1

sin(wk · x), i = 4k + 2

cos(wk · x), i = 4k + 3

A concern about this PE is that unseen coordinate will be used in encoding
when testing resolution differs from training resolution, which harms the net-
work’s capability of precise localization and boundary awareness. To mitigate
the issue, we adopt a simple normalization technique,

PEi
n(x, y) = PEi(x ∗ α, y ∗ β) (2)

α = Wtain/Wtest, β = Htrain/Htest (3)

where W/Htrain/test are width/height of training/testing image. We find this
normalization boost the performance of our method when training/testing image
resolution differ. Aligning testing/training PE is especially critical for precise
flow prediction, since it relies on PE to regress flow coordinate.

In Tab. 2, we provide ablation study results for normalized positional en-
coding (NPE). The results are obtained on MegaDepth dataset with all images
resized to 1152 resolution, while the models are trained in 832 resolution.

Table 1. Ablations on network designs
on ScanNet [1] dataset. SA+MLP-FFN,
means adopting 1/4 downsampled self at-
tention after each GLA block and replac-
ing all 3×3 conv in FFN of both self/cross
attention with MLP.

Method
Pose Estimation AUC

@5◦ @10◦ @20◦

AspanFormer w/o learnable temperature 25.0 45.7 62.3
AspanFormer w SA+MLP-FFN 24.8 45.5 62.0
AspanFormer 25.6 46.0 63.3

Table 2. Ablation study of Normal-
ized Positional Encoding (NPE) on
MegaDepth dataset [2].

Method
Pose Estimation AUC

Flow Acc.

@5◦ @10◦ @20◦

AspanFormer w/o NPE 52.8 69.6 81.1 22.6
AspanFormer 55.3 71.5 83.1 72.3

B Flow Loss

We formulate flow supervision as most-likelihood estimation for Gaussian distri-
bution P .

Lflow = − 1

|Dgt|
∑
ij

log(P (Dgt
ij |Φij)) (4)
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where Dgt
ij = (xij , yij) is the ground truth flow and φij = (uijx , u

ij
y , σ

ij
x , σ

ij
y )

are predicted parameters at location (i, j). Substituting into Gaussian distribu-
tion formula, we have

Lflow = − 1

|Dgt|
∑
ij

log[
1

2πσij
x σ

ij
y

exp(− (xij − uijx )2

2σij
x

2
−

(yij − uijy )2

2σij
y

2
)] (5)

=
1

|Dgt|
∑
ij

[log2π + logσij
x + logσij

y +
(xij − uijx )2

2σij
x

2
+

(yij − uijy )2

2σij
y

2
] (6)

In implementation, we let wij
x = logσij

x , w
ij
y = logσij

y and omit constant
terms, then

Lflow =
1

|Dgt|
∑
ij

[wij
x + wij

y +
1

2
e−2wij

x (xij − uijx )2 +
1

2
e−2wij

y (yij − uijy )2] (7)

Intuitively, this loss formulation is a weighted sum of L2-distance between
estimated flows and ground truth flows. wij

x +wij
y is a regularization term encour-

aging lower uncertainty. The overall effect of flow loss is to minimize uncertainty
and flow estimation error simultaneously.

C Additional Quantitative Results

We provide in this part additional experiment results on YFCC100M dataset
and Image Matching Challenge 2022 (IMC 2022) kaggle benchmark.

C.1 Results on YFCC100M

YFCC100M contains a collection of internet images across various tourism land-
marks. We adopt the test set from 4 selected landmark sequences as is done in
previous works [3–5]. 1000 image pairs are sampled from each sequence, which
yields 4000 pairs test set in total. We use OpenCV ransac for two-view pose
estimation, where the RANSAC threshold for all methods is set to 5 × 10−4

in normalized image coordinate space. Experiment results are given in Tab. 3,
where our method outperforms all comparative methods.

C.2 Results on Image Matching Challenge 2022

We submit our method to Image Matching Challenge (IMC) 2022 and report
the results in Tab. 4. We resize the input image to a fixed resolution [1472,832]
and use OpenCV USAC MAGSAC to estimate fundamental matrix, where the
RANSAC threshold is set to 0.2 pixel. The results show that our method con-
sistently outperforms other strong comparative baselines.
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Table 3. Two-view pose estimation re-
sults on YFCC100M [6] dataset in out-
door scenes.

Method
Pose Estimation AUC

@5◦ @10◦ @20◦

SP [7]+SuperGlue [4] 38.1 58.8 74.7
RootSIFT+SGMNet [5] 35.5 55.2 71.9

DRC-Net [8] 29.5 50.1 66.8
PDC-Net+(H) [9] 39.1 60.1 76.5
LoFTR [10] 42.4 62.5 77.3
Ours 44.5 63.8 78.4

Table 4. Two-view pose estimation re-
sults on IMC 2022 kaggle benchmark. The
Results of MatchFormer and QuadTree
attention are reported by the 4th solution
on Kaggle discussion forum [11].

Method
Pose Estimation mAA

Private Public

SP [7]+SuperGlue [4] 0.724 0.728
LoFTR [10] 0.783 0.772
MatchFormer [12] 0.783 0.774
QuadTree [13] 0.817 0.812
Ours 0.838 0.833

D Additional Visualizations

We provide more visualization results in this part. In Fig 2, we provide qual-
itative comparisons between SuperGlue, LoFTR and our methods. In Fig 3,
we provide flow predictions across GLA block iterations. In Fig 4, we provide
additional visualization of uncertainty heatmap and corresponding adaptive at-
tention spans.
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OursLoFTRSP + SuperGlue

OursLoFTRSP + SuperGlue

Fig. 2. Visualizations of matches obtained through SuperGlue, LoFTR and ASpan-
Former(ours). Our methods produces more accurate and denser matches compared
with both SOTA sparse and dense matching networks.
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Target ImageSource Image Iter #1 Iter #2 Iter #3 Iter #4

Fig. 3. Visualizations of flow prediction across GLA iterations. We filter flow predic-
tions with high uncertainty. Note that the flow map are in 1

8
(60 × 80) resolution. As

more GLA blocks are employed for feature updating, the flow map gradually prune
occluded or non-overlap regions.

Fig. 4. Visualizations of uncertainty heatmap(left) and adaptive attention span(right).
Our network sharply focuses on regions with rich and distinctive textures with small
attention span, while larger contexts are extracted for the low texture or uncertain
regions. Specially, very large attention spans are generated for non-overlapping or oc-
cluded areas, preventing falsely focusing on certain regions.
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