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Abstract. The success of neural fields for 3D vision tasks is now indis-
putable. Following this trend, several methods aiming for visual local-
ization (e.g., SLAM) have been proposed to estimate distance or den-
sity fields using neural fields. However, it is difficult to achieve high
localization performance by only density fields-based methods such as
Neural Radiance Field (NeRF) since they do not provide density gra-
dient in most empty regions. On the other hand, distance field-based
methods such as Neural Implicit Surface (NeuS) have limitations in ob-
jects’ surface shapes. This paper proposes Neural Distance-Density Field
(NeDDF), a novel 3D representation that reciprocally constrains the dis-
tance and density fields. We extend distance field formulation to shapes
with no explicit boundary surface, such as fur or smoke, which enable ex-
plicit conversion from distance field to density field. Consistent distance
and density fields realized by explicit conversion enable both robustness
to initial values and high-quality registration. Furthermore, the consis-
tency between fields allows fast convergence from sparse point clouds. Ex-
periments show that NeDDF can achieve high localization performance
while providing comparable results to NeRF on novel view synthesis. The
code is available at https://github.com/ueda0319/neddf.

1 Introduction

Representing 3D shapes using coordinate-based neural networks, also known
as neural fields [25] have recently attracted attention as an alternative to using
point clouds, voxels, meshes, and others [13, 19, 21, 18, 17, 3, 23]. Neural Radiance
Fields (NeRF) [13], in particular, have shown impressive quality for tasks such
as novel view-synthesis. However, since NeRF has limited regions with smooth
spatial density and color, many conventional methods still require good initial
values for registration and localization tasks. This paper proposes a distance
field representation that is reciprocally constrained to the density field, named
Neural Density Distance Field (NeDDF). NeDDF achieves robust localization
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Fig. 1. (left) Visualization of the 2D slice for each field with iron, hair, and glass
spheres as examples. (right) Plots of 1D slices for each field. NeRF provides no distance
information. Unsigned Distance Field (UDF) cannot handle some cases correctly, such
as (a) ambiguous density changes such as a hairball or (b) low densities such as a glass
ball. Proposed NeDDF can represent both cases properly.

with distance fields while providing object reconstruction quality comparable to
NeRF.

As shown in Fig. 1, there are two main types of 3D shape representation in
neural fields: density field used in NeRF [13] and distance field used in NeuS [23].
Density field has high expressiveness for translucent objects, such as smoke and
water, and high-frequency shapes, such as hair. However, in most areas except
the boundary, the gradient of the field is zero. This makes it difficult to set up
a convex objective function in a problem setting such as registration, as shown
in Fig. 2. Distance field provides the gradient over a wide range even after the
optimization converges. Thus, we can establish objective functions with high
convexity in registration. The field can be learned from the image via volume
rendering by defining a conversion equation from distance to density. For ex-
ample, NeuS assumes that the density follows a logistic distribution close to
the object surface. On the other hand, since we assume explicit boundaries, the
convertible density field is tightly restricted.

As shown in Fig. 3 (a), we focus on the Unsigned Distance Field (UDF),
which ignores surface direction inside objects and can distinguish between the



Neural Density-Distance Fields 3

target
pointcloud

target
camera

source
geometry

registration

Density Field
(each point)

Distance Field
(each point)

Density Field
(volume render)

Fig. 2. Registration following in each representation: white and black points (small
circles) denote the points where the gradient direction is available or not, respectively.
In the density field (left), point-by-point gradients cannot be obtained in most regions
except for the boundary. In volume rendering of the density field (center), it is impos-
sible to obtain the gradient component in the vertical direction of view. In the distance
field (right), we can obtain both the gradient direction and the residuals for each point.

inside and outside objects not only by the sign of distance D but also by the
magnitude of its gradient. We extend the distance field to be able to recover
arbitrary density distributions by interpreting D by the depth derived from
the volume rendering equation and fitting the density information of translucent
objects to the mid-level gradient magnitude, as shown in Fig. 3 (b). This method
eliminates the need for constraints on the density, as in NeuS, when learning the
distance field from images. In other words, when learning the density field, we
can simultaneously obtain a consistent distance field where the shape and camera
pose have the same optimal values. As shown in Fig. 4, the NeDDF has a network
that inputs a position and outputs the distance and its gradient, and a converter
that explicitly calculates the density. NeDDF enables both high expressiveness
of the density field and good registration of the associated distance field.

The present paper provides the following three contributions: (1) Extending
the distance field to be definable for arbitrary density distributions. (2) Propos-
ing a method to recover the corresponding density from independent points us-
ing the distance field and gradient information. (3) Providing an implementation
to alleviate the instability of the distance gradient caused by cusp points and
sampling frequency. Furthermore, the effectiveness of the proposed method in
terms of both expressiveness and registration performance is evaluated through
experiments.

2 Related Work

2.1 Neural Fields

The traditional way of representing volumes is to discretize the density or dis-
tance from the surface at each position into voxels [15, 14, 10, 9, 8, 5]. Since vox-
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Fig. 3. (a) Signed Distance Field (SDF) and Unsigned Distance Field (UDF) distin-
guish the inside and outside of objects by the sign of the distance field (D > 0 or
D = 0). In addition, UDF does not have a gradient inside the object, but can dis-
tinguish between inside and outside of objects by the magnitude of the gradient. (b)
NeDDF assigns semitransparent density information to the distance gradient from 0
to 1.
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Fig. 4. Flow of proposed model: created network takes the position p as input and out-
puts the distance D and its gradient. Differentiable conversion formula for the network
output gives the density of position σ(p).

els require data complexity that is cubic in resolution, it is difficult to increase
the spatial resolution. In recent years, memory-efficient representations such as
octree [2, 7] or hash table [16] have been proposed. However, these grid struc-
tures cannot represent the geometry information with higher frequencies than
the Nyquist frequency. With advances in geometric deep learning following At-
lasNet [6] and Foldingnet [26], some studies have focused on handling irregular
non-grid structures such as point clouds and meshes. While these methods can
handle detailed geometry information efficiently, they are limited to interpola-
tion due to their spatially discrete representations based on the coordinates of
each point and vertex.

In recent years, the methods called neural fields [25] which directly represent
continuous signals by embedding implicit surfaces with neural networks, has
been attracting significant interest in the research community. Given sufficient
parameters, fully connected neural networks can encode continuous signals over
arbitrary dimensions. Since a neural field automatically adapts the expressive-
ness of the network to high frequency regions, it is possible to obtain a shape
representation with high resolution using a significantly smaller number of pa-
rameters than conventional discrete representation based methods. Furthermore,
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since neural fields are continuous representation, we can expand the input and
output dimensions without increasing the model capacity. It is also possible to
model topological changes by considering the density field as a three-dimensional
slice of high dimensional space and embed time-series information by adding a
multi-dimensional deformation code to the input [20].

By using a smooth activation function in the neural networks, neural fields
can be regarded as a continuously differentiable field. Modeling using gradient
information has been proposed, such as divergence in Non-Rigid-NeRF [22] and
elasticity constraints using the Jacobian matrix of the deformation field in Ner-
fies [19]. Inspired by the ideas behind these approaches, we have developed a
model in which the gradient of the distance field describes the density informa-
tion. The proposed model outputs a distance field and a density field that are
explicitly consistent with each other. Since an optimization-based penalty term
does not constrain the model, it can be optimized reciprocally from an objective
function that is appropriate for each field.

2.2 Density Field

The density field outputs the volume density for the input of the 3D position.
Many methods, such as NeRF, use the density field together with the color
field, thus enabling volume rendering. The density field is characterized by high
expressiveness. For example, a low value of the density field can describe a semi-
transparent object such as glass or smoke to represent proportional light trans-
mission. For spatially high-frequency shapes such as fur, for which the boundary
surface is complex, the field can describe a scene by considering the light inter-
action at an arbitrary point as a function of density, ray direction, and color.
In particular, combining this with the color field makes it possible to model
specular reflections, including viewing angle dependency.

Although NeRF can describe complex scenes, it has a substantial limitation
in that the camera pose should be known for the observed image and the scene
should be static, making it challenging to capture a usable set of images with
unknown camera poses. Therefore, many NeRF-based methods for estimation
of camera pose and registration of object deformation have been proposed [29,
12]. However, since blank areas with a density value of 0 have uncertain gradient
directions, camera pose tracking is only valid with initial values such that most
of the object area overlaps. NeRF−− [24] optimizes camera parameters directly
with backpropagation but is limited to camera configurations close to the line of
sight. NSFF [11] requires the optical flow to follow the deformation. D-NeRF is
limited to CG images with no background and low-frequency texture. Nerfies [19]
adds warmup to positional embedding and delays learning of high-frequency
components to ensure registration but is limited to camera configurations with
close view directions.

NeDDF provides a consistent distance field while retaining the expressiveness
of the density field. By providing gradients where no objects are present, we can
improve registration performance from a rough initial camera poses.
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2.3 Distance Field

A distance field takes a 3D position as input and outputs the distance to the
nearest neighbor boundary. SDF is widely used in fusion and registration be-
cause it can provide stable bounding surfaces and normal vectors. SDF also
provides residuals and gradient directions, enabling fast-fitting of two shapes by
the Gauss-Newton method without corresponding point matching [15, 14, 10, 9,
8, 5]. A typical example is KinectFusion [15], which performs localization and
shape integration from a depth map of unknown viewpoints for a static scene.
DynamicFusion [14] constructs a sparse deformation field called WarpField to
describe the deformation amount and performs registration for non-rigid scenes.

In addition, several studies have proposed methods by which to handle dis-
tance fields by neural fields. DeepSDF [18] proposes a generative model for the
continuous SDFs based on the auto-decoder model. SAL [1] enables the neural
field to learn the shapes of boundary surfaces directly from raw unsigned data
such as point clouds. UDF [3] makes the unsigned distance field continuous and
shows its suitability for unclosed surfaces and complex shapes. Since density
fields such as NeRF are noisy in surface reconstruction by level sets, several
methods have been proposed to handle distance fields in neural fields that can
present boundary surfaces and assume a static density distribution for the signed
distance. IDR [28] introduces differentiable surface rendering to learn the neural
field from multi-view images. However, unlike volume rendering, calculating a
single surface intersection for each ray makes shape reconstruction unstable for
complex shapes that cause abrupt depth changes in the image. UNISURF [17]
enables a combination of surface and volume rendering with a neural field that
describes occupancy. Several studies attempt to optimize the SDF with differen-
tiable volume rendering by modeling the transform equation from the distance
to the density field with the hypothesis on the shape of the density distribution.
VolSDF [27] interprets the volume density as Laplace’s cumulative distribution
function for SDF. NeuS [23] assumes a density distribution over the signed dis-
tance using the learnable variance values. However, these distance fields assume
the existence of a boundary surface, which limits the kind of shape that can be
represented. This study extends the distance field to correspond to various den-
sity distributions from depth values derived from volume rendering. The present
extends the distance field to correspond to various density distributions from
depth values derived from volume rendering.

3 Method

In this section, we consider reciprocally constrained distance and density fields.
Section 3.1 redefines the distance field to interpret arbitrary density fields, in-
cluding boundaryless scenes. Section 3.2 introduces a conversion formula to ob-
tain the density of independent points from the distance and the gradient of the
distance value in the redefined distance field.
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3.1 Distance Field from Density Field

The distance field in boundary surfaces Db(p) describes the distance to the
nearest surface for location p ∈ R3. We can interpret Db(p) as the minimum of
the depth value db(p,v) over the viewing direction v ∈ S2 (see Fig. 5):

Db(p) := min
v∈S2

[db(p,v)]. (1)

We extend the distance field to be defined for arbitrary density distributions by
replacing the depth value db(p,v) with the depth value derived from the volume
rendering equation (see Fig. 6).

Fig. 5. The distance field uses depth for the nearest surface.

Assuming that the density distribution σ(p) is known, we can calculate the
depth value d(p,v) for a viewpoint position p and a viewing direction v. Equa-
tion 2 is the volume rendering formula in NeRF [13]. For a point on the ray
r(t) = p + tv with the visible range [tn, tf ], the color of each ray C(r) is ob-
tained through the integral of each color c(r(t),v) multiplied by transmission

rate T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
:

C(r) :=

∫ tf

tn

T (t)σ(r(t))c(r(t),v)dt. (2)

Similarly, the depth d(p,v) is defined to be an integral of the depths at each
point, as follows:

d(p,v) := tn +

∫ tf

tn

tT (t)σ(r(t))dt. (3)

Here, d(p) takes the same value for the depth value db(p) in the presence of a
boundary surface by taking the density σ(p) to be 0 outside (0 < t < db) and
∞ inside (db ≤ t).

In practice, calculating the depths over all directions is computationally ex-
pensive, so we use a distance field that removes the dependence on the viewing
direction v. We define the distance field D(p) := min

v∈S2
[d(p,v)], for adopting the

shortest depth for each position as in the bounding surface model. Assuming
continuity in the adopted view direction vn = argmin

v∈S2

[d(p,v)], we can restore
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this quantity from the tangent plane using the gradient of the distance field
∇D(p) as follows:

vn =
−∇D(p)

∥∇D(p)∥2
, (4)

∇D(p) =
[
∂D(p)
∂px

∂D(p)
∂py

∂D(p)
∂pz

]
. (5)

In practice, vn has discontinuities which makes this calculation difficult. In the
next section, we will discuss some strategies to alleviate this.
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Fig. 6. Depth of volume rendering in case camera is on the x-axis. In a translucent
region of density σ, the upper bound of the depth value becomes 1/σ. When σ takes
∞ inside the object, the depth value takes 0, corresponding to the conventional hard
surface model.

3.2 Density from Distance Field

In Section 3.1, we extended the distance field to shapes with no explicit boundary
surface but with a known density field. In this section, we derive the correspond-
ing density field when the distance field is known.

For the distance field around position p, we consider D(r(t)), r(t) = p +
tv, which is sliced in the gradient direction v. Calculating the derivative of

the distance field in the direction of the gradient, ∂D(r(t))
∂t , we can derive an

expression for σ as follows: (the derivation is given in supplementary material)

∂D(r(t))

∂t
|t=0 = lim

∆t→0

d(r(∆t),v)− d(r(0),v)

∆t
(6)

= −1 + (D(p)− tn)σ(p+ tnv). (7)

We can also express ∂D(r(t))
∂t using the gradient vector of the distance field∇D(p)

as follows:

∂D(r(t))

∂t
=

∂D

∂px

∂px
∂t

+
∂D

∂py

∂py
∂t

+
∂D

∂pz

∂pz
∂t

(8)

= ∇D(p) · v (9)

= −∥∇D(p)∥2. (10)
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From Equations 7 and 10, the density σ can be obtained as follows:

σ(p) =
1− ∥∇D(p− tnv)∥2
D(p− tnv)− tn

. (11)

From Equation 3, tn is the interval in which the transmittance T (tn) = 1, which
is the lower limit of D. While it is natural for tn to take the value 0, the density
is undefined for D ∼ 0 as a numerical problem. Assuming tn is sufficiently small,
by introducing the approximations in Equations 12,13, σ can be calculated as in
Equation 14:

D(p− tnv) ≃ D(p) + tn, (12)

∇D(p− tnv) ≃ ∇D(p), (13)

σ(p) ≃ 1− ∥∇D(p)∥2
D(p)

. (14)

The differentiability of the network allows us to determine the distance D(pi)
and gradient vector ∇D(pi) with independent sampling points pi as input to
the neural fields, such as regressing a distance field. Equation 14 allows us to
compute the density σ(pi) with a differentiable conversion formula. In other
words, it is possible to learn mutually constrained distance and density fields.
Note that from tn > 0, the density is limited to σ(p) < 1

tn
.

3.3 Removing Cusps

The distance to density conversion by Equation 14 assumed that the distance
field is first-order differentiable. However, a distance field is not differentiable at
the cusps where the minimum distance direction switches. In practice, although
the distance field around the cups is smoothly connected due to the continuity
of the neural field, small gradient values around the cups are still converted to
false densities that should not exist by Equation 14 (see Fig. 7). To alleviate
this problem at the caps, we extend the domain of the distance field from a
3-dimensional space to a 4-dimensional hyperspace [x, y, z, w] with an auxiliary
gradient axis (w-axis) and consider the slice at w = 0 of the hyperspace to be the
distance field. The gradient components ∂D

∂w are distributed so that the gradient
∇D satisfies the Equation 14 in the vicinity of the cusp to suppress spurious
densities.

When the auxiliary gradient also describes the density outside the cusp re-
gion, the shape of the global distance field is compromised. Therefore, we con-
strain the shape of the auxiliary gradient and use a penalty term to induce con-
vergence to the optimal form. In this study, when ∂D

∂t > 0, we use the following
heuristic constraint:

∂2D

∂t∂w
= α

1

D

∂D

∂w
. (15)

Note that α is a hyperparameter that determines the scale of the gradient.
The shape of the auxiliary gradient for each α is shown in appendix. Since the
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Fig. 7. A visualization of each field in the toy model with 0 ≤ t ≤ 1 as object exterior.

Equation 15 is a constraint other than ∂D
∂t = 0, and since it becomes unstable

around D = 0 and ∂D
∂w = 0, we introduce the following weight coefficient β:

β = D

(
∂D

∂t

)2
∂D

∂w
. (16)

Note that since β is a value for discriminating the target point, it is separated
from the calculation graph during training like stop-gradient operator. For M
sampling points P, the objective function Lconst for the shape constraint of the
auxiliary gradient is set as:

Lconst =
λconst

M

∑
p∈P

β

[
∂2D

∂t∂w
− α

D(p)

∂D

∂w

]2
. (17)

Note that λconst is a hyperparameter.

4 Reprojection error for volume rendering

Previous NeRF-based localization such as iNeRF [29] uses photometric error,

the residual ∥C(q) − Ĉ(q)∥2 from the observed color C(q), and the estimated

color Ĉ(q) aggregated by volume rendering for selected pixel q. While photo-
metric error can follow objects without hard surfaces, it can only follow local
regions with smooth color changes. NeDDF provides the object’s direction and
approximate distance from a sampling point. Therefore, we can calculate the
pseudo-correspondence point and estimate the camera pose using the repro-
jection error. This section describes a method that uses color information to
calculate the correspondence points as a simple example.

When training the network, the objective function with volume rendering
has no constraints about the color field in the blank region. We record the
same color in the gradient direction of the distance field by penalizing the color
change in the distance gradient direction for a blank region. For a point pi,
camera depth ti and a viewing direction v, let the output be color ci, distance
Di, and distance gradient ∇Di. The penalty takes Lblank =

∑
i ∥∇ci(∇Di)

T ∥2.
Since ∥∇Di∥2 takes small values inside the object, this penalty becomes active
for regions outside the object. Training the network by introducing this penalty
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Fig. 8. Localization by reprojection error: (a) Network execution outputs the color
and distance of each sampling point. Network provides the color ci, distance Di and
its gradient ∇Di for the sampling point pi.(b) Network output gives the points near
the surface. (c) Weight gi takes the value that emphasizes sampling points with similar
colors or smaller distances. (d) Pseudo-correspondence points synthesized from the
weights produce the reprojection error.

makes it possible to obtain the nearest neighbor object’s color, direction, and
distance from sampling points outside the object.

In estimating camera poses, finding the pseudo-correspondence points for
each ray provides the calculation of the reprojection error, as shown in the Fig.
8. The network output for sampling point pi leads to the near-surface point of
color ci at position pi−Di(∇Di). We calculate the pseudo-correspondence points

for each ray by selecting points closer to C(q) than Ĉ(q) with combining near-
surface points by focusing weights closer to the color and the distance between
them. The weight gi of sampling point pi is calculated as follows:

gi = softmax(−λD
Di∥∇Di × v∥2

ti
− λc∥C(q)− ci∥2). (18)

Note that λD and λc are hyperparameters, softmax aggregates for axis with
index i. The reprojection error measures the distance ∥q− q̂∥2 between the pixel
coordinates of the ray q and the projected pseudo-correspondence point q̂.

5 Experiments

5.1 Experimental setup

(a) Quality of novel view synthesis. We confirm that NeDDF retains the
comparable quality of novel view synthesis as NeRF. We use the NeRF synthetic
dataset which contains CG images of the eight scenes rendered from camera
positions placed on a hemispherical surface. Using NeRF and NeuS as baselines,
we compare the quality of the new viewpoint images using PSNR.

(b) Accuracy of localization. In NeDDF, the pseudo correspondence points
enable estimation of camera pose using reprojection error. We confirm that the
use of reprojection error improves the accuracy of localization from only using
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Table 1. Quantitative evaluation on synthetic dataset. We report PSNR (higher is
better).

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
NeuS 27.69 22.14 21.67 32.14 27.18 25.64 27.52 23.47 25.93
NeDDF 29.11 23.96 25.72 30.85 27.93 25.52 29.34 23.69 27.02

photometric error under poor initial camera poses. The experiment uses 200
test viewpoints of the Lego scene in the NeRF synthetic Dataset. Each camera
takes the initial pose given by random rotations and translations applied to
the ground truth values of the test viewpoint. We evaluate the camera position
and angle errors for three cases: optimizing the camera pose for 300 iterations
by photometric error, 300 iterations by reprojection error, and 100 iterations
by reprojection error plus 200 iterations by photometric error. The localization
flows follow similar practices to iNeRF. The optimization uses the gradient of
the camera pose as a 6D parameter of SE(3) and sets the increment by Adam [4]
with exponential decay. In each iterations, interest region sampling [29] selects
256 rays for optimization.

5.2 Results

(a) Quality of novel view synthesis. Table 1 shows the PSNR for each scene
and each method for evaluating the quality of the generated images The NeDDF
results retain the comparable quality of the state-of-the-art methods in novel
view synthesis, although the PSNR comparison is slightly inferior. Fig. 9 shows
visualizations of Drums and Ficus as examples of scenes with transparency and
delicate shapes, where conventional distance-field-based methods are weak. For
the Drum scene, NeuS could not represent the transparent parts of the drums and
colored the transparent surfaces. In contrast, NeDDF reproduces the transparent
parts and obtains the metal parts on the back through. The NeuS results show
blurred images for the Ficus scene since it fails to assign the appropriate density
distributions due to the difficulty of understanding the model for thin surfaces
such as leaves. NeDDF provides comparatively high-quality image restoration
even for delicate shapes such as leaves. NeDDF allows for the reconstruction of
thinner surfaces than the sampling interval by interpreting their occupancy as a
lower density.

(b) Accuracy of localization. Fig. 10 shows a plot of the camera attitude
estimation results. Optimization by photometric error works very accurately
when the initial value of the position error is approximately 0.5 [m] or less,
and the initial value of the angular error is 10 [deg] or less, while the error
increases when the initial value of the error is significant. Since photometric
error only provides reasonable gradient directions in smooth color changing,
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Fig. 9. Comparisons on test-set views for scenes from NeRF synthetic dataset gener-
ated with a volume renderer.

Fig. 10. Quantitative evaluation of camera poses estimation accuracy. The horizontal
axis represents the position and angle error, and the vertical axis represents the number
of cameras recovered under the errors.

significant initial value errors may lead to erroneous local solutions. Optimization
by reprojection error does not improve camera posture residuals much on its own.
This is because the correspondence point calculation based on color similarity
lacks uniqueness, which leads to many mismatches in the correspondence points.
On the other hand, optimization by reprojection error can roughly estimate
the camera pose such that regions with close colors overlap. Using this as a
preprocessing step for optimization by photometric error can significantly expand
the range of initial values for highly accurate estimation.

Fig. 11 shows the localization process with large initial value errors. The left
figure shows the projected positions of the sampling points and the calculated
correspondence points at iter=0. The figure shows that even when the sampling
points are far from the object, as in the lower-left region, we can obtain the cor-
responding points in the object region. On the other hand, in the upper left area
of the bucket, the model selects the wrong correspondence points. We can reduce
the impact of such rays by reducing the weights or calculating the corresponding
points using features with higher uniqueness instead of color. The figure on the
right shows the overlaid rendered and observed images at each optimization iter-
ation. The overlapped object area between the rendered and observed images is
small for iter=0. Optimization using only photometric error gives little progress
since it cannot provide a reasonable gradient. Rough alignment using the repro-
jection error by the 100th iteration enables the use of photometric error with an
effective gradient, which provides highly accurate localization.
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Fig. 11. (left) Projection of the corresponding points in iteration 0: the cyan region
is the rendered object region of the observed image, and the yellow region is the ren-
dered object region estimated from the current camera attitude. The red dots denote
sampling points, and the blue dots denote the projected positions of the calculated
correspondence points. (right) Observed and rendered images at each optimization it-
eration: the upper row shows the case optimized using only photometric error, and the
lower row shows the case optimized using the photometric and reprojection errors.

6 Conclusions

This study proposed NeDDF to represent reciprocally constrained distance and
density fields. We extended the distance field to a formulation that can adapt
to any density field. We also derived the conversion formula between distance
and density using the distance and its gradient, enabling learning the these
fields while constraining each other. We also alleviate the problem of discontinu-
ity points by introducing the auxiliary gradient. The visualization experiments
demonstrated that NeDDF could acquire the properties of both the conven-
tional density field and the distance field. The quantitative evaluation showed
that NeDDF could provide competitive quality of novel view synthesis, more
stable meshes, and a more comprehensive range of following camera poses than
NeRF.

One limitation of our method is the lack of information about the distance
field inside the objects. Since NeDDF is based on UDF, it cannot provide help-
ful gradient directions in the interior object region. NeDDF also has the same
limitations as the original NeRF [13], such as time-consuming optimization and
rendering. However, since NeDDF provides a differentiable density field and re-
tains the same formulation as NeRF, many of the latest advances in improving
NeRF, such as speedup and stabilization, may apply to NeDDF. In addition, we
calculated the pseudo correspondence points from the colors in the localization
as a simple example of obtaining the reprojection error. We believe that using
information with higher uniqueness, such as semantic segmentation, will increase
the usefulness of the reprojection error.
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