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Abstract. Neural Radiance Fields (NeRF) methods show impressive
performance for novel view synthesis by representing a scene via a neu-
ral network. However, most existing NeRF based methods, including
its variants, treat each sample point individually as input, while ignor-
ing the inherent relationships between adjacent sample points from the
corresponding rays, thus hindering the reconstruction performance. To
address this issue, we explore a brand new scheme, namely NeXT, intro-
ducing a multi-skip transformer to capture the rich relationships between
various sample points in a ray-level query. Specifically, ray tokenization
is proposed to represent each ray as a sequence of point embeddings
which is taken as input of our proposed NeXT. In this way, relationships
between sample points are captured via the built-in self-attention mecha-
nism to promote the reconstruction. Besides, our proposed NeXT can be
easily combined with other NeRF based methods to improve their render-
ing quality. Extensive experiments conducted on three datasets demon-
strate that NeXT significantly outperforms all previous state-of-the-art
work by a large margin. In particular, the proposed NeXT surpasses the
strong NeRF baseline by 2.74 dB of PSNR on Blender dataset. The code
is available at https://github.com/Crishawy/NeXT.

Keywords: View Synthesis, Neural Representation, Scene Representa-
tion, 3D Deep Learning

1 Introduction

Novel View Synthesis (NVS) aims to render a scene from unobserved viewpoints
with a set of images and camera poses as input. Recently, Neural Radiance
Field (NeRF) [33] and its variants have demonstrated compelling performance
in this task by representing a scene’s geometry and appearance with a Multi-
Layer Perceptron (MLP). To render each pixel in an output image, NeRF adopts
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Fig. 1: NeRF (left) renders scenes by individually point-level query of a MLP,
i.e., one point in and one point out, which ignores the relations between sample
points. NeXT (right) regards the entire ray as network input to make ray-level
query, i.e., one ray in and one ray out, to capture the intrinsic dependencies be-
tween sample points via self-attention mechanism built-in Transformer encoder.

volume rendering to combine the RGB colors and volume densities from many
points sampled along the corresponding 3D ray.

Despite the success of NeRF based methods in novel view synthesis, most
existing methods adopt MLP as the function approximator to render scenes in
a point-level way. As shown in Fig. 1 (left), NeRF queries the MLP network
with one sample point from the corresponding 3D ray. However, such point-level
query ignores the inherent relations in sample points from the same rays, which
deeply imprisons the potential of NeRF.

To exploit such relations among sample points, we attempt to explore a
transformer-based paradigm, named NeXT, to achieve ray-level query. The pro-
posed NeXT regards an individual ray, i.e., the whole sampled points set, as
the network input, as shown in Fig. 1 (right). In this way, the intrinsic rela-
tions between sampled points are captured by self-attention mechanism built in
transformer, which help enrich the scene properties information for rendering.
To further improve the performance, we propose a multi-skip connection mod-
ule to better utilize the position information of the sampled points. The network
architecture of our proposed NeXT is illustrated in Fig. 2.

In contrast to the previous NeRF-based methods, the proposed NeXT has
several benefits for novel view synthesis. First, our method renders pixels in
a ray-level way to exploit the relations among sample points. Second, bene-
fiting from the ray-level query and the captured relationships between sample
points, our approach shows much less dependence on the two-stage coarse-to-fine
sampling. Even with only one-stage coarse sampling, our approach achieves com-
petitive results compared to the two-stage NeRF. Third, the proposed NeXT
significantly benefits from scaling up the model capacity, which may provide a
promising path towards high quality view synthesis.

The main contributions can be summarized as follows:
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– We propose a novel transformer-based paradigm, called NeXT, to realize ray-
level query for novel view synthesis. Benefiting from that, inherent relations
between sample points along a ray are captured to promote reconstruction.

– We propose a multi-skip connection module to improve the model perfor-
mance, which enriches the original positional information from sample points.

– Comprehensive experiments conducted over Blender [33], DeepVoxels [48], and
multiscale Blender [2] demonstrate that our proposed NeXT outperforms all
previous state-of-the-art methods by a large margin.

2 Related Work

Scene Representations for View Synthesis The view synthesis task aims to
represent a scene using a set of observed images and camera poses for rendering
novel photorealistic images from unobserved viewpoints. With densely captured
images, methods based on light field interpolation [11, 24, 20] tackle this task
without reconstructing an intermediate representation of the scene. By contrast,
when images of the scene are sparsely-captured, explicit representations of the
scene’s 3D geometry and appearance usually tend to be reconstructed. A line
of popular view synthesis methods use mesh-based representations along with
either diffuse [59] or view-dependent appearance [6, 12, 62], consisting of classi-
cal [6, 12, 59] and learning-based [44, 45] ones. Mesh-based methods demonstrate
advantage in storage and compatibility with graphics rendering pipelines. Nev-
ertheless, gradient-based mesh representation methods are typically hard due to
local minima or the poor conditioning of loss landscape.

Another line of methods consider volumetric representations for view syn-
thesis. In the early stage, volumetric methods directly color voxel grids given
some observed images [47]. More recent approaches tend to train deep neural
networks for the purpose of predicting voxel representations of scenes [16, 29, 31,
48, 70, 52]. Different from mesh-based methods, adopting gradient-based learn-
ing to optimize volumetric approaches is natural and well-suited. In addition,
volumetric approaches can realistically represent complex shapes and materials,
yield less artifacts, thus become increasing popular. While discrete voxel-based
methods have demonstrate impressive performance for novel view synthesis, they
are typically restricted at higher resolutions.

A promising trend is to adopt neural function representations to alleviate
the limitation of discrete voxel grids [33, 36, 49, 65]. Among those, volumetric
NeRF [33] representation has recently raised dramatically increasing attention,
which uses a continuous function parameterized by MLP to map 3D coordinates
and viewing directions to volumetric densities and color values. NeRF has in-
spired various subsequent extensions under varying settings, including dynamic
scenes [26, 37, 39], limited training views [18, 40, 43, 54, 60, 67, 22, 57], generative
modeling [8, 46, 35], non-rigidly deforming objects [17, 38], speed-up [28, 42, 19,
21, 27, 34, 41, 66] and reflectance modeling for relighting [3, 4, 51].

Despite the success of NeRF and its follow-ups, little attention has been
paid to exploit the relations between sample points along rays. NeRF renders
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a scene by point-level query, which lacks of consideration about the inherent
relationships thus leads to suboptimal results. NeXT addresses this issue, en-
abling ray-level query and points relationships modeling by introducing a novel
multi-skip Transformer-based paradigm for novel view synthesis.

Transformers Transformers [58] were first proposed for machine translation,
and have since revolutionized many natural language processing tasks [10, 14,
58]. Very recently, Transformer-based methods make impressive strides in com-
puter vision tasks [15, 56, 68, 25, 64, 69, 53, 63, 7, 9, 71], including image classifica-
tion [15, 56, 68], semantic segmentation [53, 63] and object detection [7, 9, 71].

As far as we know, Transformer in NeRF is explored in NeRF-ID [1] and
IBRNet [60]. NeRF-ID aims to learn to propose samples via a differentiable
module (e.g., Transformer, Pool, MLPMix [55]), while still remains point-level
query. IBRNet [60] focuses on learning a generic view interpolation function that
generalizes to novel scenes, where a CNN is critical and color prediction follows
point-level query. By contrast, NeXT is a pure Transformer-based paradigm to
predict both color and density via ray-level query, proposing multi-skip connec-
tion to enrich position information for high quality renderings.

3 Method

Our proposed method is built upon NeRF [33, 13], and can be easily expanded
to other follow-ups. In this section, we first revisit the original design of NeRF,
and then describe the details of proposed NeXT.

3.1 Background

NeRF [33] represents a scene by an Multilayer Perceptron (MLP), which takes
as input a 3D position x and viewing direction d and output the corresponding
color c and density σ. To promote the learning of high-frequency details, x and
d are transformed via a positional encoding γ as the pre-processing.

In NeRF, a pixel is rendered by querying an MLP of n sample points x1, ...,xn

along a ray which connects the camera center with the target pixel. The query
process is operated point by point. After that, a set of color values ci and density
values σi is obtained. The final pixel color ĉ can be calculated by:

ĉ =

n∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp(−
i−1∑
j=1

σjδj), (1)

where δi = ||xi+1 − xi|| is the distance between adjacent samples and Ti repre-
sents the transmittance along the ray.

To improve the sampling efficiency, NeRF propose a coarse-to-fine strategy. In
the coarse stage, NeRF obtains Nc evenly-spaced random points with stratified
sampling. Given the output of “coarse” network, a piece-constant PDF along the
ray is then produced to describe the distribution of the visible scene content. In
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Fig. 2: Overall framework of the proposed NeXT, which consists of three compo-
nents, i.e., Transformer blocks, multi-skip connection module and output heads
for generating density σ and color RGB c. First, NeXT uses ray tokenization
to generate a set of point embeddings from N sample points along the ray. The
obtained embeddings are then fed into the subsequent M Transformer blocks
to learn relationships between points via self-attention. Note that the multi-skip
connection is adopted to enrich the original positional information after each
Transformer block. Finally, the N output point representations are utilized to
yield the scene properties by output heads and L2 reconstruction loss between
groundtruth and rendered pixels is adopted for network training.

the fine stage, Nf new points are then obtained based on the PDF using inverse
transform sampling. Consequently, the resulting union of these Nc +Nf sample
points are sorted and passed to the “fine” network to yield final rendered pixel
color. This hierarchical sampling allocates more samples to informative regions.

To render an image withW×H pixels, the MLP in NeRF is queriedW×H×n
times. The network parameters are optimized by minimizing an L2 reconstruc-
tion loss between the ground-truth and corresponding rendered pixels. For more
details, readers may refer to the original NeRF paper [33].

3.2 NeXT

Different from NeRF [33], NeXT aims to capture the inherent relationships be-
tween sample points along the same ray and provides a ray-level query paradigm,
which is accomplished by the proposed multi-skip Transformer-based network.
An overview of our method is shown in Fig. 2.
Ray tokenization. To achieve ray-level query, we first expand the vanilla Trans-
former to serve as the function approximator instead of MLP used in NeRF. To
handle a ray, N points are sampled, resulting in an input sequence length of
N for the Transformer. The 3D position information of these points are trans-
formed to a higher dimension space using high frequency functions in [33], and
then mapped to D dimensions with a learnable linear projection. In addition, D
is also the latent vector sizer of Transformer layer. In this paper, we refer the
output of this trainable projection as the point embeddings. Point embeddings
along the ray here play the same role as word tokens in NLP community.



6 Y. Wang, Y. Li, P. Liu et al.

Positional embedding. A mapping similar to positional encoding γ is used
in the popular Transformer [58] architecture, which is called positional embed-
ding to avoid confusion in this paper. Positional embeddings are added to the
point embeddings to provide the order information, following the standard Trans-
former [58]. In this paper, we use 1D sinusoidal positional embeddings by default.
We also study the effect of different types of positional embeddings for NeXT
later in Table 4a. The generated sequence of embeddings serve as the input to
the subsequent Transformer encoder.
Query network. To achieve ray-level rendering, NeXT adopts the Transformer
encoder as the query network to represent a scene. Specifically, the encoder learns
point feature representation by stacking M blocks, given the 1D point token
embeddings sequence as input. Each Transformer block consists of a multi-head
self-attention (MSA) module and a multilayer perception (MLP) module. Self-
attention is the core mechanism of Transformer and adopted in this work for
capturing relationships between sample points along the same ray.
Local-window self-attention. To alleviate the computation cost of self-attention,
we divide the point embeddings X ∈ RN×D into a set of non-overlapping small
windows: X → {X1,X2, ...,XW }. Each window covers L points in order. Then
the multi-head self-attention is performed within each window independently.
The multi-head self-attention within the i-th window is calculated as:

MSA(Xi) = SA(Xi)1 ⊕ SA(Xi)2 ⊕ ...⊕ SA(Xi)H , (2)

SA(Xi)h = Softmax[
(XiW

h
q )(XiW

h
k)

T√
D/H

]XiW
h
v , (3)

whereWh
q ∈ RD

H ×D,Wh
k ∈ RD

H ×D,Wh
v ∈ RD

H ×D for h ∈ {1, ...,H} are learnable
parameters of three linear projection layers. H represents the number of heads
and ⊕ means concatenation. Compared to global self-attention, local-window
reduces the computational complexity from O(N2) to O(LN), which is of linear
complexity with the number of sample points.
Multi-skip connection. Vanilla Transformer performs unsatisfactorily for ren-
dering. Inspired by NeRF, we propose a multi-skip connection module to strengthen
the utilization of position information from the sample points, which is shown
in Fig. 2. Consequently, the input of j-th Transformer Block is obtained by:

Xj
in = FC(Xj−1

out ⊕ γ(X0)), where j = 2, ...,M, (4)

where Xj−1
out is the output of (j − 1)-th block, FC means a fully-connected layer

to map the input to D dimensions, X0 is the original 3D positions of sample
points, γ is the positional encoding pre-processing.
Output heads. The output of the Transformer encoder serves as feature repre-
sentations to yield the final network output, i.e., the scene properties of samples.
To output the density σ and RGB color c, a single linear layer and a two-layers
MLP are attached as heads, respectively. It’s worth noting that the color head
takes as input both of feature representations and the viewing direction vectors.
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Architecture variants. We introduce our small model with parameters similar
to NeRF, denoted as NeXT-S. To achieve high quality rendering results, we
further scale up the model and build NeXT-B and NeXT-L, which are variants
of about 1.7× and 3.3×model size, respectively. Note that the number of heads is
H = 8 by default. The architecture hyper-parameters of these three variants are:
D = 192, 256, 256, M = 2, 2, 4 for NeXT-S, NeXT-B and NeXT-L, respectively.

Compared to the MLP in NeRF, the Transformer in NeXT is only queried
W ×H times to render an image with W ×H pixels. And L2 reconstruction loss
is also adopted for network training, following NeRF [33].

3.3 Integration with NeRF methods

The proposed NeXT serves as the function approximator to achieve ray-level
query and relationships modeling for novel view synthesis task, which can be
regarded as a substitute of MLP used by NeRF and most follow-ups. Given its
simplicity and effectiveness, it’s easy and convenient to improve various existing
NeRF methods by our proposed NeXT. In this paper, the original NeRF and
the previous state-of-the-art Mip-NeRF [2] are chosen as the examples to show
the superiority of proposed NeXT.

4 Experiment

Note that the proposed NeXT can be easily incorporated into various NeRF
methods to serve as the query network, achieving higher quality rendering re-
sults. In this section, we show the examples of integrating NeXT with the original
NeRF on Blender as well as DeepVoxels dataset, and Mip-NeRF on multiscale
Blender dataset, respectively. The key lies in replacing their query strategy by
our proposed NeXT. Our implementation is built based on JAX [5].

4.1 Setup

To verify the effectiveness of proposed method, comprehensive experiments are
conducted on three popular datasets, i.e., Blender [33], DeepVoxels [48] and
multiscale Blender dataset [2]. We report the average peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [61] metric, which is widely used by
NeRF-based methods [33, 2, 42, 1]. Following NeRF [33] and Mip-NeRF [2], our
method is trained with batch size 4096 for 1 million iterations. The Adam [23]
optimizer with cosine learning rate decay from 5 × 10−4 to 5 × 10−6 is used
for optimization. We set Nc = 128 and Nf = 128 for coarse and fine stage,
respectively. We adopt local-window self-attention with L = 64 for Blender and
multiscale Blender dataset, and global self-attention for DeepVoxels dataset.
Besides, we reimplement NeRF based on JAX as a stronger baseline.
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Table 1:PSNR comparisons on Blender dataset. “*” means adopting center
pixel [2] which generates rays through the center of each pixel. NeXT variants
surpass previous state-of-the-art methods.

#Params Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

SRN [50] - 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60 22.26
NV [30] - 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05
LLFF [32] - 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22 24.88
NSVF [28] 3.2M-16M 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93 31.74

NeRF [33] 1,191K 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
NeRF (JAX) [13] 1,191K 34.06 25.13 30.48 36.87 33.33 29.94 34.66 28.77 31.66

vanilla Trans. 1,889K 33.59 24.97 30.31 36.25 33.38 31.92 33.13 27.99 31.44
NeXT-S 1,232K 33.75 25.34 32.62 37.42 34.52 32.09 33.74 29.25 32.34
NeXT-B 2,152K 34.70 25.79 33.77 38.10 35.67 32.48 34.46 30.07 33.13
NeXT-L 4,062K 36.05 26.32 35.30 38.27 36.78 34.06 35.19 30.35 34.04
NeXT-L* 4,062K 36.37 26.49 35.67 38.46 37.39 34.16 35.96 30.73 34.40

Table 2: Comparisons on DeepVoxels dataset. “*” means adopting center
pixel [2]. “NA” represents that the results fail to converge after repeating exper-
iments over five times. By contrast, NeXT converges stably and quantitatively
outperforms previous state-of-the-art methods over all scenes by a large margin.

Chair Pedestal Cube Vase Avg.
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

DeepVoxels [48] 33.45 / 0.99 32.35 / 0.97 28.42 / 0.97 27.99 / 0.96 30.55 / 0.97
SRN [50] 36.67 / 0.982 35.91 / 0.957 28.74 / 0.944 31.46 / 0.969 33.20 / 0.963
NV [30] 35.15 / 0.980 36.47 / 0.963 26.48 / 0.916 20.39 / 0.857 29.62 / 0.929
LLFF [32] 36.11 / 0.992 35.87 / 0.983 32.58 / 0.983 32.97 / 0.983 34.38 / 0.985

NeRF [33] 42.65 / 0.991 41.44 / 0.986 39.19 / 0.996 37.32 / 0.992 40.15 / 0.991
NeRF (JAX) [13] 44.97 / 0.994 43.74 / 0.992 42.43 / 0.998 NA / NA NA / NA

NeXT-S 47.53 / 0.995 45.57 / 0.994 47.98 / 0.999 42.72 / 0.997 45.95 / 0.996
NeXT-B 48.20 / 0.996 47.04 / 0.995 48.44 / 0.999 44.61 / 0.998 47.07 / 0.997
NeXT-L 48.73 / 0.997 48.81 / 0.997 49.23 / 0.999 44.98 / 0.998 47.94 / 0.998
NeXT-L* 50.43 / 0.998 50.60 / 0.998 51.55 / 0.999 46.36 / 0.999 49.74 / 0.999

4.2 Quantitative experiments

Blender dataset. Table 1 shows the PSNR results of our proposed NeXT,
and SSIM results are shown in the appendix. Compared to NeRF, our NeXT-
S obtains 0.68 PSNR gain with similar parameters. Our methods remarkably
benefit from increasing the model capacity. NeXT-L significantly outperforms
NeRF by 2.38 PSNR. Especially, when adopting center pixel [2], our NeXT-L*
achieves a new state-of-the-art result, crossing 34 average PSNR threshold on
Blender dataset for the first time. It’s worth noting that vanilla Transformer
performs worse (↓0.20 PSNR) even with more parameters than NeRF.
DeepVoxels dataset. Table 2 presents the results of our method and other
state-of-the-art methods on DeepVoxels dataset, which has about 5× more num-
ber of training images than Blender dataset (479 for training and 1000 for test-
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Table 3: Comparisons on multiscale Blender dataset. NeXT boosts Mip-
NeRF by a clear margin, especially on low resolution scenes.

#Params
Full Res. 1/2 Res. 1/4 Res. 1/8 Res.

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

NeRF (JAX) [13] 1,191K 31.20 / 0.950 30.65 / 0.956 26.25 / 0.930 22.53 / 0.871
Mip-NeRF [2] 612K 32.63 / 0.958 34.34 / 0.970 35.47 / 0.979 35.60 / 0.983

NeXT-S 616K 32.18 / 0.954 34.32 / 0.969 36.43 / 0.980 37.57 / 0.987
NeXT-B 1,076K 32.92 / 0.959 35.06 / 0.973 36.99 / 0.982 38.05 / 0.988
NeXT-L 2,031K 34.38 / 0.968 36.47 / 0.979 38.19 / 0.986 39.29 / 0.991

ing). As Table 2 shown, all of our NeXT variants outperform previous top-
performed methods by a large margin. We also reimplement NeRF based on
JAX to serve as a stronger baseline, which brings consistent improvement over
the original NeRF for most scenes yet fail to converge for “Vase”. By contrast, the
proposed NeXT converges stably and achieves best performance on all scenes. In
particular, our best model NeXT-L* achieves new state-of-the-art results (↑9.59
PSNR compared to NeRF) on DeepVoxels dataset.
Multiscale Blender dataset. Multi-scale Blender dataset [2] is designed to
better probe accuracy on multi-resolution scenes, which is much more challenging
than NeRF’s Blender dataset [33]. Mip-NeRF [2] shows impressing superiority
over NeRF and previously serves as the state-of-the-art method in this dataset.
Hence, we choose Mip-NeRF as the baseline and replace its query network by
NeXT. As shown in Table 3, with similar parameters, our NeXT-S boosts Mip-
NeRF by 0.62 PSNR gain on average. By further increasing the model capacity,
our NeXT-L shows consistent improvement on all resolution scenes and surpasses
the previous best-performed Mip-NeRF by a clear margin (↑2.57 PSNR). Note
that the model sizes of our variants are cut in half here by following Mip-NeRF.

4.3 Ablation studies

Model scaling. A natural question is that whether the original NeRF can
benefit from model scaling like our proposed NeXT? To answer this question,
we conduct comparison experiments between NeRF and NeXT under different
model parameters and GFLOPs as shown in Fig. 3. The MLP used in the orig-
inal NeRF has 8 fully-connected layers with 256 channels per layer. To explore
its potential, we increase the model size of MLP by making it deeper and wider.
Fig. 3 shows that NeRF does benefit from increasing network capacity yet the
gain is limited and overfitting tend to occur. (i) As the MLP goes deeper, the
performance of NeRF increases first and then drops when has 20 layers. (ii) As
the MLP becomes deeper and wider, it seems that saturation occurs: NeRF-
D16-W384 with 4,988K parameters brings no gain than that NeRF-D8-W384
with 2,624K parameters. By contrast, our proposed NeXT variants show strong
scalability, i.e., tendency of saturation is not observed by increasing model ca-
pacity from NeXT-S to NeXT-L (↑1.34 PSNR). When increasing the number of
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Fig. 3: Model scaling. PSNR results are achieved by NeRF and NeXT under
different model parameters and FLOPs on Blender dataset. D and W indicate
the depth and width of the MLP network in NeRF. The value in the parentheses
denotes Nc +Nf and are set to 192 for NeRF by default. NeXT variants show
strong scalability of model capacity and significantly benefit from the increase
of sample points. Note that FLOPs is calculated to measure the computation
cost of rendering a pixel via the query network.

sample points from 192 to 256, NeXT-L achieves further improvement with 0.85
PSNR gain. Besides, our NeXT variants show consistent improvement compared
to NeRF with similar FLOPs.

Positional embedding in Transformer. To illustrate the effect of positional
embedding, we conduct experiments with different positional embedding types
(i.e., no positional embedding, 1D sinusoidal and learnable positional embedding
) on Blender dataset. As Table 4a shown, employing 1D sinusoidal positional
embedding significantly improves the performance by 0.53 PSNR at most.

Local-window self-attention. The computation cost of global attention in-
crease squarely with enlarging the number of sample points along a ray. Hence,
it’s of significance to introduce local-window self-attention to alleviate the com-
putation burden. Table 4b shows the results of NeXT with different local window
size, which demonstrates that employing local-window self-attention achieves
competitive performances compared to using global attention mechanism.

Multi-skip connection. Table 4c shows both NeRF and NeXT benefit from the
utilization of multi-skip connection, which demonstrates that the enhancement
of position information is vital for novel view synthesis. For example, multi-skip
connection brings 0.24 and 1.00 PSNR gains to NeRF and NeXT, respectively.

Hierarchical sampling. We conduct experiments on the hierarchical sampling
shown in Table 4d and draw conclusions as follows. First, the proposed NeXT re-
lies much less on the two-stage coarse-to-fine sampling compared to NeRF. When
only adopts coarse sampling, i.e., Nf = 0, the resulted performance degradation
is ↓0.32 vs. ↓1.69 PSNR (NeXT vs. NeRF). Second, our approach prominently
benefits from more sample points. Increasing the total number of sample points
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Table 4: Ablation studies. If not otherwise specified, all the ablation studies
are performed on NeXT-B on Blender dataset. “LWSA” denotes local-window
self-attention. Nc/Nf refer to the number of sample points in coarse/fine stage.

(a) Positional embedding in Trans-
former. The 1D sinusoidal positional
embedding strategy performs better.

Positional Embed. PSNR SSIM

✗ 32.19 0.955
Learnable 32.44 0.956
Sinusoid 32.72 0.958

(b) Attention design. NeXT with LWSA
reduces computational complexity and main-
tains competitive performance.

Method Window Size PSNR SSIM

w/o LWSA - 32.25 0.955

w/ LWSA
64 32.34 0.955
32 32.26 0.954

(c) Multi-skip connection. Multi-
skip connection boosts both the pro-
posed NeXT and original NeRF.

Method Skip Layer PSNR SSIM

NeRF (JAX) 4 31.66 0.953
NeRF (JAX) 2,4,6 31.90 0.955

NeXT - 31.44 0.949
NeXT 1 31.83 0.951
NeXT 1,2 32.44 0.956

(d) Hierarchical sampling. NeXT benefits
from more sample points and shows less de-
pendence on coarse-to-fine sampling.

Method Nc Nf PSNR SSIM

NeRF (JAX) 128 128 31.76 0.954
NeRF (JAX) 64 128 31.66 0.953
NeRF (JAX) 192 0 29.97 0.938

NeXT 128 128 32.94 0.959
NeXT 64 128 32.44 0.956
NeXT 192 0 32.12 0.953

from Nc +Nf = 192 to 256 brings ↑0.50 PSNR gains for NeXT yet only ↑0.10
PSNR gains for NeRF.

4.4 Visualization

What is learnt? Sample points along a ray contribute differently to the final
rendered pixel. For example, points in the free space or occluded regions barely
affect the rendered image. In the light of that the proposed NeXT renders a pixel
via a ray-level query, it’s expected that NeXT can learn the relative importance of
each point via the built-in self-attention mechanism. To investigate what is learnt
in NeXT, we first refer to the average received attention scores of each point
as “attention weights”. Given the multi-head attention scores matrix AW ∈
RH×N×N , the average attention weight ÂW ∈ RN is calculated by:

ÂW = Softmax(
1

H

H∑
h

N∑
i

AWh,i,:), (5)

where H and N is the number of attention head and sample points respectively.
To demonstrate the effectiveness of NeXT, we visualize the average attention

weight in the last NeXT-B block and alpha values of all corresponding sample
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Fig. 4: Visualization of average attention weight and alpha values of sample
points for rendering scenes on Blender dataset. The attention weight curve show
some similar trends to alpha curve.

Drums

Ship

GT Mip-NeRF NeXT

Fig. 5: Visualization of renderings of NeXT-L compared to the groundtruth and
Mip-NeRF on two scenes of multiscale Blender dataset. We visualize the cropped
regions in four different scales. NeXT qualitatively outperforms Mip-NeRF with
more fine details (e.g., the gloss on the drum).
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Lego

Chair

Ficus

Materials

GT NeRF vanilla Trans. NeXT

Fig. 6: Visualization of synthesized views of NeXT-L* versus the groundtruth,
NeRF and vanilla Transformer. Cropped regions on four scenes of Blender
dataset are presented. NeXT remarkably outperforms NeRF, particularly on
objects with rich texture details such as Chair’s patterns and Ficus’s leaves.
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points along a ray when rendering scenes in Blender dataset, as shown in Fig. 4.
The alpha values is obtained by αi = 1 − exp(−σiδi), where σi is the volume
density. Fig. 4 shows that the attention weight curve has some similar trends to
alpha curve (e.g., the peaks of the attention weight curve and the alpha curve
tend to appear at close points). NeXT tends to capture the scene properties from
object space (e.g., α > 0) while ignoring those of empty space (e.g., α = 0).
Qualitative results. As shown in Fig. 5, we visualize the cropped regions at
four different scales on two scenes from the test set of multiscale Blender. NeXT
remarkably outperforms Mip-NeRF with more fine details such as Drums’s gloss
and Ship’s nets. In addition, Fig. 6 shows four synthesized views on Blender
dataset of NeXT versus groundtruth, NeRF and vanilla Transformer. We observe
that NeXT qualitatively outperforms prior work with smooth and fine details
such as Lego’s ropes, Chair ’s patterns, Materials’s gloss and Ficus’s leaves.

5 Limitation and Future Work

In this section, we present some promising directions for future work as follows:
– Lightweight design. We report average runtime of three runs measured on
8 NVIDIA V100 GPUs for fair comparisons on Multi-scale Blender dataset.
Total training time: 17.07/43.31 hours (Mip-NeRF/NeXT-B). The average in-
ference time for rendering an image: 2.45/4.01 seconds (Mip-NeRF/NeXT-B).
Compared to NeRF methods, NeXT has higher runtime due to the interaction
of points. Speeding up NeXT is important and promising future work.

– Real Forward-Facing Scenes. We also work on verifying the effectiveness
of NeXT on other datasets. The results will be presented at the project site4.

– Knowledge distillation. NeXT boosts renderings via increasing model ca-
pacity and modeling interdependencies between sampled points, however, brings
about challenges in real-time use. Hence, the exploration of transferring the
knowledge encoded in NeXT for improving existing faster methods is expected.

6 Conclusion

In this paper, we explore a Transformer-based query network for NVS task,
namely NeXT, achieving ray-level query by ray tokenization. NeXT captures
relationships between samples via self-attention mechanism, and proposes a
multi-skip module to further adapt Transformer-based query network for NVS
task. The proposed NeXT shows new state-of-the-art results on three popular
datasets, outperforming previous best methods by a large margin. We hope that
the general query network presented in this paper will be valuable to other re-
searchers and provide a potential path towards high quality renderings.
Acknowledgements This work is supported in part by the National Natural
Science Foundation of China under Grant 62171248, and the PCNL KEY project
(PCL2021A07).

4 https://github.com/Crishawy/NeXT
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