
Learning Online Multi-Sensor Depth Fusion
Supplementary Material

Erik Sandström1, Martin R. Oswald1,2, Suryansh Kumar1, Silvan Weder1,
Fisher Yu1, Cristian Sminchisescu3,5, and Luc Van Gool1,4

1ETH Zürich, 2University of Amsterdam, 3Lund University, 4KU Leuven, 5Google
Research

Abstract. This supplementary material accompanies the main paper
by providing further information for better reproducibility as well as
additional evaluations and qualitative results.

A. Videos

We provide an introductory video that presents an overview of our method
(available here: https://youtu.be/woA8FU05AM0) as well as a summary of the
most important results. Additionally, a selection of short videos is linked in the
description of the introductory video showing the online reconstruction process
for various sensors and scenes.

B. Method

In the following, we provide more details about our proposed method, specifically
the Shape Integration Module which updates the shape grid Si

t .

Shape Integration Module. The shape integration module takes as input
a depth map Di

t from sensor i ∈ {0, 1} at time t ∈ N, with known camera
calibration P c→w

t ∈ SE(3) from camera to world space and intrinsics Kt ∈ R3×3

and performs a full perspective unprojection to attain a point cloud Xw in the
world coordinate space. Each 3D point xw ∈ Xw is computed by transforming
each pixel (u, v) of the depth map into the camera space xc according to (1),

xc = Di
t(u, v)K

−1
t

uv
1

 (1)

and then into the world camera space according to (2).

xw = P c→w

[
xc

1

]
(2)

Along each ray from the camera center, centered at xw, we sample T points
evenly over a predetermined distance l. The distance l and the number of points



2 E. Sandström et al.

T are selected based on the noise level of the depth sensor and could be inter-
preted similarly as the truncation distance in standard TSDF Fusion [5]. The
distance between sampled points should ideally be the same as the voxel side
length. After computing T points along each ray, we convert the coordinates to
the voxel space and extract a local shape grid Si,∗

t−1 from Si
t−1 through nearest

neighbor extraction. To incrementally update Si,∗
t−1, we follow the moving average

update scheme of TSDF Fusion,

V i,∗
t =

W i,∗
t−1V

i,∗
t−1 + vit

W i,∗
t−1 + 1

, (3)

where vit is the TSDF update. The local weight grid W i,∗
t is updated as

W i,∗
t = max(ωmax,W

i,∗
t−1 + 1). (4)

The weights are clipped at ωmax to prevent numerical instabilities.

Denoising Network. We use the identical denoising network as described by
Weder et al. [14] (called routing network) except that we change the loss hy-
perparameter to λ = 0.06.

Indicator Function. We define the indicator function 1{A}(x) for a voxel index
x = (x1, x2, x3), where xi ∈ N as

1{A}(x) =

{
0 if x /∈ A

1 if x ∈ A,
(5)

and for two sets A and B

1{A, B}(x) =

{
0 if x /∈ A ∩B

1 if x ∈ A ∩B.
(6)

In the main paper, we omit x for brevity.

C. Implementation Details

We use PyTorch 1.7.1 and Python 3.8.5 to implement the pipeline. Training is
done with the Adam optimizer using an Nvidia TITAN RTX with 24 GB of
GPU memory. We use a learning rate of 1e-04 and otherwise the default Adam
hyperparameters betas = (0.9, 0.999), eps = 1e-08 and weight decay = 0. We
use a batch size of 1 due to the online nature of the pipeline, but accumulate
the gradients over 20 frames before updating all network weights. We shuffle
the frames during train time and for training efficiency, we integrate every 10th
frame during validation. We record a runtime of ∼15 fps on our unoptimized
implementation on the Human CoRBS scene. For our largest scenes (e.g. Hotel
0 ), our integration frame rate is between 1-2 fps. The bottleneck is cpu-gpu
communication where our implementation loads the full voxel grid to the gpu
for fast updates and then loads the grid back to the cpu to allow for scene recon-
struction of multiple scenes in parallel. We train our network until convergence
which takes between 12-24 hours on the Replica dataset and a few hours on the
CoRBS and Scene3D datasets.



Learning Online Multi-Sensor Depth Fusion Supplementary Material 3

D. Evaluation Metrics

We use the following seven metrics to quantify the reconstruction performance.

Voxel Grid Metrics.We use four metrics on the TSDF voxel grid. We mask the
evaluation so that only voxels with a non-zero weight Wk are considered. Mean
Absolute Distance (MAD): Computed as the mean of the L1 error to the ground

truth signed distance grid MAD= 1
N

∑N
k=0 |Vk − V GT

k |1, where N is the total
number of valid voxels. Mean Squared Error (MSE): Computed as the mean

squared error to the ground truth signed distance grid MSE= 1
N

∑N
k=0(Vk −

V GT
k )2, where N is the total number of valid voxels. Intersection over Union

(IoU): Computed on the occupancy grid of the voxel grid as IoU= tn
tn+fp+fn and

Accuracy as Acc= tn+tp
tp+tn+fp+fn , where

tn =
∑

{sign(V ) < 0 and sign(V GT ) < 0} (7)

tp =
∑

{sign(V ) >= 0 and sign(V GT ) >= 0} (8)

fp =
∑

{sign(V ) >= 0 and sign(V GT ) < 0} (9)

fn =
∑

{sign(V ) < 0 and sign(V GT ) >= 0} (10)

Mesh Metrics. We run marching cubes [11] on the predicted voxel grid V and
the ground truth voxel grid V GT and compare the two meshes. The F-score is
defined as the harmonic mean between Recall (R) and Precision (P), F = 2 PR

P+R .
Precision is defined as the percentage of vertices on the predicted mesh Vm which
lie within some distance τ from a vertex on the ground truth mesh V GT

m . Vice
versa, Recall is defined as the percentage of points on the ground truth mesh
V GT
m which lie within the same distance τ from a vertex on the predicted mesh

Vm. In all our experiments, we use a distance threshold τ = 0.02 m. We use the
provided evaluation script of the Tanks and Temples dataset [10], but modify
it to our needs. For a more accurate evaluation, we do not downsample or crop
the meshes and we do not utilize the automatic alignment procedure since our
meshes are already aligned.

E. Replica Dataset Collection

Due to the lack of available data for the study of multi-sensor depth fusion,
we construct our own 2D dataset from the 3D Replica dataset [13], which com-
prises 18 high-quality scenes. To compute the ground truth signed distance value
at each voxel grid point, we require a well-defined normal direction. This is
not provided by the non-watertight Replica meshes. Thus, we apply screened
Poisson surface reconstruction with CloudCompare [6], with an octree depth of
12. Otherwise, the default settings are used. Additionally, we found that the
Poisson surface reconstructions are not clean enough to produce high-quality
signed distance grids. Thus, each watertight mesh is cleaned with the Meshlab [4]
filter function remove isolated pieces with respect to face number. We



4 E. Sandström et al.

R
o
o
m

0

Trajectory 1 Trajectory 2 Trajectory 3

Fig. 1: Trajectory Visualization. Top-down visualization of the three manually tra-

versed trajectories for the room 0 scene. Navigable space is colored white.

set the face number threshold to 100. The signed distance grids are then com-
puted from the meshes with a modified version of the mesh-to-sdf library1 to
accommodate non-cubic voxel grids.

Using the Habitat AI platform [12], we define an agent that moves around in
the watertight 3D scenes by traversing the scenes manually using the keyboard.
We sample three trajectories per scene with diverse starting points and capture
the scene content to simulate a realistic capturing scenario i.e. for instance a
human moving a mobile device. For each step that the agent takes, it moves
0.05 m along the x- or y-axis. When the agent rotates, it rotates 2.5 degrees.
The step sizes were chosen so that the dataset also can be used to evaluate
multi-sensor tracking methods in the future. The agent is equipped with two
pairs of RGBD cameras. Both cameras are located at a fixed height of 1.5 m
above the floor and the baseline between the cameras is 0.1 m. We use an identical
resolution of 512×512 for both cameras and a field of view of 90 degrees. The full
dataset comprises 92698 frames, of which we use a subset to produce a training,
validation and testing set. For example, a dense voxel grid of the apartment 0
scene did not fit on the GPU, and the variations of the frl apartment scenes
did not provide any further diversity in the data. The train set consists of the
scenes {apartment 1, frl apartment 0, office 1, room 2, office 3, room 0} and
contains 22358 frames, the validation set consists of the scene {frl apartment 1}
and contains 1958 frames and the test set consists of the scenes {office 0, office
4, hotel 0} and contains 1891 frames. When training our model, we use all three
trajectories from each train scene. During validation, only trajectory 1 is used.
During testing, we use trajectory 3 for hotel 0 and office 4 and trajectory 1
for office 0. As an example, in Fig. 1, we visualize a top-down view of the three
manually traversed trajectories for the room 0 scene. The trajectory is visualized
in red and the navigable floor is white.

F. Scene3D Dataset

The Scene3D dataset comprises multiple scenes, but we only evaluate the Copy
room scene. We found that the ground truth meshes of all other scenes were not
complete enough, which made the evaluation inaccurate.

1https://github.com/marian42/mesh_to_sdf



Learning Online Multi-Sensor Depth Fusion Supplementary Material 5

L
o
u
n
g
e

Frame Nearest Trilinear
Neighbor Mask Interpolation Mask

Fig. 2: RoutedFusion Masking. The trilinear interpolation mask of RoutedFu-

sion [14] results in significantly more outliers than using the nearest neighbor mask.
Trilinear interpolation updates eight grid points per sampled point along the ray in-
stead of two. This exposes more outliers as marching cubes [11] requires that all eight
grid points have a non-zero weight for a surface to be drawn.

G. Baselines

RoutedFusion. We found that the original implementation of RoutedFusion
generates significantly more outliers than TSDF Fusion [5] when no weight
thresholding is applied as post-outlier filter. This is due to the trilinear in-
terpolation extraction step of RoutedFusion compared to the nearest neighbor
extraction of TSDF Fusion. Trilinear interpolation updates eight grid points
per sampled point along the ray instead of one. This exposes more outliers as
marching cubes [11] requires that all eight grid points have a non-zero weight
for a surface to be drawn. Fig. 2 compares the meshes of two masks (the sets of
non-zero weights) on the same RoutedFusion model. The trilinear interpolation
mask is the standard output of RoutedFusion while the nearest neighbor mask
is taken from running TSDF Fusion on the same scene. Given the significantly
better result with the nearest neighbor mask, we report all results in the paper
using the nearest neighbor mask.

Early Fusion. We use the denoising network described by Weder et al.[14]
(called routing network) as basis for our Early Fusion baseline. We increase the
number of input channels by one so that the sensor depth maps can be fused
and we use the loss hyperparameter λ = 0.06.

DI-Fusion. For a fair comparison between all models, we make the following
modifications to the original implementation of DI-Fusion [9]. 1) We turn off
the camera tracker and provide the ground truth camera poses. 2) We turn off
the heuristic pre-outlier filter used on the incoming depth maps. 3) We turn off
the heuristic weight counter thresholding post-outlier filter. 4) We use a voxel
size of 2 cm, but sample the grid at a simulated resolution of 1 cm. This is
achieved by setting the resolution variable in the config file to 2. We note
that the implementation does not support resolution < 2. Furthermore, the
implementation does not allow for convenient access the dense voxel grid and
thus, we only report the mesh metrics.



6 E. Sandström et al.

H. Depth Sensor Details

Synthesized ToF Depth. The noise model2 [7] incorporates disparity-based
quantization, high-frequency noise, and a model of low-frequency distortion es-
timated on a real depth camera. We increase the noise level of the depth by
increasing the standard deviation of the high-frequency noise by a factor of 5.
We also multiply the standard deviation of the pixel shuffling with the same
factor. Other works have previously used this model for the evaluation of dense
surface reconstruction methods [3, 15, 16].

PSMNet Stereo Depth. We first pretrain PSMNet [2] on the SceneFlow
dataset according to the documentation provided by Chang et al.. The model
is then fine-tuned on our Replica dataset. During training we use the default
parameters.

SGM Stereo Depth. We generate depth maps with Semi-Global Matching [8]
implemented in OpenCV [1]. We set the number of disparities numDisparities =
64 and use the full variant of the algorithm which considers 8 directions instead
of 5 by setting mode = MODE HH. Otherwise, we use the default settings.

COLMAP MVS Depth. Dense depth maps are computed with known camera
poses and intrinsics using the sequential matcher with a 10 image overlap.

I. More Experiments

Time Asynchronous Evaluation. RGB cameras often have higher frame rates
than ToF sensors which makes Early Fusion more challenging as one sensor might
lack new data. Tab. 2 in the main paper provides performance results when the
ToF sensor has half the sampling rate compared to the PSMNet sensor. In Tab.1,
we show that the performance gap to our method grows even more when the
sampling rate is decreased to a third (of the PSMNet sensor) for the ToF sen-
sor. The drop in performance compared to our method can be attributed to the
reprojection of the ToF frames. The reprojection step introduces occlusions and
pixel quantization errors. The performance of our method actually slightly im-
proves on some metrics. This can be explained by the fact that the completeness
of the scene is saturated and dropping ToF frames removes noise and outliers
that would otherwise have been integrated. See also Fig.6 for a visualization. We
do not retrain any model for this experiment.

Performance over Camera Trajectory. To show that our fused output is
not only better at the end of the fusion process, we visualize the quantitative
performance across the accumulated trajectory for the office 0 scene for the
model {ToF, PSMNet} with denoising in Fig. 3. Our fused model consistently
improves on the inputs. Note that we only show the metrics IoU and MAD in
the main paper.

2http://redwood-data.org/indoor/dataset.html



Learning Online Multi-Sensor Depth Fusion Supplementary Material 7

0 100 200 300 400
Frames

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900
A

cc
u

ra
cy

Fused ToF Stereo

0 100 200 300 400
Frames

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

M
S

E

Fused ToF Stereo

Fig. 3: Performance over Camera Trajectory. The fused output of our method
outperforms the single-input reconstructions for all frames along the trajectory. The
experiment was done on the office 0 scene for the sensors {ToF, PSMNet} with denois-
ing. Note that the results get slightly worse after 300 frames. This is due to additional
noise from the depth sensors when viewing the scene from further away.

Sampling MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
Rate ToF Model

Metric

*e-04 *e-02 [0,1] [%] % [%] [%]

1/2 Early Fusion 7.66 1.99 0.642 84.65 61.34 48.47 83.63

1/3 Early Fusion 8.52 2.15 0.610 83.60 55.52 41.63 83.40

1/2 SenFuNet (Ours) 4.21 1.45 0.755 88.26 73.04 69.13 78.43

1/3 SenFuNet (Ours) 4.00 1.41 0.751 88.14 74.93 73.57 77.05

Table 1: Time Asynchronous Evaluation. The gap
between SenFuNet and Early Fusion increases further
when the ToF camera has a sampling rate of one third
compared to the PSMNet sensor.

Weight Ablation. In Tab. 2
we evaluate our full model
against two models which
only use the weight (W i

t )
as input to the Weight-
ing Network G. We per-
form {SGM, PSMNet} fu-
sion without denoising on
the Replica dataset. We observe that our full model provides a gain on the
model which only uses the tanh-transformed weights. This justifies our Fea-
ture Network. We also show that a normalization of the weight with a tanh-
transformation improves performance over no normalization.

Architecture Ablation. For the architecture ablations, we perform {SGM,
PSMNet} fusion without denoising on the Replica dataset. For all experiments,
unless otherwise specified, we use 4 layers of 3D-convolutions with kernel size 3
in G, 6 network blocks in the Feature Networks F i, and store feature vectors of
dimension n = 5 in the feature grids F i

t .
In Tab. 3, we investigate the effect of using different number of network blocks

in the feature network. Performance is maximized when using 5 blocks.
In Tab. 4 we vary the number of feature dimensions that is stored in the

grids. 4 dimensions yield optimal performance.
Finally, in Tab. 5, we study the importance of the Feature Network by testing

it against a model which bypasses the network and hence unprojects the 2D
features without any 2D processing. For this experiment, both models use 4
feature dimensions to make the comparison fair. Note that no weights were used
as input to the Weighting Network. We gain performance by using the feature
network, which justifies our design choice.

The ablations suggest that the best performance is achieved with n = 4, the
number of blocks in the feature networks is 5 and when we use 2 3D-convolutional



8 E. Sandström et al.

Model F↑ [%]

Only Weights 66.69
Only tanh(Weights) 68.92
Full Model 69.83

Table 2:Weight Counter Ablation. Our

full model outperforms models which only
use the weight (W i

t ) as input to the Weight-
ing Network G. Normalization of the weight
with a tanh-transformation improves per-
formance over no normalization.

Nbr Blocks 1 2 3 4 5 6

F↑ [%] 67.45 67.68 66.79 67.59 68.39 68.21

Table 3: Ablation Study. We change the

number of blocks for the feature network.
Optimal performance is achieved with 5
blocks.

n 2 3 4 5

F↑ [%] 68.86 68.20 68.87 68.21

Table 4: Ablation Study. We alter the

dimension of the feature vector. The per-
formance is maximized at n = 4.

Model F↑ [%]

Without Feature Net 67.44
With Feature Net 68.87

Table 5: Architecture Ablation. We

demonstrate the difference in performance
with and without the feature network.

layers with kernel size 3. Empirically, we found that n = 5, 6 feature network
blocks and 2 kernel size 3 3D convolutions gave marginally better results and
this is what we report throughout the paper.

Effect of Weight Thresholding. RoutedFusion [14] applies weight thresh-
olding to filter outliers i.e. a TSDF surface observation needs to have a weight
larger than some threshold to not be removed during post-processing. Weight
thresholding was not applied to any model in the main paper to avoid the need
of tuning an additional parameter and to make the comparison fair between
the models. For example, on the Replica scenes, the optimal weight threshold is
typically within the range 1-10, while for the CoRBS human scene it is around
500. Tab. 7 shows the effect when weight thresholding is applied on the Replica
test set on the sensors {ToF, PSMNet} with denoising. Regardless of the weight
threshold, our method outperforms RoutedFusion.

DI-Fusion Ablation. Tab. 6 shows the performance of DI-Fusion [9] for σ =
{0.15, 0.06} compared to our method. The results when σ = 0.15 is reported in
the main paper and this number is also specified in the implementation provided
by the authors. σ = 0.06 is suggested for one experiment in the DI-Fusion paper.
SenFuNet outperforms DI-Fusion for both choices of the σ threshold. In general,
a high σ yields high recall, but poor precision and vice versa. This is, however,
not true for the Human scene where SenFuNet outperforms DI-Fusion on all
metrics. On the copyroom scene, SenFuNet outperforms DI-Fusion both in terms
of the F-score and precision. On the Replica dataset, SenFuNet attains around
10 percent points higher F-score compared to the best DI-Fusion model.

ToF+ToF denoising Fusion. From the experiments with and without depth
denoising in the main paper, we note that the depth denoising network brings ad-
vantages where planar noise is present, but disadvantages due to over-smoothing
around depth discontinuities. A natural question arises: Can our framework com-



Learning Online Multi-Sensor Depth Fusion Supplementary Material 9

Model F↑ [%] P↑ [%] R↑ [%] F↑ [%] P↑ [%] R↑ [%]

ToF+MVS Copyroom Human

DI-Fusion [9] σ=0.15 86.31 77.27 97.74 28.19 16.71 90.15

DI-Fusion [9] σ=0.06 79.21 91.03 70.11 13.52 18.75 10.56

SenFuNet (Ours) 93.73 91.56 96.00 74.56 59.74 99.16

Replica: ToF+PSMNet w/o denoising w. denoising

DI-Fusion [9] σ=0.15 48.39 34.24 85.29 55.66 41.49 85.33

DI-Fusion [9] σ=0.06 60.30 72.49 51.88 63.02 75.14 54.46

SenFuNet (Ours) 69.29 62.05 79.81 76.47 73.58 79.77

Replica: SGM+PSMNet w/o denoising w. denoising

DI-Fusion [9] σ=0.15 47.29 32.92 85.14 52.65 38.50 83.62

DI-Fusion [9] σ=0.06 59.24 71.73 50.61 63.39 75.59 54.73

SenFuNet (Ours) 69.83 63.20 79.12 71.18 66.81 76.27

Table 6: DI-Fusion Ablation. SenFuNet
outperforms DI-Fusion for various choices
of the σ threshold. In general, a high σ
yields high recall, but poor precision and
vice versa. This is, however, not true for
the Human scene where SenFuNet outper-
forms DI-Fusion on all metrics. On the
Replica dataset, SenFuNet attains around
a 10 higher F-score compared to the best
DI-Fusion model.

Weight Threshold 1 3 5 7 9 11

RoutedFusion [14] F↑ [%] 62.12 71.40 74.12 75.07 75.11 74.99
Ours F↑ [%] 77.24 79.35 79.67 79.39 78.47 77.40

Table 7: Weight Thresholding. Our

model outperforms RoutedFusion on the
Replica test set also when weight thresh-
olding is applied.

MSE↓MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
Model

Metric
*e-04 *e-02 [0,1] [%] [%] [%] [%]

Single Sensor

ToF [7] 7.48 1.99 0.664 83.65 58.52 45.84 84.85
ToF denoising [7] 5.08 1.58 0.709 87.32 68.93 59.01 83.08

Multi-Sensor Fusion

Ours 3.19 1.26 0.791 90.99 78.87 76.56 81.68

Table 8: ToF+ToF denoising Fusion.
Our method learns to combine the pre-
processed depth and the raw depth in a
fashion that improves the overall recon-
struction.

bine the best of both worlds by fusing a raw ToF frame with a ToF frame pre-
processed by a denoising network? Tab. 8 along with Fig. 4 show that our fused
output significantly improves on the inputs. For example, the raw ToF contains
many outliers behind the walls, while the ToF denoising sensor does not. Vice
versa, the raw ToF does not contain outliers around the table and chairs, while
the ToF denoising sensor does. As a result, our method selects the appropriate
noise-free sensor where needed. Fig. 5 provides the camera trajectory that was
used for the evaluation. Note that the raw sensor is favored on surfaces that are
viewed close to the camera while the ToF denoising sensor is favored when the
measured depth is large.

Fig. 5: Camera Trajectory. Top-down visual-

ization of the camera trajectory used for the of-
fice 0 test scene in Fig. 4. Navigable space is
colored white and the arrows show the camera
direction.

Visualizations. In Fig. 8 we
show qualitative results on the
sensors {ToF, PSMNet}. As con-
cluded from the experiment on
the sensors {ToF, ToF denoising},
the ToF sensor (without denois-
ing) is not favored when the
depth is large. We observe the
same prediction on the office 0
scene in Fig. 8. Fig. 7 shows a
comparison between our method
on the sensors {SGM, PSMNet}
without denoising and TSDF Fu-
sion [5], RoutedFusion [14] and
DI-Fusion [9]. We achieve better surface reconstruction performance than Rout-
edFusion and DI-Fusion and better outlier handling than all baseline methods. In



10 E. Sandström et al.

O
ff
ic

e
0

O
ff
ic

e
0

Model ToF [7] ToF Denoising [7] Our Fused Our Sensor Weight

Fig. 4: ToF+ToF Denoising Fusion. Our method fuses the raw ToF sensor with the

depth denoising preprocessed ToF sensor such that the fused result is improved. Note
for example that the outliers from outside the walls from the raw sensor are removed
and so are the outliers around the table from the denoising ToF sensor. Fig. 5 provides
the camera trajectory that was used for the evaluation. Note that the raw sensor is
favored on surfaces that were viewed close to the camera while the denoising ToF sensor
is favored when the measured depth is large. See also Tab. 8.
SR* PSMNet 1, ToF 1 PSMNet 1, ToF 1/2 PSMNet 1, ToF 1/3 PSMNet 1, ToF 1/3

H
o
te
l
0

Early Fusion Early Fusion Early Fusion SenFuNet (Ours)

Fig. 6: ToF+PSMNet Fusion. The performance gap to our method grows when

asynchronous sensors are considered. The performance decreases further for the Early
Fusion when the sampling rate is reduced to 1/3 compared to the PSMNet sensor while
out method remains robust (best viewed on screen). SR* = Sampling Rate.

Fig. 9, we add depth denoising to the model and evaluate the baseline methods
against our method again. Our model achieves better outlier handling overall
and more precise surface reconstruction in most regions compared to the Early
Fusion method.

For more visual results, we refer to the supplementary videos.

J. Limitations

While our method generates better reconstructions on average, specific local re-
gions may still not improve if the wrong sensor weighting is estimated. Fig. 10
shows four failure cases of our method. The top left visualization of {SGM,
PSMNet} without depth denoising shows that the PSMNet surface is selected
to a large degree. Our method typically selects the more smooth surface (PSM-
Net), when compared to a noisy surface (SGM), even though the noisier surface
(SGM) may be better on average. The red rectangles on the bottom row and
in the top right example show less severe failure cases when our method per-
forms smoothing when selection would have resulted in a more accurate surface



Learning Online Multi-Sensor Depth Fusion Supplementary Material 11

H
o
te
l
0

O
ffi
c
e
0

TSDF Fusion [5] RoutedFusion [14] DI-Fusion [9] σ=0.15 SenFuNet (Ours)

Fig. 7: SGM+PSMNet Fusion without denoising. Our method fuses the sensors

consistently better than the baseline methods. In particular, our method learns to
detect and remove outliers much more effectively (best viewed on screen).

W
it
h
o
u
t
D
en

o
is
in
g

H
o
t
e
l
0

O
ff
ic

e
0

W
it
h
D
en

o
is
in
g

H
o
t
e
l
0

O
ff
ic

e
0

Model ToF [7] PSMNet [2] TSDF Fusion [5] SenFuNet (Ours) Our Sensor Weight

Fig. 8: ToF+PSMNet Fusion. Our method fuses the sensors consistently better than

TSDF Fusion [5]. In particular, our method learns to detect and remove outliers much
more effectively (best viewed on screen).

prediction. This typically happens around edges, but may in rare cases happen
on planar regions containing repetitive textures, for example a tiled bathroom
shower (see bottom left example). Lastly, our method has difficulties handling
overlapping outliers from both sensors i.e. where both sensors have registered
an outlier at the same voxel. See the orange rectangle in the top right example.
This is due to the fact that the Outlier Filter can only be applied on voxels with
a single sensor observation.



12 E. Sandström et al.

H
o
te
l
0

O
ffi
c
e
0

TSDF Fusion [5] RoutedFusion [14] DI-Fusion [9] Eary Fusion SenFuNet (Ours)
σ=0.15

Fig. 9: SGM+PSMNet Fusion with denoising. Our method fuses the sensors con-

sistently better than the baseline methods. Compared to the Early Fusion baseline, our
method removes more outliers and reconstructs most surfaces better (best viewed on
screen).

Without Denoising With Denoising

O
ff
ic

e
0

SGM [8] PSMNet [2] SenFuNet (Ours) ToF [7] PSMNet [2] SenFuNet (Ours)

H
o
t
e
l
0

SGM [8] PSMNet [2] SenFuNet (Ours) SGM [8] PSMNet [2] SenFuNet (Ours)

Fig. 10: Failure Cases. While our method generates better reconstructions on average,

specific local regions may not improve. Overlapping outliers, some edges and cases
where one sensor looks noisy but is quantitatively good, are especially difficult to
handle (best viewed on screen).



Learning Online Multi-Sensor Depth Fusion Supplementary Material 13

References

1. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
2. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. pp. 5410–5418
(2018)

3. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 5556–5565 (2015)

4. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia,
G., et al.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian
chapter conference. vol. 2008, pp. 129–136. Salerno, Italy (2008)

5. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. pp. 303–312 (1996)

6. Girardeau-Montaut, D.: Cloudcompare. France: EDF R&D Telecom ParisTech
(2016)

7. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for rgb-d visual
odometry, 3d reconstruction and slam. In: 2014 IEEE international conference on
Robotics and automation (ICRA). pp. 1524–1531. IEEE (2014)

8. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Transactions on pattern analysis and machine intelligence 30(2), 328–
341 (2007)

9. Huang, J., Huang, S.S., Song, H., Hu, S.M.: Di-fusion: Online implicit 3d recon-
struction with deep priors. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 8932–8941 (2021)

10. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1–13
(2017)

11. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

12. Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.:
Habitat: A Platform for Embodied AI Research. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2019)

13. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J.,
Mur-Artal, R., Ren, C., Verma, S., et al.: The replica dataset: A digital replica of
indoor spaces. arXiv preprint arXiv:1906.05797 (2019)

14. Weder, S., Schönberger, J.L., Pollefeys, M., Oswald, M.R.: Routedfusion: Learning
real-time depth map fusion. ArXiv abs/2001.04388 (2020)

15. Zhou, Q.Y., Koltun, V.: Simultaneous localization and calibration: Self-calibration
of consumer depth cameras. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 454–460 (2014)

16. Zhou, Q.Y., Miller, S., Koltun, V.: Elastic fragments for dense scene reconstruction.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
473–480 (2013)


