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Abstract. Reconstructing 3D indoor scenes from 2D images is an im-
portant task in many computer vision and graphics applications. A main
challenge in this task is that large texture-less areas in typical indoor
scenes make existing methods struggle to produce satisfactory recon-
struction results. We propose a new method, named NeuRIS, for high-
quality reconstruction of indoor scenes. The key idea of NeuRIS is to in-
tegrate estimated normal of indoor scenes as a prior in a neural rendering
framework for reconstructing large texture-less shapes and, importantly,
to do this in an adaptive manner to also enable the reconstruction of ir-
regular shapes with fine details. Specifically, we evaluate the faithfulness
of the normal priors on-the-fly by checking the multi-view consistency of
reconstruction during the optimization process. Only the normal priors
accepted as faithful will be utilized for 3D reconstruction, which typi-
cally happens in the regions of smooth shapes possibly with weak tex-
ture. However, for those regions with small objects or thin structures, for
which the normal priors are usually unreliable, we will only rely on visual
features of the input images, since such regions typically contain rela-
tively rich visual features (e.g., shade changes and boundary contours).
Extensive experiments show that NeuRIS significantly outperforms the
state-of-the-art methods in terms of reconstruction quality. Our project
page: https://jiepengwang.github.io/NeuRIS/.

Keywords: Indoor reconstruction, neural volume rendering, adaptive
prior

1 Introduction

Reconstructing 3D indoor scenes from multiple input images is an important
and challenging task in many practical applications, such as robotic navigation,
virtual reality and path planning. Indoor scenes usually contain many large
texture-less areas and repetitive patterns, such as white walls, floors, and re-
flecting surfaces, which is challenging for applying conventional matching-based
dense reconstruction algorithms [28, 44, 29] that heavily rely on the correspon-
dence of distinct visual features, leading to poor reconstruction results. With
the success of deep neural networks, data-driven (depth-based and TSDF-based)
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Fig. 1. Room-scale indoor reconstruction. Given a set of images equally sampled
from a video (captured by iPhone 11), NeuRIS succeeds in reconstructing smooth
surfaces with fine details. Note the large-area flat regions (like the floor, the sofa) and
the delicate structures (like the chair legs and the desk) in our reconstructed mesh.

methods [34, 17, 10, 33, 22, 31] have proven effective in alleviating the texture-less
problem by exploiting various geometric priors learned from a large amount of
data. However, these methods struggle to produce high-quality reconstruction
of indoor scenes with geometry details. For example, depth-based methods [33,
10] usually estimate depth maps individually, which causes lack of coherence
and scale ambiguities across frames, as well as noisy surface and floating out-
liers in reconstruction. TSDF-based methods [22, 31] suffer from high memory
consumption due to their usage of the explicit 3D volumetric representation; as
the memory requirement grows prohibitively large when the resolution is high,
they cannot be applied at a level where the fine details can be reconstructed.

Recently, neural scene representations, along with the inverse rendering tech-
niques [20, 36, 40, 41, 24] have shown impressive results on geometry reconstruc-
tion, by encoding the volume density, occupancy, or signed distance in a compact
and differentiable representation. However, most neural methods fail to recon-
struct indoor scenes with large texture-less regions that do not contain sufficient
visual features needed for pixel-level optimization. To address this issue, Nerf-
ingMVS [38] integrates depth priors to guide the sampling of points in NeRF’s
framework [20] to reduce shape-radiance ambiguity. Although it can predict bet-
ter depth maps than the original NeRF’s estimation, the fused geometry of its
output depth maps still has limited surface quality.

We present a novel neural surface reconstruction method, called NeuRIS,
that is specialized for indoor scenes. Our key idea is to leverage learned normal
priors in an adaptive manner to facilitate the learning of the neural surface rep-
resentation, where the normal priors provide more globally consistent geometric
constraints to guide the optimization process. Specifically, we first estimate the
normal maps of the input images using an existing monocular normal estima-
tion network. Then, besides the appearance supervision provided by the input
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images, the normal priors are used to provide additional constraints to mitigate
the geometry ambiguity issue at texture-less regions, which typically consist of
smooth or regular shapes.

Note that the normal priors may be inaccurate in the regions with small
objects, complex shapes, or thin structures, impeding high-quality reconstruc-
tion. Hence, for such regions, we propose to use the normal priors in an adaptive
manner. To this end, we develop a mechanism to evaluate the faithfulness of the
normal priors on-the-fly, based on multi-view photography consistency across
the input images. For the regions where the multi-view consistency is not satis-
fied, the normal constraint will be removed and only the appearance information
is utilized for optimization. We observe that the regions where the normal pri-
ors are not faithful typically consist of sharp features or irregular shapes with
relatively rich visual features in the input images, which are often sufficient for
reconstructing high quality surfaces by appearance supervision from the images.
This adaptive strategy of utilizing the normal priors makes the reconstruction
process more robust for general indoor scenes. As a result, NeuRIS achieves high-
quality reconstruction of complex indoor scenes with rich geometric details.

To summarize, NeuRIS has the following advantages:

– We advocate the use of normal priors because they are invariant to transla-
tion and scaling, and exhibit better multi-view consistency than the depth
prior used in prior methods. The normal priors provide globally consistent
geometric constraints across input images, leading to significant improve-
ment of reconstruction quality in texture-less regions of large smooth objects,
typically present in indoor scenes.

– We apply the normal priors in an adaptive manner, which is achieved by
evaluating the faithfulness of the normal priors on-the-fly. This strategy en-
ables complex shapes with geometric details in indoor scenes to be faithfully
reconstructed.

Extensive validations and comparisons are presented to show that NeuRIS
achieves superior results on ScanNet [4] and significantly outperforms the state-
of-the-art methods in terms of the reconstruction quality of indoor scenes.

2 Related works

2.1 Indoor scene reconstruction

Traditional multi-view stereo methods [28, 29, 44] can produce plausible geome-
try of textured surfaces, but struggle with texture-less regions such as those in in-
door scenes. Recently, learning-based MVS methods achieve promising results for
tackling texture-less surfaces. Such methods can be divided into two categories:
depth based methods [10, 33, 17, 16, 15, 18] and TSDF (truncated signed distance
function) based methods [22, 31]. The depth based methods first estimate depth
maps of images individually, and then leverage extra filtering and fusion proce-
dures to reconstruct the scene. Such methods often suffer from incompleteness,
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noisy surfaces and scale ambiguities, due to the inconsistency caused by individ-
ual estimation of depth maps. To alleviate these problems, some methods [22, 31]
directly regress input images to TSDF. Atlas [22] proposes a volumetric design
to regress a 3D global feature volume constructed from a sequence of images to
TSDF. Constrained by its global design and computational resources, Atlas can
only process a limited number of images, and its reconstruction results lack de-
tails. To reduce the computational burden, unlike Atlas that processes the whole
image sequences at once, NeuralRecon [31] proposes a coarse-to-fine framework,
that reconstructs the whole scene by processing local fragments incrementally.
However, due to its local estimation design, it is challenging for NeuralRecon to
obtain a global reconstruction with fine details.

2.2 Neural volume rendering and prior guided optimization

Recently, coordinate-based neural representations, that encode a field by regress-
ing the 3D coordinates to outputting values by Multi-Layer Perceptrons (MLPs),
have become a popular way to represent scenes for their compactness and flexi-
bility. Neural fields have achieved remarkable results on encoding images [30, 3,
26], shapes [30, 25, 7, 1, 19], and 3D scenes [20, 41, 40, 24, 36, 39]. In this paper we
mainly focus on neural 3D scene representation and its inverse rendering tech-
niques. Different types of fields are chosen for different goals. Neural Radiance
Fields [20], which encodes the scene geometry by volume density, is suitable for
the tasks of novel view synthesis by volume rendering. However, volume density
cannot represent high-fidelity surfaces due to the lack of surface constraints. A
better reconstruction of surface geometry can be achieved by using occupancy
and signed distances; they can be optimized by both surface rendering [41, 23]
and volume rendering [36, 40, 24] from the supervision of reference images. In
order to further improve the reconstruction accuracy, a concurrent work Neu-
ralWarp [5] proposes a warping-based loss term of image patches to improve
the reconstruction accuracy. However, these methods perform poorly on indoor
scenes because of the lack of textures in indoor scenes. Thus, some methods try
to introduce geometric priors to guide the optimization process.
Depth priors. Some methods [38, 14] use depth priors to supervise the training
process and/or to guide the sampling process of NeRF [20] for indoor scene
rendering to alleviate the shape ambiguity problem. Although they can predict
better depth maps than those rendered from NeRF, the inherent problems of
depth-based methods described in Sec 2.1 still remain, and they cannot produce
smooth geometries even after post-processing the data by filtering and fusion.
Similarly, Roessle et al. [27] utilize dense depth priors in NeRF’s optimization
framework for novel view synthesis with sparse input views. They construct a
depth completion network to get dense depth priors from sparse point cloud of
SfM. However, the framework is designed for novel view synthesis but not for
geometry reconstruction.
Normal priors. Surface normal is important for 3D scene understanding [42, 43]
and recently single view normal estimation has made great progress with high
accuracy [6, 37, 9, 2]. We observe that the estimated normal priors show high
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consistency in planar regions and across input views, and also provide obvious
clues of underlying geometry, as shown in Fig. 6. For the good properties of
normal priors, and also in order to avoid the problems brought by depth priors as
mentioned above, we choose to integrate normal priors into the volume rendering
framework for improving the optimization of the surface representation.

3 Method

Given a set of calibrated RGB images {Ik} of an indoor scene, our goal is to
accurately reconstruct the scene geometry with fine details. To this end, we
adopt a global neural surface representation and optimize it with the supervi-
sion of RGB images. To reconstruct high-fidelity indoor scenes that contain both
large texture-less regions and irregular shapes with fine details, we propose an
adaptive, prior-guided optimization method. Specifically, we incorporate normal
priors learned from a large dataset of indoor scenes into a neural rendering frame-
work for 3D reconstruction. Noting that normal priors tend to be inaccurate in
regions with irregular shapes and thin structures, we propose to use normal
priors in an adaptive manner. This is achieved by evaluating the multi-view con-
sistency of the normal priors, so that they are only applied for reconstructing
smooth and regular shapes, but not for objects with intricate geometries.

Our pipeline has two phases. In the first phase, we use the normal priors
predicted by a monocular method [6] to provide constraints on the normals
rendered with the neural volume rendering framework. Note that the evaluation
of the normal prior is not invoked in this phase (Sec 3.1). What we obtain in
the first phase is a coarse shape with fairly good depth estimations, but lacks
local fine details. At this stage, large flat shapes are reconstructed in reasonably
good quality, thanks to the use of the normal prior, but inaccurate gross shapes
are produced for thin structures or small objects with irregular shape features,
since the normal priors are not reliable for such areas.

Hence, in the second phase, we introduce a scheme to evaluate the faithful-
ness of the normal priors by evaluating the multi-view photometric consistency
induced by the currently estimated normals and depths. Only those normal pri-
ors whose resulting corresponding geometry passes the photometric-consistency
test will be considered reliable and are used for supervision in the following opti-
mization steps. For those unreliable normal priors, we will remove them from the
supervision and only rely on the color information for the following optimiza-
tion steps. This scheme improves the quality of regions where there are sharp
geometry features with relatively more visual features (Sec 3.2). Fig. 2 shows an
overview of our approach.

3.1 Prior-guided volume rendering

Scene representation. Similar to NeuS [36], a 3D indoor scene is represented
by two Multi-layer Perceptrons (MLPs): geometry network fθg : R3 → R to
encode the signed distance function (SDF), and color network cθc : R3×R3 → R3
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Fig. 2. Method overview. Our training process is composed by two phases. In the
first phase, we train a coarse model to fit both the multi-view images and the estimated
normal maps by volume rendering (Sec 3.1), without any filtering strategy. In the
second phase, we adaptively impose the supervision from normal priors, where two
branches are performed simultaneously: in one branch we conduct a geometric quality
evaluation by computing multi-view visual consistency; in the other branch, only those
prior normals that pass the geometric check are accepted as proper supervisions to the
rendered normals.

to encode the colors associated by a spatial position and view direction. The
surface S is then defined as the zero level-set of the SDF, that is,

S = {x|fθg (x) = 0}. (1)

Volume rendering. To enable robust supervision using the 2D image obser-
vations, we adopt the volume rendering technique, which is proven powerful in
NeRF and its variants. Specifically, for each pixel we sample a set of points along
the corresponding emitted ray, denoted as pi = o+ div, where pi are the sam-
pled points, o is the camera center and v is the direction of this ray. Then the
color is accumulated along the ray through Eq. 2.

ĉ =

n∑
i=1

Tiαic(pi,v), (2)

where Ti =
∏i−1

j=1(1 − αj) denotes the accumulated transmittance, αi = 1 −
exp(−

∫ ti+1

ti
ρ(t)dt) is the discrete opacity, and the opaque density ρ(t) follows

the original definition in NeuS [36]. Since the rendering procedure is fully dif-
ferentiable, we can learn the weights of fθg and cθc by minimizing the difference
between the rendering results and reference images.
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However, as shown in our experiments (Sec 4.2), due to the lack of texture,
the pixel-wise colors do not provide sufficient information, thus simply using su-
pervision by the input images would lead to noisy results at texture-less regions.

Prior-guided optimization. A key observation is that the above volume ren-
dering scheme can generate not only appearance, but also geometric properties
such as depth and normal vectors. That is, we can approximate the surface nor-
mal and depth observed from a viewpoint using the volume accumulation along
this ray by

n̂ =

n∑
i=1

Tiαini, d̂ =

n∑
i=1

Tiαidi, (3)

where ni = ∇f(pi) is the spatial gradient of SDF at pi and di is the correspond-
ing depth.

Given the geometric priors represented by normal maps {Nk} predicted from
RGB images {Ik}, we supervise the rendered normal n̂ by comparing it with
the corresponding estimation from Nk. We use a pre-trained single view normal
estimation network [6] to generate the reference normal maps as supervision.
Although the direct use of normal priors without any filtering helps reconstruct
complete surfaces, the results still lack fine details. This is because the estimated
normal maps are usually over-smoothed, inaccurate even grossly on some delicate
structures, such as chair legs, curtains, etc. This motivates us to develop a fil-
tering scheme to use the normal priors in an adaptive manner for reconstructing
more accurate surface geometry.

3.2 Adaptive check of normal priors

In this section, we introduce a checking method for evaluating the normal quality
and adaptively imposing the prior supervision in the optimization process. Our
method is developed over a crucial observation: the predicted normal maps are
overly smooth in regions where there are sharp geometric details. Moreover, such
regions usually have rich visual features, which provide useful clues for validating
the accuracy of the normals by evaluating the photometric consistency, i.e., by
projecting the reconstructed shape to input images and computing the visual
differences across the multi-view images. Based on this observation, we propose
a check scheme based on the patch match technique for evaluating the multi-view
consistency from rendered depth and normal vectors (Eq. 3). This multi-view
consistency evaluation can help NeuRIS identify whether the current geometry
is well reconstructed or not. If not, the normal priors would be regarded as
unreliable and not used for further refinement of reconstruction.

Specifically, consider evaluating the visual consistency of the surface observed
from a pixel q on a reference image Ii, a local 3D plane {p|p⊺n = dv⊺n} is
defined in the reference camera space associated from q, where v is the view
direction, d and n are the distance and the normal estimation from q. We then
find a set of neighboring images, and say one of the neighboring images is Ij .
The homography transformation from Ii to Ij can be computed by Eq. 4.
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Hn,d = Kj(RjR
−1
i − (ti − tj)n

⊺

dvTn
)K−1

i . (4)

Here {K∗, R∗, t∗} are the camera parameters denoting intrinsic matrices, rota-
tions and translations.

Then for pixel q in Ii, we find a squared patch P centered at it and warp
this patch to its neighbor view Ij with the calculated homography matrix. The
visual consistency of (n, d) is evaluated with the Normalized Cross Correlation
(NCC) following the conventional patch-match techniques [28] by

NCCj(P,n, d) =

∑
q∈P Îi(q)Îj(Hn,d(q))√∑

q∈P Îi(q)2
∑

q∈P Îj(Hn,d(q))2
, (5)

where Î∗(q) = I∗(q)−I∗(q) denotes the result subtracted by the mean value of
the local patch.

During the training process, the sampled pixel q along with the patch P in
the reference image is associated with the plane by its accumulated depth d̂ and
normal n̂ in volume rendering. If the reconstructed geometry is not accurate
at the sampled pixel, it will fail to satisfy multi-view photometric consistency,
which means that its associated normal prior has failed to provide help for the
reconstruction process. By comparing the NCC at the sampled patch to a robust
threshold ϵ, we can adaptively decide the training weight of normal priors, using
the indicator function:

Ωq(n̂, d̂) =

{
1 if

∑
j NCCj(P, n̂, d̂) ≥ ϵ

0 if
∑

j NCCj(P, n̂, d̂) < ϵ.
(6)

Only when Ωq(n̂, d̂) equals 1 the normal prior will be used for supervision. And
once the normal priors are judged as unfaithful, they will not be used in the
subsequent optimization process.

3.3 Training

In the training stage, we sample a batch of pixels and adaptively minimize the
difference of the color and normal estimations and the corresponding references.
Specifically, during training, in each iteration we sample m pixels {qk} and their
corresponding reference colors {I(qk)} and normals {N (qk)}. For each pixel we
sample n points along its corresponding ray in the world space. The overall loss
is defined as

L = λcLc + λpLp + λeikLeik. (7)

Here the color loss Lc is defined as

Lc =
1

m

∑
k

∥I(qk)− ĉ(qk)∥1, (8)
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where ĉ(qk) is the predicted pixel colors by volume rendering. The normal prior
loss is denoted by

Lp =
1

m

∑
k

∥N (qk)− n̂(qk)∥1 ·Ωqk(n̂(qk), d̂(qk)). (9)

Note that there are two phases in the whole training process and at the first
phase, there is no geometric check. Thus, the indicator Ωqk(n̂(qk), d̂(qk)) is al-
ways equal to 1 at the first phase while it follows Eq. 6 at the second phase.

The Eikonal loss [8] to regularize the SDF is defined as

Leik =
1

nm

∑
k,i

(∥∇f(pk,i)∥2 − 1)2. (10)

λc, λp, λeik are hyperparameters for weighting color loss, prior loss and Eikonal
loss, respectively.

4 Experiments

4.1 Implementation details

Architecture. We adopt the same network architecture of NeuS [36], where the
signed distance function and color function are modeled by an MLP with 8 and
6 hidden layers respectively. Positional encoding [20] and sphere initialization [1]
are applied to the network. For the normal priors, we adopt the recent method [6]
and re-train its network with our training/test splits to predict the normals of
input images instead of using its officially pretrained model. We sample 512 rays
for each batch to train the model. And we first train the model for 60k iterations
with normal priors and then continue to train the full model for another 100k
iterations, which takes about 10 hours in total on a single NVIDIA RTX2080Ti
GPU. More details can be found in the supplementary.
Dataset. We test the performance of our algorithm on ScanNet [4]. ScanNet is
a large-scale dataset consisting of 1613 indoor scenes with ground truth camera
intrinsics, camera poses and surface reconstructions. Following NerfingMVS [38],
we randomly select 8 scenes and all images are resized in 640 × 480 resolution.
Different from NerfingMVS [38] using images covering a local region in a room,
we aim to perform room-scale reconstruction. For each scene, a set of equally-
spaced images (about 150∼600 images) is sampled from the corresponding video,
thus the number of sampled images is proportional to the video length.
Baselines. We compare our method with the following methods: (1) Depth-
based method: DeepV2D [33]; (2) TSDF based methods: NeuralRecon [31] and
Atlas [22]; (3) Neural volume rendering methods: NeRF[20], NerfingMVS [38],
NeuS [36] and VolSDF [40]; and (4) Traditional MVS reconstruction method
COLMAP [28]. For the depth based method DeepV2D, to address the scale
ambiguity issue of it, we re-scale every predicted depth map according to the
ground truth depth map using the median scale strategy [45] and then fuse its
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predicted depth maps following NeuralRecon [31] to construct global surface
geometry. For COLMAP, we use ground truth poses to reconstruct point cloud
and then use Screened Poisson Surface Reconstruction [11] to get a mesh.
Evaluation metrics. For complete quantitative comparisons, we evaluate the
3D surface geometry results, following the metrics defined in NeuralRecon [31].
Among those metrics, F-score is usually considered as the most suitable metric
to evaluate geometry quality [31]. The definitions of those metrics can be found
in the supplementary. Because of the smoothness property of SDF, even the
not observed areas can be reconstructed, which are usually out of the scope of
the ground truth (GT) mesh. In order to guarantee a fair comparison, for the
predicted mesh, we remove faces in the areas that can not be observed in the
GT mesh. Refer to the supplementary for more details.

4.2 Comparisons

3D reconstruction. Table 1 shows the quantitative results compared with the
state-of-the-art methods. Note that for the data-driven methods [31, 22, 33], we
use the official pre-trained models. As shown in Table 1, our method can signif-
icantly surpass existing methods, especially when compared with neural volume
rendering methods. For the metric Comp. (Completeness), NeuRIS is slightly
worse than DeepV2D. This is because we scale each depth map of DeepV2D to
the GT depth map, and thus after the fusion of the depth maps, there are suf-
ficient points near the GT mesh (i.e., a low Comp. error), but also many points
are still far away from the GT mesh (i.e., a high Accuracy error). For NeRF, we
use the level set 20 to extract surfaces, where the level set is carefully selected
(See the supplementary). Fig. 3 shows the qualitative comparisons. Our method
is visually much better than other methods with fine details. We remark that
our method can produce much complete and smooth results and fill the holes
that exist in the ground truth surface, which is mainly caused by occlusions and
incomplete scans [22]. Refer to the supplementary for more qualitative results.
Normal predictions. Except for accurate geometry reconstruction, our method
can also achieve more accurate normal predictions than [6]. For the monocular
normal estimation method [6], the estimated normal maps may contain wrong
predictions when there are severe occlusions or ambiguities. For example, when a
wall is observed too locally, it’s hard to utilize the global information for precise
normal estimations. Thanks to the proposed adaptive normal guided optimiza-
tion, our method can improve the global consistency of normal maps across views
and correct the wrong estimations from [6]. Fig. 4 clearly shows one example that
our method can improve the quality of normal estimations. Quantitative com-
parisons summarized in Table 2 also validates NeuRIS’s normals are better than
those from [6], using the metrics defined in [6]. Here, we compare the cosine
similarity of our rendered normal (Eq. 3) and the predicted normal of [6] with
the GT normal over 8 scenes (i.e., 493 images), respectively.
Novel view synthesis. To evaluate the quality of novel view synthesis, we
uniformly sample 500 novel views over 8 scenes, which are different from training
images. Our rendering quality is better than those of NeRF and NeuS, benefitting
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GT Ours COLMAP NeuralRecon NeuS

Comp

Fig. 3. Qualitative geometry comparisons. For each block, the first row is the
top view of the whole room and the second row is the zoom-in view of the marked
area. Our method can produce more accurate and complete reconstruction results and
preserve fine details of the scenes.

Normal evaluation

Reference Ours GTPredicted normal by [6]

Fig. 4. Qualitative normal comparisons. When the wall is observed too locally, the
normal estimation of [6] in the marked area is not accurate while it can be improved
by leveraging multi-view information with better observations in our method.



12 J. Wang et al.

Table 1. Quantitative comparisons of room-scale reconstruction results over
8 scenes using 3D geometry metrics. For VolSDF and NerfingMVS, the scores are
averaged on 5 and 3 scenes respectively because they failed on other scenes.

Method Accu. ↓ Comp.↓ Prec.↑ Recall↑ F-score↑
COLMAP[28] 0.076 0.096 0.559 0.545 0.548

NeuralRecon[31] 0.046 0.081 0.720 0.577 0.640
Atlas[22] 0.211 0.070 0.500 0.659 0.564

DeepV2D[33] 0.174 0.049 0.528 0.682 0.593
NeRF[20] 0.127 0.080 0.404 0.512 0.436

NerfingMVS[38] 0.155 0.087 0.410 0.471 0.438
NeuS[36] 0.183 0.152 0.286 0.290 0.284

VolSDF[40] 0.237 0.171 0.331 0.280 0.301
Ours 0.046 0.053 0.770 0.707 0.736

Table 2. Quantitative normal evaluation over 8 scenes.

Method Mean↓ Median↓ RMSE↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑
TiltedSN [6] 15.4 7.3 24.8 63.2 79.3 84.5

Ours 14.7 6.9 24.3 65.4 81.1 86.0

from our high-quality geometry. The average PSNR of NeRF, NeuS and ours
are 23.3, 22.7 and 24.4, respectively. Fig. 5 shows one sample of qualitative
comparisons and refer to the supplementary for more results.

NVS

NeRF Ours GTNeuS

Fig. 5. Novel view synthesis results. Our method can produce much better ren-
dering results than the baseline methods NeRF and NeuS.

4.3 Ablation Studies

In order to evaluate the effectiveness of our proposed components, we conduct
experiments in three different settings: (1) NeuS with the default setting; (2)
NeuS with normal priors; (3) Ours: NeuS with normal priors and geometric
check. Table 3 shows that integrating normal priors significantly improves the
reconstruction quality because it reduces ambiguities caused by lack of texture.
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With geometry-check, we can remove the wrongly estimated normals and further
improve geometry quality. Moreover, as shown in Figure 6, adopting all normal
priors naively in NeuS can reconstruct the wall and floor but fail to reconstruct
the chair leg. For the pixels corresponding to the chair leg, their multi-view
consistency constraints are not satisfied and the normal priors at this area should
be removed during the training process. Finally with our geometry check the
chair leg can be successfully reconstructed. This demonstrates that our geometry-
check can remove wrongly estimated normals.

Table 3. Ablation studies of each component of our method over 8 scenes.

NeuS Prior Geo Accu.↓ Comp.↓ Prec.↑ Recall↑ F-score↑

✓ 0.183 0.152 0.286 0.290 0.284
✓ ✓ 0.050 0.053 0.749 0.701 0.724
✓ ✓ ✓ 0.046 0.053 0.770 0.707 0.736

Reference NeuS with normal priors OursEstimated normal

Ablation

NeuS

Fig. 6. Ablation study. The estimated normal priors of reference images show high
fidelity at planar regions but they are not correct at chair legs. Naively using all normal
priors as supervision can help reconstruct the planar regions but fail to reconstruct the
chair legs, while our method can reconstruct them all in high quality.

We also show the reconstruction results of a challenging thin structure put at
a desk corner, given a set of images sampled from a video sequence. Fig. 7 shows
that NeuS can reconstruct the thin structure but there are artifacts, including
wrongly reconstructed desk surfaces and redundant surfaces indicated by the red
arrow. NeuS with normal priors can reconstruct the background desk surface well
but still fail to reconstruct some parts of the thin structure well (blue arrows).
As for our method, both the background desk surfaces and foreground thin
structures can be well reconstructed. Moreover, different from the methods [32,
12, 35, 13] which only focus on thin structure reconstruction, our method does
not need foreground extraction for each input image as preprocessing and can
handle hybrid scenes which contain both thin structures and general objects.

In summary, with the help of normal priors, the predominant shapes, includ-
ing planar or regular surfaces, can be well reconstructed. Thus, we can see that
the reconstruction quality can be greatly improved. With the geo-check mecha-
nism, the wrongly estimated normals at areas of relatively small objects or thin
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Reference NeuS NeuS with normal priors Ours

Fig. 7. Reconstruction of a thin structure and desk corner. The left part shows
the reference images. The right part shows the reconstruction results under 3 different
settings, where the first row shows the overview of reconstruction results and the second
row shows the zoom-in view of the area indicated by yellow arrows.

structures can be removed, therefore the reconstruction quality can be further
improved. Although the areas occupied by edges or small objects may not be
large in a room, the accurate reconstruction of them is critical to the overall
success of reconstruction in terms of perceptual quality.

5 Conclusion and future work

In this work, we propose a novel prior-guided optimization framework of neu-
ral volume rendering with geometric constraints, which can adaptively integrate
normal priors into neural volume rendering efficiently and accurately. This way
enables the network to utilize prior knowledge at texture-less areas and maintain
the capacity to reconstruct fine details of small objects with relatively more tex-
ture. This method has practical uses in VR/AR or other applications that require
precise indoor geometry. Currently, our method requires per-scene optimization
for several hours, which hinders our method from reconstructing scenes at a large
scale. In the future, we will try to integrate some hybrid neural representations
such as the multi-resolution hash encoding [21] into our model to speed up the
training process and try to adaptively integrate other kinds of priors into our
framework, such as depth priors, to get better reconstruction quality.
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