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A Additional Experiments and Results

A.1 Fine-tuning

While our model is focused at generalizing to unseen scenes, for a thorough
comparison against previous methods, we follow the protocol from IBRNet [5]
and fine-tune our model (for setting 1) on each of the RFF test scenes for 10k
iterations. We report the average metrics across all scenes in Table A.1.

Method PSNR SSIM LPIPS

IBRNet [5] 26.73 0.851 0.175

GeoNeRF [2] 26.58 0.856 0.162

Ours 27.66 0.924 0.138

Table A.1. Fine-tuning results on the RFF dataset, setting 1. Our approach not only
improves over the baselines on unseen scenes with no re-training as shown in the main
paper, but also when allowed to fine-tune for a few iterations on new scenes.

A.2 Number of Reference Views

We train our model with 3, 5, 7, 10 and 12 reference images to investigate the
effect of number of reference views available to view synthesis. The models are
trained on forward-facing scenes from LLFF [3] and IBRNet [5]. We summarize
the average performance of each variant on the real-forward-facing dataset in
Table A.2. Our model benefits from having access to a large number (up to 10)
of reference images.
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Number of

Reference Views

Real-Forward-Facing

PSNR SSIM LPIPS

3 22.36 0.800 0.286

5 24.33 0.850 0.216

7 25.05 0.860 0.195

10 25.72 0.880 0.175

12 25.69 0.881 0.178

Table A.2. Effect of varying the number of reference view on view-synthesis.

A.3 RGB Prediction

To synthesize a novel view, our model predicts the weights of a linear combination
of reference image pixel colors. A common alternative is to combine learned visual
features, followed by a learned mapping to color values [4]. To substantiate our
argument of better generalization from combining colors instead of features,
we train a variant of our model where the output color is predicted from the
aggregated features as

c = MLP

(
K∑

k=1

βkf
k
3

)
. (1)

We evaluate this approach in setting 1 and show that our model, which combines
pixels, is indeed superior. Table A.3 shows the results.

Interpolation

Method

Real-Forward-Facing

PSNR SSIM LPIPS

Features 25.08 0.86 0.199

Colors (ours) 25.72 0.88 0.175

Table A.3. Comparison of average performance when using feature versus color inter-
polation for view-synthesis. Results show that combining the colors of reference views
generalizes better than combining visual features.

A.4 DTU to RFF Generalization

We present results on generalization to scenes in the real-forward-facing (RFF)
dataset for a model trained only on DTU in Table A.4. While MVSNeRF [1]
has a better PSNR and LPIPS performance our method achieves better SSIM
scores on average across all scenes in RFF.
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Method
Real-Forward-Facing

PSNR SSIM LPIPS

MVSNeRF 21.93 0.795 0.252

Ours 20.69 0.808 0.281

Table A.4. Generalization results on RFF for a model trained on DTU.

A.5 Timing Statistics

On average, our model trains at around 3.2 steps per second on 32 TPUs with a
batch size of 4096. A prior transformer-based neural rendering work, LFNR [4],
is slightly faster at 4.2 steps per second on the same hardware with the same
batch size. Rendering one image with our model takes around 15 seconds whereas
LFNR takes around 10 seconds on the same hardware. While LFNR takes around
16 hours to train, it can only be trained on single scene. Thus, to render the novel
views for the 8 scenes in the RFF dataset, it would take at least 128 hours of
training plus the inference time. Our model just trains for approximately 24
hours and can be used for inference directly on all the scenes, albeit with a small
drop in rendering quality.

B Quatlitative Results

B.1 DTU Comparison

We compare renderings on the DTU test set against MSVNeRF in Fig. B.1.
Compared to MVSNeRF, our model produces renderings with sharper bound-
aries and textures.
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Fig. B.1. Qualitative Results on DTU.
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