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1 Implementation Details

1.1 Network structure

Our network structure adopts the encoder-decoder structure following U-Net [5],
which has been proved very effective for conditional image generation. The en-
coder consists of a series of residual blocks, gradually reducing the feature spatial
size and doubling the number of channels. From the latent feature, the decoder
recovers the feature spatial size with skip connection from the features of the
encoder. The number of features of the first block is 64 and we adopt 5 blocks
for the encoder or decoder respectively. The final layer of the decoder is a 1× 1
convolutional layer that outputs the multiplane images (MPIs). We adopt a tex-
ture sharing strategy following Nex [7] to achieve a more compact MPI, where
every 4 plane shares the same RGB textures. Specifically, the network outputs
240 channels, where the first 192 channels represent the alpha channels and the
remaining 48 channels are the RGB textures.

Also, we introduce a small U-Net structure where we make the following
modifications: 1) Reduce the number of feature channels to 1/3 of the baseline.
2) Remove one residual block for encoder and decoder respectively. As verified
in the quantitative study, this smaller network only introduces minor quality
degradation but enables real-time rendering.

1.2 Data preprocess

After we capture the multi-camera video sequences, we perform the following
data processing for training

Synchronization Our pose-guided MPI synthesis requires temporally synchro-
nized driving frame and multi-views. We use audio to synchronize the videos
from multiple cameras. We utilize a commercial software, Adobe Premiere, to
synchronize the videos according to their audio tracks, which offers synchroniza-
tion accuracy within a few tens milliseconds to five milliseconds. Because there
inevitably exists misalignment, we ask the character to move a little bit slower
than usual to reduce the misalignment between frames. Instead of processing the
whole video sequence, we divide the videos into overlapping clips and synchronize
the video clips, which we find leads to more accurate alignment.
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Video clip and frame extraction We capture the character for 1 ∼ 3 minutes
and encourage the character to perform diverse poses during the video capture.
We subsample the video frames by 3 ∼ 10 fps depending on the clip length so
that we obtain roughly 1000 frames (or∼ 200 different human poses) for training.
It is noteworthy that our network has the potential to fit more frames and we
expect this will lead to improved character modeling. However, leveraging more
training frames from the moving capture rig is computationally prohibitive in
the SfM stage and we intend to address this in our future work.

Camera pose estimation from SfM We use COLMAP [6] to estimate the
camera poses. For all the sequences, we first parse the foreground person us-
ing [1] along with mask dilation to exclude the moving regions during the feature
matching. For video sequences with less than 1000 frames, we use the exhaustive
matcher with the guided feature match and run the standard mapper for the
scene construction. When dealing with more than 1000 frames, we use vocabu-
lary tree matching for feature matching. Then we adopt a hierarchical mapper
followed by a few iterations of triangulation and bundle adjustment to recon-
struct the scene. Since we use smartphone cameras of the same type, we enforce
shared camera intrinsics during the COLMAP computation. After the sparse
reconstruction, we apply the undistortion operation on the original image based
on the estimated distortion parameter. These undistorted images are utilized as
the ground truth.

Keypoints Extraction We use MediaPipe [2] to extract the holistic human
keypoints for the driving frames. Specifically, we obtain 468, 33 and 42 land-
marks for face, body and hands respectively. After the detection, we draw the
extracted keypoints with a pre-defined color scheme. As MediaPipe does not
support frames with multiple persons, for such cases we crop the input image,
detect the keypoints for each person individually and finally stitch the results
altogether.

1.3 Motion transfer

When trying to transfer the body pose of the driving character to the source
character, we need to keep the direction of driving limbs and the limb length of
the source. To achieve this goal, we treat the body landmarks as a tree structure,
as shown in Fig. 1(b). The tree root is the midpoint of the left shoulder and right
shoulder. When the location of the parent node is known, we can calculate its
children nodes. We use tcb to denote the children node of the driving body and
tpb for the parent node of the driving body. The transferred children node is

tcb − tpb
ltb

∗ lsb , (1)

where ltb is the length of the driving body limb and ltb is the length of the
corresponding source limb. And the limb length is determined as the maximum
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Fig. 1. The illustration of the body tree structure and hand tree structure. (a) Captured
body and hand pose. (b) The body tree structure where node 0 is the tree root. (c)
The hand tree structure where node 0 is the tree root.

limb length of all the driving/source frames. The gesture transfer is similar to
body pose transfer, except that the tree root is changed to the wrist. Fig. 1(c)
depicts the tree structure for fingers.

2 Generalization Ability of NeRF-based Approaches

We also explore the generalization ability of NeRF-based approaches. To achieve
this, we modify the state-of-the-art method Nerfies [3] and HyperNerf [4] with
the keypoints as input. Specifically, for Nerfies, instead of learning a latent code
for the deformation of each pose, we directly use the body keypoints as the
input to learn the deformation. For HyperNeRF, we modify it to a hybrid way,
where we expect the input body keypoints to learn the large deformation — leg
movement or head pose — relative to the canonical template while the hyper
code modulates the canonical space and accounts for small deformation such as
expression changes.

We show the results for novel pose combination in Fig. 2. In this example,
we want to combine the right hand of the first input with the body and the
face with the second input. We can see that HyperNeRF does not fully utilize
the information of the body keypoints and fails in the combination. Nerfies
is able to generate the coarse new pose but suffers from large distortion and
obvious artifacts in the resulting image. The generated pose is also not accurately
aligned with the desired combination. As the NeRF-based method is based on
the implicit field, we show that the generalization ability is not as good as the
proposed method which allows explicit control and shows better generalization
ability.

3 More Results

In the next, we provide additional results including the depth visualization and
generalization ability experiments. We highly recommend the readers refer to
the accompanied videos for more visual results.
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Fig. 2. Novel pose combination using NeRF-based approaches. Due to the implicit
modeling of deformation, these methods are good at memorizing the scene but are not
friendly to explicit control, thus failing to generalize to unseen poses that are slightly
different from the training samples.

Depth visualization By compositing the depth instead of the color texture,
we can generate the depth map for each frame as visualized in Fig. 3.
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Fig. 3. Depth visualization. Our method can generate a smooth, boundary crisp depth
map, showing that the learned MPI does well model the 3D geometry of the scene.

Generalization ability We also include more examples on pose interpolation
and extrapolation as in Fig. 4.

More results of motion transfer In Fig. 5 we showcase additional results
on motion transfer. Our method is able to animate the character following the
driving subject while yielding photo-realistic quality.
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Fig. 4. Generalization study. Comparing to implicit approaches, our method can gen-
eralize to unseen poses due to the generative ability of CNNs. Here we show examples
on motion interpolation and extrapolation.

Fig. 5. Additional results on motion transfer.
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