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1 Details of Patch-based Color Blending

Besides the pixel-based color blending, we introduce patch-based color blending
to jointly evaluate local and contextual radiance consistency, thus yielding more
reliable color predictions. To render the colors of a patch with size k x k, we
leverage local surface assumption and homography transformation for an efficient
implementation.

The key idea is to estimate a local plane of a sampled point to efficiently
derive the local patch. Given a sampled point ¢ in the query ray, we leverage
the property of the SDF network s(g) to estimate the normal direction ng by
computing the spatial gradient, i.e., n, = Vs(g). Then, we select a set of points
on the local plane (g,ng), project the selected points to each view, and obtain
the colors by interpolation on each input image. This projection operation is
implemented by homography transformation. Let H be the homography between
the view to be rendered I, and the iy, input view I; induced by the local plane
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where K is the intrinsic matrix, R; is the 3 x 3 rotation matrix of I; relative to I,.,
t; is the 3D translation vector of I; relative to I, and (R;,¢;) is the pose of the
view I, in the world coordinate system. Given the homography, we can obtain
the projected pixel location Hq on the view [;, that is, the matrix product of H
and ¢, and then obtain ¢’s corresponding color by interpolation.

This homography is also applied to the set of points selected on the local
plane (g,ny), so we can obtain their colors in the view I; by interpolation. All
the points on the local plane share the same blending weights with ¢, and thus
only one query of the blending weights is needed. By blending the patch colors
interpolated from each view {Ii}ij\gol with the blending weights, we obtain the
final patch colors of point ¢. Same as pixel-based blending, we use SDF-based
volume rendering [7] to aggregate the interpolated patch colors of all the points
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sampled in the query ray r to generate the final predicted patch colors of the
ray.

Using local plane assumption, we consider the neighboring geometric infor-
mation of a query 3D position, which encodes contextual information of local
patches and enforces better geometric consistency. By adopting patch-based vol-
ume rendering, synthesized regions contain more global information than single
pixels, thus producing more informative and consistent shape context, especially
in the regions with weak texture and changing intensity.

2 More Implementation Details

Network details. Feature Pyramid Network [3] is used as the image feature
extraction network to extract multi-scale features from input images. We im-
plement the sparse 3D CNN networks using a U-Net like architecture, and use
torchsparse [6] as the implementation of 3D sparse convolution. The signed dis-
tance function (SDF) fy is modeled by an MLP consisting of 4 hidden layers with
a hidden size of 256. The blending network f. used in fine-tuning is modeled by
an MLP consisting of 3 hidden layers with a hidden size of 256. Positional en-
coding [4] is applied to 3D locations with 6 frequencies and to view directions
with 4 frequencies. Same as NeuS [7], we adopt a hierarchical sampling strategy
to sample points in the query ray for volume rendering, where the numbers of
the coarse and fine sampling are both 64.

Training parameters. The loss weights of total loss Eq.7 are set toa = 0.1, 8 =
0.02. The sdf scaling parameter 7 of sparseness loss term Eq.10 is set to 100. For
the consistency-aware color loss term Eq.6 used in fine-tuning, by default, \¢ is
set to 0.01 and A is set to 0.015. The ratio A\g/A; sometimes needs to be tuned
for better reconstruction results for each scene: decreasing the ratio Ag/A\; will
lead to more regions being kept; otherwise, more regions are excluded and the
surfaces are cleaner.

Data preparation. We observe that the images of the DTU dataset contain
large black backgrounds and the regions have considerable image noises. Hence,
we utilize a simple threshold-based denoising strategy to clean the images of
training scenes. We first detect the pixels where intensities are smaller than a
threshold 7 = 10 as the invalid black regions, and thus yielding a mask for each
image. The mask is then processed by image dilation and erosion operations to
reduce isolated outliers. Finally, we evaluate the areas of the connected compo-
nents in the masks, and only keep the connected components whose areas are
larger than s, where s is set to the 10% of the whole image. Given the masks,
the detected black invalid regions are set to 0. By the simple denoising opera-
tion, the noises of the black background regions in the DTU training images are
mostly removed.
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3 DMore experiments

Different number of views as input. Despite the good performance given
the input of sparse images, our method can deal with an arbitrary number of
input views. We investigate how the reconstruction quality is improved with
more views as input. We conduct experiments on Scan105 of DTU dataset, with
2 ~ 8 views as input, of which results are shown in Figure 1. Our method is still
able to produce plausible geometries using only two views of an unseen object.
With more views included, the reconstruction quality can also be progressively
improved, and finally converges to a fairly low reconstruction error.
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Fig. 1: The results with different number of views as input.

More qualitative results. We present more qualitative comparisons with
MVSNerf [1], Colmap [5] and NeuS [7] on DTU [2] and BlendedMVS [8] datasets.
As shown in Figure 2, the extracted meshes of MVSNerf always suffer from noisy
surfaces, while our results via fast network inference are much smoother and less
noisy. This is because MVSNerf adopts density representation which lacks local
surface constraint.

After a short-time per-scene fine-tuning, our results are noticeably improved
with fine-grained details and become more accurate and cleaner. Compared with
the results of NeuS, our reconstructed surfaces are more complete and accurate.
Neus suffers from radiance ambiguity problem, and its geometries are incomplete
and distorted.

More comparisons on BlendedMVS dataset are presented in Figure 3. Al-
though our method is not trained on BlendedMVS, our generic model shows
strong generalizability and produces cleaner and more complete results than
those of MVSNerf. For example, for the Buddha head in Figure 3, Colmap fails
to recover complete geometry and can only produce sparse points, while ours
produces much more complete results.
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Fig. 2: Visual comparisons on DTU [2] dataset.
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Fig. 3: Visual comparisons on BlendedMVS [8] dataset.
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